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Abstract: A novel optimal power and energy management (OPEM) for centralized hybrid energy
storage systems (HESS) in microgrids is presented in this paper. The proposed OPEM aims at
providing multiple grid services by suitably exploiting the different power/energy features of
electrochemical batteries (B) and supercapacitors (S). The first part of the paper focuses on the design
and analysis of the proposed OPEM, by highlighting the advantages of employing hand-designed
solutions based on Pontryagin’s minimum principle rather than resorting to pre-defined optimization
tools. Particularly, the B power profile is synthesized optimally over a given time horizon in
order to provide both peak shaving and reduced grid energy buffering, while S is employed in
order to compensate for short-term forecasting errors and to prevent B from handling sudden and
high-frequency power fluctuations. Both the B and S power profiles are computed in real-time in order
to benefit from more accurate forecasting, as well as to support each other. Then, the effectiveness of
the proposed OPEM is tested through numerical simulations, which have been carried out based on
real data from the German island of Borkum. Particularly, an extensive and detailed performance
analysis is performed by comparing OPEM with a frequency-based management strategy (FBM)
in order to highlight the superior performance achievable by the proposed OPEM in terms of both
power and energy management and HESS exploitation.
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1. Introduction

Microgrids (MGs) represent one of the most viable and promising solutions for the power
systems of the future because they can provide a number of advantages, such as increased energy
and cost savings, as well as improved power quality [1,2]. Enhanced MG performances can be
achieved by means of advanced management and control strategies, which aim to optimize MG
operations from technical and/or economic points of view [3,4]. These strategies generally rely on
energy storage systems (ESS), which are widely recognized as a key enabling technology for MGs [5–8].
Particularly, high-energy-density ESS are generally employed for providing energy services, such
as load levelling, peak shaving, energy arbitrage, back-up services and renewable energy source
integration [9,10], whereas high-power-density ESS are the best solutions for providing power services,
namely frequency regulation and power quality [11,12].

Several ESS technologies can be considered for grid applications in accordance with the services
they are going to provide [13,14]. In this regard, hydro and compressed-air ESS are well suited for
providing energy services, but they require significant investment costs and environmental impact.
Similarly, hydrogen-based ESS can provide energy services successfully and they are also able to release
the stored energy in different forms (electrical, thermal, etc.). However, hydrogen-based ESS suffer from
high costs, low efficiency and safety issues. Although electrochemical batteries are the most popular
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ESS in several applications, their use for providing energy and power services is still quite limited.
Considering supercapacitors, flywheel and superconducting magnetic ESS, they are very suitable for
power services due to their fast dynamic response. However, supercapacitors suffer from very poor
energy content, while flywheel and superconducting magnetic ESS are characterized by safety and
cost issues respectively. Despite the specific types of ESS, a literature review reveals that a single
ESS technology may not be suitable for providing both energy and power services. Consequently, ESS
economic viability is still an issue for grid applications, especially due to high investment costs.

In this regard, hybrid energy storage systems (HESS) represent a very promising solution;
these consist of suitable combinations of both high energy and high power density ESS and thus,
of ESS technologies characterized by complementary features [15–20]. Consequently, HESS can benefit
from the advantages of different ESS technologies, resulting in enhanced performance compared to
single ESS. Regarding the high energy density storage unit of the HESS, electrochemical batteries (B),
compressed-air or hydrogen-based ESS are generally considered, which are characterized by an
adequate energy capacity but relatively slow dynamic performance. It is also possible to make an HESS
by combining B with compressed-air or hydrogen-based ESS [16,17]; in these cases, B act as the high
power density storage unit due to superior dynamic performances and lower energy density compared
to the other ESS. However, the most common high power density storage unit of HESS generally consists
of supercapacitors (S), but also of superconducting magnetic and flywheel ESS [18–20]; despite their
poor energy content, these ESS are characterized by very large and fast power variations.

Among all the possible HESS configurations, the combination of B and S is surely the most popular
configuration, and its advantages have been proved both theoretically and experimentally [21–24].
In addition, such an HESS configuration can suit both small-scale and large-scale applications due to
its inherent modularity. In this regard, B are more suited than S to provide energy services, such as
load levelling and peak shaving, due to their higher energy density; whereas S are characterized by
much higher power density than B, revealing them as a suitable choice for providing power services
(power quality, short-term forecasting error compensation, etc.). As a result, an HESS can provide
multiple grid services, thus achieving economic viability. However, this also requires appropriate
power and energy management strategies, which should be developed based on the specific services
to be provided and on the inherent HESS features, with the aim of exploiting the two (or more) energy
storage units synergistically.

Several strategies for HESS management in MGs have been proposed in the literature [25–51].
The most popular approach consists of decoupling low-frequency and high-frequency power
components [26–30]; these have to be handled by B and S respectively in order to prevent B from
coping with high-frequency power fluctuations (frequency-based management, FBM). Therefore, the
power split is generally carried out by means of low/high pass filters. Another simple control
approach considers pre-set rules that generally prioritize the employment of one ESS, while the
other acts as a support unit (rule-based management, RBM) [31–36]. Such control approaches are
intuitive and simple to implement, but may not lead to optimal solutions. In order to increase
their performances, both FBM and RBM may be combined with each other and/or with fuzzy logic
algorithms in order to take into account HESS operating constraints [37–39]. However, both FBM and
RBM aim mainly at preventing unsuitable B overexploitation rather than providing multiple grid
services optimally. This is instead fundamental for enabling HESS competitiveness in MGs, especially
from an economic point of view. In this regard, a number of optimal approaches can be employed,
which rely on the minimization of an appropriate objective function in order to achieve the desired
performances, complying with both HESS and MG operating constraints simultaneously. A literature
review reveals that very complex and sophisticated objective functions are generally considered,
whose minimization is carried out by different optimal solving techniques [40], such as model
predictive control [41–43], mixed-integer/linear programming [44,45], nonlinear programming [46,47]
and dynamic programming [48,49]. Viable alternatives consist of heuristic approaches [50,51], such as
genetic algorithms and particle swarm optimization, which guarantee less computational efforts
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and execution times at the cost of reduced performances (sub-optimal solutions). However, the
literature review also points out that much more focus is given to defining objective functions and
operating constraints than to designing the optimal solving procedure, which is generally demanded
of pre-defined solvers and tools [43–46,48–51].

A different management approach is proposed in this paper, which regards a novel hand-designed
optimal power and energy management (OPEM) for an HESS made up of B and S. Particularly,
an appropriate objective function is defined in order to enable B to provide both peak shaving and
reduced grid energy buffering simultaneously, over a given time horizon and in accordance with
B energy and power constraints. Unlike many other optimal control approaches proposed in the
literature, the optimal solution is achieved analytically by applying the Pontryagin’s minimum principle
(PMP) [52–56], thus enabling fast and effective real-time implementation. The optimal design procedure
also reveals the need for employing a sub-optimal solution in order to prevent B from excessive cycling,
without significantly impairing the achievement of the OPEM goals. This would be prevented if
pre-defined optimization tools were employed. Regarding the S power profile, it is determined in
real-time in order to compensate for sudden power fluctuations and short-term forecasting errors to
the maximum extent. The optimal B power profile is also updated in real-time in order to benefit from
more accurate forecasting as time passes, as well as for supporting S in terms of charging/discharging
needs. As a result, although B and S provide different services, they support themselves in accordance
with their inherent features, thus exploiting the HESS configuration synergistically.

The paper is structured as follows: mathematical modelling of both MG and HESS is introduced
in Section 2, whereas the design procedure of the proposed OPEM is described in detail in Section 3.
Numerical simulation results are provided and discussed extensively in Section 4, which refer to the
real case study of the German island of Borkum and include a comparison between the proposed
OPEM and an FBM approach. Finally, concluding remarks are reported in Section 6.

2. Mathematical Modelling

2.1. Microgrid

An MG is made up of several distributed generators and loads and it is generally connected
to the main grid through the point of common coupling (PCC), as shown in Figure 1. This also
reveals the presence of a centralized HESS, which is assumed to be connected to the PCC directly.
Consequently, the power balance at the PCC can be easily expressed as

g = r + s (1)

r = ∑
i

pi + ∑
j

lj (2)

where g is the power exchanged with the main grid, r is the residual power at the PCC and s denotes
the overall power exchanged by the centralized HESS. Particularly, the MG acts as either a load or a
generator depending on the sign of r; this accounts for all generation and load contributions through
pi and lj, which denote the power delivered by the i-th generator (positive value) and drawn by the
j-th load (negative value) respectively. While a positive s value means that the HESS is discharging,
otherwise an HESS charging process occurs.
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In conclusion, it is worthy of note that MG network constraints are assumed to be satisfied
for any r value, which derives from the historical database of the German island of Borkum.
Consequently, since the HESS does not affect power and energy distribution within the MG due
to its centralized configuration, the compliance with the MG network constraints is assumed satisfied
also for any s value.

2.2. Hybrid Energy Storage System

Considering the centralized HESS already shown in Figure 1, it is made up of B and S. Therefore, its
overall power and energy can be split as

s = sB + sS (3)

e = eB + eS (4)

where sB and sS denote the power exchanged by B and S respectively, with eB and eS denoting their
corresponding energy levels. These vary in accordance with sB and sS as

deX
dt

= −
(

sX + |sX |
2 ηd,X

+ ηc,X
sX − |sX |

2

)
, X ∈ {B, S} (5)

where ηc and ηd denote the charging and discharging efficiencies. Hence, the power and energy of
both B and S are bounded in accordance with the following constraints:

sX,min ≤ sX ≤ sX,max , X ∈ {B, S} (6)

eX,min ≤ eX ≤ eX,max , X ∈ {B, S} (7)

in which the upper and lower boundaries depend on the specific energy storage technology, size and
operating conditions.

3. Optimal Power and Energy Management

The optimal power and energy management (OPEM) proposed in this paper aims at providing
both energy and power services by exploiting the complementary features of B and S optimally.
Consequently, focusing on energy services at first, both peak shaving and reduced grid energy buffering
can be achieved simultaneously by minimizing the following objective function:

Θ(t)2 =
1
T

t+T∫
t

g̃(t)2dt (8)

g̃ = r̃ + s̃B (9)

where g̃ denotes the forecasted power flow between the MG and the main grid, which depends
on the forecasted residual power (r̃) and B power profile (s̃B). While t represents the current time
instant and T is a given time horizon, which represents the length of the time window subsequent
to t and within which Θ2 should be minimized. For this purpose, the evolution of sB over T must be
synthesized optimally based on the evolution of the residual power forecasted over the same time
window (r̃). In this regard, it is worth noting that only B is considered for Θ2 minimization because
energy services generally require high energy density ESS, especially when large T is concerned.
In addition, Equation (8) aims at reducing the magnitude of g̃ to the maximum extent, especially when
it occurs at high rates. Consequently, it represents a suitable trade-off between peak shaving and
reduced grid energy buffering, i.e., the overall energy exchanged between MG and the main grid.
In addition, the minimization of Equation (8) leads to an analytical optimal solution, thus enabling
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fast and effective real-time implementation, especially in comparison with more sophisticated and
complex objective functions.

The overall control scheme of the proposed OPEM is depicted in Figure 2. The forecasted residual
power profile over the given time horizon T is achieved through a forecasting service and updated every
tr. Based on r̃, the proposed OPEM synthesizes sB

*, also in accordance with S charging/discharging
needs (∆S). Particularly, ∆S is the average power required by S over t∆ in order to cope with its
unsuitable charging status. Consequently, sB

* is updated every tB, which is the minimum value
between tr and t∆. Then, sS

* is determined every tS based on the errors between r̃ and r. As a
result, energy optimization is achieved by B through Θ2 minimization, while power management is
accomplished by S, which compensates for unpredictable power mismatches.

Energies 2017, 10, 1909 5 of 21 

 

updated every tr. Based on r , the proposed OPEM synthesizes sB*, also in accordance with S 
charging/discharging needs (ΔS). Particularly, ΔS is the average power required by S over tΔ in order 
to cope with its unsuitable charging status. Consequently, sB* is updated every tB, which is the 
minimum value between tr and tΔ. Then, sS* is determined every tS based on the errors between r ̃ and 
r. As a result, energy optimization is achieved by B through Θ2 minimization, while power 
management is accomplished by S, which compensates for unpredictable power mismatches. 

 
Figure 2. The overall block control scheme of the proposed OPEM. 

In conclusion, it is worth noting that the proposed OPEM has been designed in order to be 
implemented in real-time; this means that both sB* and sS* have to be computed at certain time refresh 
rates, namely every tB and tS respectively. Consequently, Θ2 is minimized over a sliding time window 
because sB* is updated every tB, benefiting from more accurate forecasting and the knowledge of the 
actual B energy level (eB). The sS* is updated every tS, which should be much smaller than tB in order 
to enable the compensation for fast power variations and short-term forecasting errors. 

3.1. Energy Optimization 

The minimization of Θ2 over T can be achieved by applying the Pontryagin’s minimum principle 
(PMP), which allows the achievement of sB* by satisfying both Equation (6) and Equation (7) 
simultaneously. Particularly, the PMP was chosen for designing the proposed OPEM in order to 
achieve an analytical solution, thus easing OPEM implementation. In addition, PMP reveals very 
important information on the genesis of the optimal solution, giving the possibility of choosing sub-
optimal solutions that better fit with HESS features and/or MG goals. Therefore, the Hamiltonian 
function is introduced at first as 

2 B

B

de d
g ,

dt dt e

λλ ∂= + = −
∂

 H
H  (10) 

in which λ is the Lagrange multiplier. Therefore, the substitution of Equations (5) and (9) into 
Equation (10) yields 

( ) ( )2 0B B B B B

d
r s s s ,

dt

λλ α β= + − + =   H  (11) 

where: 

1 1 1 1
2 2B c,B B c,B

d ,B d ,B

, .α η β η
η η
   

= + = −      
   

 (12) 

Thus, based on Equation (11), λ is constant and, thus, it can be denoted by Λ in the following. 
Furthermore, PMP requires that H  is minimized towards Bs , leading to 

Figure 2. The overall block control scheme of the proposed OPEM.

In conclusion, it is worth noting that the proposed OPEM has been designed in order to be
implemented in real-time; this means that both sB

* and sS
* have to be computed at certain time refresh

rates, namely every tB and tS respectively. Consequently, Θ2 is minimized over a sliding time window
because sB

* is updated every tB, benefiting from more accurate forecasting and the knowledge of the
actual B energy level (eB). The sS

* is updated every tS, which should be much smaller than tB in order
to enable the compensation for fast power variations and short-term forecasting errors.

3.1. Energy Optimization

The minimization of Θ2 over T can be achieved by applying the Pontryagin’s minimum principle
(PMP), which allows the achievement of sB

* by satisfying both Equation (6) and Equation (7)
simultaneously. Particularly, the PMP was chosen for designing the proposed OPEM in order to
achieve an analytical solution, thus easing OPEM implementation. In addition, PMP reveals very
important information on the genesis of the optimal solution, giving the possibility of choosing
sub-optimal solutions that better fit with HESS features and/or MG goals. Therefore, the Hamiltonian
function is introduced at first as
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Thus, based on Equation (11), λ is constant and, thus, it can be denoted by Λ in the following.
Furthermore, PMP requires that
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Thus, based on Equation (11), λ is constant and, thus, it can be denoted by Λ in the following. 
Furthermore, PMP requires that H  is minimized towards Bs , leading to 

is minimized towards s̃B, leading to

s∗B = −r̃ +
Λ
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(αB + σ∗BβB), σ∗B =

s∗B∣∣s∗B∣∣ . (13)

Finally, the substitution of Equation (13) in Equation (9) yields

g̃∗ =
Λ

2
(αB + σ∗BβB) (14)

Based on Equation (14), it can be stated that Λ should be set to zero, thus enabling B to compensate
for r̃ completely. However, this would be feasible only if B was largely oversized in terms of both energy
and power rates. Particularly, Equation (13) has to be lower or upper bounded in accordance with
Equation (6); despite this, it may also lead to an eB evolution that does not comply with Equation (7).
Hence, the fulfillment of the B energy constraint must be guaranteed by an appropriate choice of Λ.

Based on the previous considerations, the overall time horizon T can be split into an alternating
sequence of “ON” and “OFF” time intervals, Λ being thus piecewise constant over T [52].
Particularly, the generic k-th “ON” interval is characterized by the following relationship:
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2
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Whereas over the generic h-th “OFF” interval, the following constraints must be satisfied:

s∗B,h = 0, e∗B,h = eB,min or eB,max. (17)

Furthermore, referring to Equation (15), sB,k
* can be either positive or negative in accordance with

the following constraints:
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Λk
2
(αB + βB) (18)

s∗B,k < 0→ σ∗B,k = −1→ r̃ >
Λk
2
(αB − βB). (19)

Thus, Equations (18) and (19) identify the two plane regions
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This reveals that different situations occur depending on the sign of Λk, as also pointed out in Table 1.
When Λk is negative, there is no optimal solution outside
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(−) because neither Equation (18)
nor Equation (19) can be satisfied, as shown in Figure 3a. Consequently, sB,k

* equals zero until r̃ lies
outside the two plane regions. Different considerations have to be made when Λk is positive, as
detectable in Figure 3b. In this case,
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and sub-optimal (g̃*) grid profiles achieved assuming that no B power limitation occurs: (a) negative r̃
and Λk; (b) positive r̃ and Λk.

Table 1. Optimal solution in accordance with both Λk and r̃.
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Once sB
* is determined over any operating condition, the corresponding optimal grid profile (g̃*

opt)
can be achieved by means of Equation (9), as depicted in Figure 3. Particularly, when Λk is negative,
B provides suitable energy buffering within
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(+), as highlighted in Figure 3a. Whereas this
does not occur outside them, because this would increase Θ2 unsuitably. This phenomenon depends
on B charging and discharging efficiencies, i.e., more energy is drawn by B than B delivers back. This is
proved by the fact that if both ηc,B and ηd,B were equal to one, βB would be zero in accordance with
Equation (12). Consequently,
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(+) would span the negative semi-plane, meaning that no
“dead-zone” would occur further. However, it is worth noting that this phenomenon preserves B from
excessive cycling, thus it can be accepted although it slightly affects peak shaving capability.

A seemingly anomalous evolution of g̃*
opt is achieved when Λk is positive, as highlighted in

Figure 3b. Particularly, g̃*
opt overcomes r̃ when the latter lies below the average threshold of the

overlapping region. Consequently, a local increase of Θ2 occurs, but it is more than compensated
by the following Θ2 reduction. However, although Θ2 minimization benefits from such an optimal
solution, this does not contribute to peak shaving and reduced grid energy buffering purposes, also
leading to B overexploitation. Therefore, the following sub-optimal solution is suggested:

s∗B,k

∣∣∣
Λ k>0

=

(
−r̃ +

Λ k
2

αB

)〉sB,max

sB,min

. (22)
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As a result, a sub-optimal grid power profile is achieved (g̃*), as shown in Figure 3b. This slightly
impairs Θ2 minimization over T, but peak shaving, reduced grid energy buffering and B cycling are
preserved successfully.

3.2. Power Management

The minimization of Θ2 leads to the following result:

g̃∗ = r̃ + s∗B . (23)

However, Equation (23) relies on r̃, which does not generally match the corresponding actual
profile due to unavoidable forecasting errors and unpredictable power fluctuations. Consequently, in
order to compensate for these, Equation (1) can be subtracted from Equation (23), leading to:

g̃∗ − g = r̃− r + s∗B − s . (24)

Therefore, substituting Equation (3) into Equation (24) and assuming sB equal to sB
*, the following

result is achieved:
sS = −δr + δg (25)

where δr and δg denote the power mismatches occurring on r and g respectively:

δr = r− r̃ , δg = g− g̃∗ . (26)

Hence, based on Equation (25), S can compensate for δr until it does not imply violating
Equation (6) and Equation (7), leading to:

s∗S =

{
−δr〉sS,max

sS,min
i f eS,min < eS < eS,max

0 i f eS = eS,min or eS = eS,max.
(27)

When S reaches either eS,min or eS,max, no power compensation can be provided further. Therefore, r̃
can be updated every t∆ by accounting not only for more accurate forecasting but also for S
charging/discharging needs. The latter can be denoted by ∆S, i.e., the average power that S has
to deliver or draw from B over a given time horizon (t∆) in order to restore a suitable energy
threshold (eS

*):

∆S = ηd,S

(
eS − e∗S

)
+
∣∣ eS − e∗S

∣∣
2 t∆

+
1

ηc,S

(
eS − e∗S

)
−
∣∣ eS − e∗S

∣∣
2 t∆

. (28)

In this regard, it is worth noting that ∆S can be assumed to be incorporated into r̃ in order to
preserve the validity of Equation (9) and, thus, of all the subsequent equations.

In conclusion, it is also worthy of note that although B and S provide different services, they also
support themselves to each other: S compensates for forecasting errors and power fluctuations, thus
preventing B from sudden and frequent power variations. On the other hand, B is responsible for S
energy reinstatement in accordance with ∆S, thus ensuring its continuous operation.

4. Simulation Setup

The proposed OPEM has been tested by a simulation study, which was carried out in the Matlab
environment by referring to the island of Borkum. It is a German island located in the North Sea
(30.7 km2, 5181 inhabitants), characterized by both conventional and renewable energy source (RES)
power plants, i.e., Combined Heat and Power (CHP), wind and photovoltaic. The overall installed
power is about 6.8 MW on both medium and low voltage distribution systems, as pointed out in
Table 2. In addition, the PCC consists of four submarine cables that enable a bidirectional power flow
with the mainland. The simulations refer to the residual power profile at the PCC, which was achieved
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based on historical database (@2014). Regarding the HESS, it consists of an active configuration that
allows B and S to be managed independently, their main specifications being summarized in Table 3.

Apart from the proposed OPEM, the employment of an FBM approach is also considered for
comparison purposes, whose overall block control scheme is depicted in Figure 4. The low-frequency
content of the residual power profile (rLF) is determined by an appropriate digital low-pass filter,
whose transfer function deprived from magnitude ripple is shown in Figure 5a. The B power profile
is thus determined in accordance with its power and energy constraints, as pointed out in Table 4.
In this regard, r̃avg denotes the averaged power foreseen within the given time horizon T, which is
determined by taking into account B charging and discharging efficiencies as

t+T∫
t

(
αB
(
r̃avg − r̃

)
+ βB

∣∣r̃avg − r̃
∣∣)dt = 0. (29)

Particularly, r̃avg represents the average power exchanged between the MG and the main grid if
full peak shaving is accomplished, as highlighted in Figure 5b. This power threshold is updated every
tr in order to make the comparison between OPEM and FBM consistent. While the S power profile is
computed in accordance with the high-frequency content of the residual power profile (r − rLF), as still
pointed out in Table 4.

Table 2. Borkum power plant overview.

Voltage Level Power Plant Installed Power (kW)

Medium Voltage
Wind 3600

Photovoltaic 1387
Total 4987

Low Voltage
Photovoltaic 953

CHP 891
Total 1844

Total 6831

Table 3. HESS parameters and rated values.

ESS Parameter Value Unit

B

Rated Charging Power 250 kW
Rated Discharging Power 500 kW

Total (Usable) Energy 500 (400) kWh
Max (min) Stored Energy 450 (50) kWh

Round-Trip Efficiency 92 %

S

Rated Power 1108 kW
Total (Usable) Energy 9 (6) kWh

Max (min) Stored Energy 11.4 (2.4) kWh
Round-Trip Efficiency 90 %

Table 4. Frequency-based management (FBM).

Variable eB = eB,max eB,min < eB < eB,max eB = eB,min

sB
* 0 sB =

(
−rLF + r̃avg

)〉sB,max
sB,min

0

Variable eS = eS,max eS,min < eS < eS,max eS = eS,min

sS
* 0 sS = (−r + rLF)〉sS,max

sS,min
0
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Figure 5. FBM main details: (a) transfer function of the LPF; (b) averaged power achieved by full
peak-shaving (g̃avg).

In conclusion, the time intervals of both OPEM and FBM have been set as in Table 5.
Particularly, different values of the time horizon have been considered in order to compare OPEM and
FBM performances over different operating conditions. The tS was set as low as possible in accordance
with the time resolution of the actual residual power profile, in order to provide an appropriate
compensation for both power fluctuations and forecasting errors. Whereas a much greater value of
t∆ was chosen based on the assumption that power fluctuations and short-term forecasting errors
are both characterized by poor energy content. However, it is worth noting that t∆ can be reduced
as desired if S is often fully charged and/or discharged. Regarding tB, it has been set equal to tS for
the FBM, which manages both B and S based on actual residual power profile. In this regard, it is
worth noting that FBM prevents B from handling sudden power fluctuations by means of a suitable
low-pass filter. Such a filtering action is also provided by OPEM, but by choosing a much greater tB
value, which should be the minimum between t∆ and tr, as pointed out in Figure 2.

Table 5. Time intervals.

Variable Symbol OPEM FBM

Time Horizon T 24/12/6 h 24/12/6 h
Forecasting Service tr 15 min 15 min

S energy reinstatement t∆ 15 min 15 min
Energy Optimization (B) tB 15 min 1 s
Power Management (S) tS 1 s 1 s



Energies 2017, 10, 1909 11 of 21

5. Results

5.1. OPEM Testing

The simulations focused on the OPEM performances at first and, especially, on energy
optimization, and the corresponding results over three generic days and at T = 24 h are reported in
Figures 6–8. Particularly, Figure 6 shows that the residual and grid power profiles differ from each
other over each day. This is due to the optimal B management carried out by the proposed OPEM,
which reduces both peak generation and load occurring on g compared to r, leading to a smoother g
profile as well. It is also possible to note that some differences occur between the actual profiles (g, sB
and eB) and those forecasted at the start of each day (g̃, s̃B and ẽB), especially at the end of the time
horizon. Particularly, focusing on the first two days, B is foreseen to be fully discharged at the end of
each day in order to minimize the objective function within the given time horizon (24 h). As time
passes, such discharging actions are postponed appropriately to the first hours of the following days
in order to cope with more significant peak load demands, as well shown in Figure 6. This reveals
the effectiveness of the proposed OPEM, which adapts the B profile appropriately in accordance with
more accurate forecasting and over a sliding time horizon. In addition, the eB value at the end of each
day is adapted every tB in order to match MG optimization needs of the following day. This does not
generally occur in most of the management strategies proposed in the literature, which can only assure
piecewise optimization.
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Referring now to power management, Figures 9–11 reveal the very good performances achieved
by S in compensating for power fluctuations and forecasting errors. However, some uncompensated
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power fluctuations still occur when S is fully charged or discharged, as detectable by comparing
Figure 9 with Figure 11. These fluctuations could be suppressed by decreasing t∆, thus preventing S
from reaching its maximum and minimum energy boundaries. However, such a t∆ reduction would
reduce tB and increase both the magnitude and frequency of ∆S, which may lead to an unsuitable
B overexploitation.
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Whereas net and gross energy exchanges are defined as 
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The corresponding results are summarized in Table 7. Considering the MG acting as a generator 
or a load separately, it can be noticed that both OPEM and OPEMopt reduce the energy exchange over 
each day and their corresponding results are quite similar to each other. However, the generation 
decreases more than the load, and consequently the net energy exchange between the MG and the 

Figure 9. Power fluctuations and forecasting errors on residual power (δr, light purple) and grid power
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Regarding the values of the objective function, these are reported in Table 6, together with those
achieved by employing the optimal solution provided in Table 1 (OPEMopt). It is worthy of note that
OPEMopt leads to almost the same Θ2 values achieved by the proposed OPEM, with only differences
of the order of 10−4 occurring.

An energy analysis was performed in order to evaluate the effectiveness of the proposed OPEM
also in terms of the reduced power flow between the MG and the main grid. Particularly, the generation
and load contributions are computed separately as

egen(t) =
1

2T

t∫
t−T

(x(τ) + |x(τ)|)dτ, x ∈ {r, g} (30)

eload(t) =
1

2T

t∫
t−T

(x(τ)− |x(τ)|)dτ, x ∈ {r, g} . (31)
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Whereas net and gross energy exchanges are defined as

enet(t) =
1
T

t∫
t−T

x(τ)dτ, x ∈ {r, g} (32)

egross(t) =
1
T

t∫
t−T

|x(τ)|dτ, x ∈ {r, g} . (33)

The corresponding results are summarized in Table 7. Considering the MG acting as a generator
or a load separately, it can be noticed that both OPEM and OPEMopt reduce the energy exchange over
each day and their corresponding results are quite similar to each other. However, the generation
decreases more than the load, and consequently the net energy exchange between the MG and the
main grid increases compared to the case of no HESS. This was expected due to the additional losses
of the HESS charging/discharging processes. However, this drawback is counterbalanced by a more
significant reduction in terms of gross energy exchange, revealing reduced energy buffering provided
by the main grid.

In conclusion, the HESS performance is summed up in Table 8, which accounts for the B and
S cycling performances separately, namely the number of full charging/discharging cycles per day.
It can be seen that B is characterized by about two charging–discharging cycles per day, whereas a
greater number of S cycles per day occurs, as expected. Furthermore, the comparison between OPEM
and OPEMopt highlights the increased B cycling and reduced S exploitation achieved by the latter.
This reveals that the sub-optimal solution defined by Equation (22) is very suitable for preventing B
overexploitation and peak shaving issues because the increase of Θ2 is rather negligible, as already
pointed out in Table 6. It is also worthy of note that the proposed OPEM accounts inherently for
different B and S cycling capabilities by differentiating the services they have to provide, thus achieving
optimal HESS exploitation.

Table 6. Objective function values (Θ, in MWRMS).

Case Day 1 Day 2 Day 3 TOT

no HESS 0.729 1.173 1.273 1.084
OPEM & OPEMopt 0.677 1.133 1.218 1.037

Table 7. OPEM energy analysis.

Energy Case
e (MWh)

Day 1 Day 2 Day 3 TOT

egen
no HESS 6.765 0.385 6.167 13.317
OPEM 6.239 0.060 5.888 12.187

OPEMopt 6.235 0.060 5.907 12.202

eload

no HESS −8.400 −23.669 −21.311 −53.380
OPEM −8.205 −23.452 −20.998 −52.655

OPEMopt −8.203 −23.451 −21.000 −52.654

enet

no HESS −1.635 −23.284 −15.144 −40.063
OPEM −1.966 −23.392 −15.110 −40.468

OPEMopt −1.968 −23.391 −15.093 −40.452

egross
no HESS 15.165 24.054 27.478 66.697
OPEM 14.444 23.512 26.886 64.842

OPEMopt 14.439 23.511 26.906 64.857
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Table 8. HESS cycling performance achieved by OPEM (in cycles).

ESS Case Day 1 Day 2 Day 3 TOT

B
OPEM 2.28 1.71 2.10 6.09

OPEMopt 2.45 1.74 2.27 6.46

S
OPEM 41.6 41.9 41.7 125.2

OPEMopt 38.7 38.7 38.3 115.7

5.2. OPEM vs. FBM

The comparison between OPEM and FBM was carried out over a generic week with different
time horizons, whose corresponding results are depicted in Figures 12–23. Particularly, since S
performance is almost unaffected by different values of the time horizon for both OPEM and FBM,
only the evolutions achieved in the case T = 24 h are reported. Focusing on the g profile achieved by
the proposed OPEM (Figure 12), it can be seen that power peaks are reduced compared to r, with a
suitable smoothing occurring as well. Furthermore, focusing on both Figures 13 and 14, B performance
is slightly affected by the variation of the time horizon, with significant differences only occurring in
the case T = 3 h. This is justified by the fact that the proposed OPEM splits the given time horizon
in a series of “ON” and “OFF” sub-intervals, whose length depends on the r shape and on the B
energy and power rates. Consequently, as far as T hosts a number of these sub-intervals, its variation
does not affect the real-time energy optimization carried out by OPEM. This is also corroborated by
the values of the objective function reported in Table 9. However, it is worth noting that the worst
performance is achieved in the case T = 3 h; this means that if further reductions of T occur, a further
worsening of OPEM performances should be expected, because only local optimization would be
achieved. Regarding S power services, Figure 15 through Figure 17 reveal almost the same good
performances shown in Figures 9–11 and already discussed in the previous subsection.

Table 9. Objective function values (Θ, in MWRMS).

Case
T (h)

24 12 6 3

no HESS 1.379 1.379 1.379 1.379
OPEM 1.336 1.336 1.336 1.337
FBM 1.365 1.356 1.344 1.340

Simulation results achieved by employing FBM in the same scenario are reported in Figures 18–23.
They reveal limited differences between the r and g profiles, because B is idle at its maximum or
minimum energy boundary for most of the time when large time horizons are considered. This is due
to the un-optimized management of B power and energy constraints, leading to poor performance
in terms of both peak shaving and reduced grid energy buffering. Since the reduction of T affects
r̃avg significantly, better performances are achieved with relatively short time horizons, as pointed
out in Table 9. However, it is worth noting that FBM energy management is always worse than that
achieved by the proposed OPEM, regardless of the time horizon, thus revealing the effectiveness of
the latter, whereas very good performances are achieved by S in compensating for the high-frequency
power fluctuations occurring on r, as indicated in Figure 21. Furthermore, Figure 23 reveals that
as S never reaches its maximum or minimum energy thresholds, it is thus able to provide this
power service continuously over the given time horizon. In this regard, it is worthy of note that
the weaker S performances achieved by OPEM is due mainly to the additional service it provides, that
is, S compensates not only for sudden power fluctuations but also for short term forecasting errors.
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The weekly performances achieved by both OPEM and FBM in the case T = 12 h are summed up
by the Pareto diagrams shown in Figure 24. Particularly, poor peak generation and load reduction is
achieved by FBM due to the un-optimized management approach, which prevents B from being fully
charged/discharged when needed. Much better results are achieved by the proposed OPEM, by means
of which significant peak power reductions are achieved when the MG acts as either a generator or a
load, as also pointed out in Table 10. In addition, the g profile achieved by OPEM is quite below the
corresponding r profile; this means that the excess MG energy production is stored by the HESS and
later employed for supplying the MG loads, leading to increased MG self-consumption. This occurs
much less frequently when employing the FBM, which presents peak shaving capabilities similar to
OPEM only when very short time horizons are considered.

An energy analysis was also performed in order to compare the proposed OPEM to FBM in terms
of reduced power flow and/or energy saving. The corresponding results are reported in Table 11.
This reveals that OPEM energy performances are slightly affected by the variation of the time horizon;
this is justified by the fact that the reduction of the time horizon does not prevent B from reducing
grid energy buffering, but only from detecting the load/generation peak suitably in advance. FBM
energy performances improve with the reduction of the time horizon, but are always worse than those
achieved by the proposed OPEM. It is worth noting that both OPEM and FBM reduce enet and egross

compared to the case of no HESS; although the reduction of a positive enet value implies additional
losses, a more significant reduction of egross is achieved, especially by OPEM, thus corroborating the
effectiveness of the proposed management approach.

In conclusion, the HESS cycling performances are summed up in Table 12. This shows that the
B and S cycling performances achieved by OPEM are almost unaffected by the variation of the time
horizon, as expected; only slight differences occur in B cycling, as foreseen due to the energy analysis
previously carried out. In contrast, the B cycling performances achieved by FBM are strictly related to
the time horizon, that is, B cycles increase as T decreases; whereas S cycling is totally unaffected by
T variations for both OPEM and FBM, as pointed out at the start of this subsection. The comparison
between OPEM and FBM reveals an increased S exploitation achieved by the former, which is due
mainly to the additional power service it provides (forecasting error compensation).
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Table 10. Peak shaving weekly performances.

T (h) Case
g (MW)

Peak Power delivered by MG Peak Power drawn by MG

no HESS 3.62 2.11

24
OPEM 3.27 (−9.7%) 1.86 (−11.8%)
FBM 3.52 (−2.8%) 1.99 (−5.7%)

12
OPEM 3.27 (−9.7%) 1.86 (−11.8%)
FBM 3.52 (−2.8%) 1.99 (−5.7%)

6
OPEM 3.27 (−9.7%) 1.86 (−11.8%)
FBM 3.52 (−2.8%) 1.99 (−5.7%)

3
OPEM 3.27 (−9.7%) 1.86 (−11.8%)
FBM 3.27 (−9.7%) 1.95 (−7.6%)

Table 11. Weekly energy analysis.

T (h) Case
e (MWh)

egen eload enet egross

no
HESS 103.67 −72.16 31.51 175.83

24
OPEM 99.74 −69.41 30.33 169.16
FBM 102 −71.16 30.84 173.16

12
OPEM 99.73 −69.40 30.34 169.13
FBM 101.07 −70.32 30.75 171.39

6
OPEM 99.78 −69.43 30.34 169.21
FBM 100.31 −69.7 30.61 170.01

3
OPEM 99.76 −69.43 30.33 169.18
FBM 100.16 −69.67 30.49 169.84

Table 12. HESS cycling performances (in cycles).

Variable OPEM FBM

T (h) 24 12 6 3 24 12 6 3

B 18.35 18.25 18.24 18.67 5.58 7.42 10.81 13.83

S 296.3 276.0

6. Conclusions

The design of an optimal power and energy management (OPEM) for hybrid energy storage
systems (HESS) in microgrids has been presented in this paper. The proposed OPEM enables a suitable
and synergic exploitation of electrochemical batteries (B) and supercapacitors (S), thus providing
multiple grid services simultaneously and optimally. Particularly, both peak shaving and reduced
grid buffering are achieved through B, while S compensates for power fluctuations and forecasting
errors. Numerical simulations carried out based on the real data of the German island of Borkum,
highlighting very good peak shaving and reduced grid energy buffering capabilities achieved by
OPEM, as proved by the decrease of the gross energy exchanged with the main grid. Furthermore, a
comparison between OPEM and a conventional frequency-based management approach (FBM) shows
the superior performances achieved by the former, even when employing relative short time horizons.
Based on the proposed OPEM, optimal HESS sizing may be achieved by imposing specific targets, such
as a desired peak shaving capability and/or averaged forecasting error compensation. These goals may
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also require accurate tuning of OPEM time intervals, especially regarding the S charging reinstatement.
All these aspects will be addressed in future work.
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