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Abstract: In the more than 70 years since Markowitz introduced mean-variance optimization for
portfolio construction, academics and practitioners have documented numerous weaknesses in the
approach. In this paper, we propose two easily understandable improvements to mean-variance
optimization in the context of multi-asset class portfolios, each of which provides less extreme and
more stable portfolio weights. The first method sacrifices a small amount of expected optimality
for reduced weight concentration, while the second method randomly resamples the available
assets. Additionally, we develop a process for testing the performance of portfolio construction
approaches on simulated data assuming variable degrees of forecasting skill. Finally, we show
that the improved methods achieve better out-of-sample risk-adjusted returns than standard mean-
variance optimization for realistic investor skill levels.

Keywords: portfolio optimization; mean-variance optimization; portfolio theory; asset allocation

1. Introduction

Modern portfolio theory originated with the introduction of mean-variance optimiza-
tion (MVO) by Harry Markowitz (1952). By formulating the question of optimal portfolio
selection as a quadratic optimization exercise, Markowitz reduced a complex problem to the
estimation of expected returns and covariances for investable assets. While his solution was
conceptually and mathematically elegant, practical problems in its implementation became
clear over time. Michaud (1989) and others noted that MVO often results in portfolios with
dramatically unequal position sizes, with many assets reduced to zero weight, while a few
assets take on very large weights. Green and Hollifield (1992) analyzed the sensitivity of
MVO solutions to even modest changes in expected returns or the covariance matrix. This
lack of robustness is especially troubling given the known difficulty of estimating forward-
looking measures, particularly forward-looking returns (Merton 1980). Finally, research
has established that MVO portfolios often perform very poorly in practice, even underper-
forming naive portfolio construction methods like equal weighting (Kan and Zhou 2007).
Spurred by these realizations, many institutional investors have sought alternatives to
portfolio optimization (Hurst et al. 2010) or have attempted to correct it in various ways.

Early proposals for MVO improvement, such as those of Frost and Savarino (1988),
added constraints to portfolio weights beyond the standard requirement that all weights
sum to 100% and the common avoidance of negative weights (short-selling). While added
constraints can improve on the weaknesses of MVO, asset-level or asset class-level con-
straints are inherently arbitrary and portfolio-specific, making them difficult to generalize.
Black and Litterman (1992) applied a Bayesian approach to the problem, seeking to merge an
investor’s expectations with market-implied figures. However, this requires the existence
of a market portfolio, and especially the ability to identify such a portfolio. Jorion (1986)
showed the value of “shrinking” estimates of the expected return vector to increase stability;
other shrinkage methods have focused on the covariance matrix, imposing structure be-
yond the sample covariances taken from historical returns (Ledoit and Wolf 2003). The main
complication for any shrinkage technique is the need to specify a target and a shrinkage
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intensity a priori. Michaud (1998) suggested the use of resampled portfolios, where the
final weights would be an average of numerous portfolio optimizations, each drawn from
a distribution defined by expected returns and covariances. While this approach has merit,
it produces a single output portfolio without the ability to adjust the balance between
optimality and robustness.

The field of robust optimization has also taken an interest in improving MVO by em-
ploying uncertainty sets (Tutuncu and Koenig 2004). In this approach, the analyst solves for
the weights that produce the best outcomes under the worst realizations of returns and co-
variances. More recently, statistical and machine learning methods have introduced the idea
of regularization to portfolio optimization (Brodie et al. 2009; Carrasco and Noumon 2010).
Simply put, regularization imposes an explicit or implicit penalty on large target weights,
often driving optimization toward more general solutions that should perform better across
a range of outcomes (for an overview, see Tian and Zhang 2022). In the utility maximization
context, this can mean adding an extra term to the objective function to discourage large
weights in any single asset, or it can involve more complex reformulations of the opti-
mization problem (Ban et al. 2018). While all of the aforementioned MVO improvements
have their merits, few have achieved the combination of simplicity and results necessary to
become popular among practicing portfolio managers.

We propose two intuitive methods of regularized portfolio optimization in the context
of multi-asset portfolios. In both, the key idea is to approximate mean-variance optimality
while reducing the concentration of the portfolio—simply defined as the sum of squared
weights. The first method starts by running standard mean-variance optimization to obtain
the maximum possible portfolio utility. It then performs another optimization, minimizing
concentration while keeping utility at or above a preset percentage of the maximum possible
utility. The second method resamples the assets across iterations, analogous to a scenario
where only a certain number of assets are available for investment in a given iteration.
Each method allows for adjustable levels of regularization, and each noticeably reduces
portfolio concentration. Finally, we test the performance of both methods using a novel
approach. We generate thousands of hypothetical return series for all available assets
using a multivariate Gaussian distribution, then set expected returns and covariances as
a weighted average of past values and “future” values. By toggling the weight assigned
to past versus future values, we simulate different forecasting skill levels, allowing us to
demonstrate the potential benefits of the two methods. We show that for all but the most
implausibly skilled investors, some degree of regularization in portfolio optimization will
improve risk-adjusted returns. We also show that both methods reduce the volatility in
portfolio weights as optimization inputs change.

2. Background

The canonical MVO problem is given in matrix form by

max µTx − ½γxTVx (1)

s.t. 1Tx = 1

x ≥ 0

where µ is the column vector of expected returns, x is the column vector of weights, γ is the
risk aversion parameter, and V is the covariance matrix (Cornuejols et al. 2018). The first
constraint ensures that the portfolio weights sum to one. For most investors, the second
constraint applies and mandates that there are no negative weights (i.e., no short selling).
MVO requires estimating expected returns and covariances among all assets, as well as
knowing the investor’s level of risk aversion. Following Paravisini et al. (2010), we will
assume an average level of investor risk aversion throughout this paper, with γ set to 3.

To illustrate the workings of MVO and our proposed regularization methods, we will
utilize a set of self-created capital markets assumptions (CMAs) detailed in Appendix A.
Using standard MVO with no short-selling, we obtain the weights shown in Table 1.
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Table 1. Optimal MVO Weights.

Asset Weight

US LC Eq 0.0%

US SC Eq 0.0%

Non-US Dev Eq 43.8%

EM Eq 0.0%

Cash 0.0%

US Agg 15.8%

Non-US Agg 0.0%

US HY 0.0%

US FR 40.4%

REITs 0.0%
Notes: Portfolio expected return is 8.28%, expected standard deviation is 9.84%, and expected Sharpe ratio is 0.44.

One feature becomes apparent immediately: the portfolio is highly concentrated in
only three assets, with the other seven assets receiving no allocations at all. This is despite
relatively modest differences in expected returns and covariances among the ten total assets.
Less obvious is how sensitive these estimates are to small changes. Table 2 demonstrates
that adjusting the expected return of Non-US Developed Equities up or down by only
50 bps can lead to swings of over 15% in total portfolio weights. Many asset owners rightly
question the wisdom of a process that produces such extreme weights and is so reactive to
minor shifts in assumptions.

Table 2. Optimal MVO weights as expected return of Non-US Developed Equities changes.

Asset −50 bps Initial +50 bps

US LC Eq 0.0% 0.0% 0.0%

US SC Eq 0.0% 0.0% 0.0%

Non-US Dev Eq 35.4% 43.8% 50.6%

EM Eq 2.4% 0.0% 0.0%

Cash 0.0% 0.0% 0.0%

US Agg 18.1% 15.8% 14.0%

Non-US Agg 0.0% 0.0% 0.0%

US HY 0.0% 0.0% 0.0%

US FR 44.1% 40.4% 35.3%

REITs 0.0% 0.0% 0.0%
Notes: For −50 bps, portfolio expected return is 7.89%, expected standard deviation is 9.19%, and expected Sharpe
ratio is 0.42. For initial, portfolio expected return is 8.28%, expected standard deviation is 9.84%, and expected
Sharpe ratio is 0.44. For +50 bps, portfolio expected return is 8.74%, expected standard deviation is 10.56%, and
expected Sharpe ratio is 0.45.

Besides the inherent difficulty of predicting the future, there is an additional reason
the weights are so unstable: very different weights can often produce similar utility. In
Figure 1 below, we have constructed a simple two-asset portfolio. Asset A has an expected
return of 8% with an expected standard deviation of 16%, while Asset B has an expected
return of 4% with an expected standard deviation of 8%. The expected correlation between
the assets is 0.2, and we assume an investor risk aversion of 3. While the maximum utility
of 4.81% is achieved when Asset A has a weight of 62% (and Asset B’s weight is thus 38%),
the portfolio can achieve at least 98% of the maximum utility with Asset A weights of
between 47% and 77%. Though the exact results depend on the expectations, most realistic
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capital markets assumptions will induce similar outcomes. This insight leads directly to
the first method we propose.
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Figure 1. Portfolio utility as a function of Asset A weight. The black line plots portfolio utility, while
the dashed red line is set at 98% of maximum utility.

3. Materials and Methods
3.1. Method One: Near-Optimality

If the utility function changes gradually over a wide range of weights, then it is
possible to construct portfolios that are nearly optimal while minimizing concentration (the
sum of squared weights). Corvalan (2005) considered a related concept, though the method
we propose requires setting fewer parameters. Method One thus has two steps. In the first
step, we optimize a portfolio using standard MVO as seen in (1) above; this establishes
the maximum possible ex ante utility. In the second step, we minimize concentration
while constraining portfolio utility to be greater than or equal to a preset percentage of the
maximum possible ex ante figure. Other constraints can apply as well, and the full system
is shown in (2) below.

min xTx (2)

s.t. µTx − ½γxTVx ≥ θε

1Tx = 1

x ≥ 0

For this second step, ε is the optimal ex ante utility from step one, while θ is the
floor for total portfolio utility expressed as a decimal. Much like the risk aversion pa-
rameter, θ must be set by the analyst performing the optimization. A value of 1.00 for
θ will result in the standard MVO portfolio, while values below 1.00 will progressively
converge to an equal-weight portfolio. The parameter θ thus controls the regularization of
the optimization weights, with values less than 1.00 indicating a preference for reduced
portfolio concentration. We can see this method in action in Table 3, where we compare the
weights generated by Method One to those of MVO. Clearly, the near-optimal portfolio is
far more diversified. Later, we will demonstrate that Method One also reduces sensitivity
to estimation error, thus making portfolios more robust. It can also improve risk-adjusted
performance compared to MVO.
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Table 3. MVO weights compared to Method One weights (θ = 0.95).

Asset MVO Method One

US LC Eq 0.0% 4.6%

US SC Eq 0.0% 4.6%

Non-US Dev Eq 43.8% 24.3%

EM Eq 0.0% 5.9%

Cash 0.0% 4.7%

US Agg 15.8% 15.5%

Non-US Agg 0.0% 5.2%

US HY 0.0% 8.3%

US FR 40.4% 22.4%

REITs 0.0% 4.5%
Notes: For MVO, portfolio expected return is 8.28%, expected standard deviation is 9.84%, and expected Sharpe
ratio is 0.44. For Method One, portfolio expected return is 7.69%, expected standard deviation is 8.97%, and
expected Sharpe ratio is 0.41.

Readers may note that the optimization in (2) is no longer strictly quadratic due to the
first constraint being non-linear. Fortunately, such a quadratically constrained quadratic
program (QCQP) is still convex because the covariance matrix V is positive semi-definite.
Most optimization software supports QCQP, and possible solution techniques include
interior-point methods and local search algorithms.

3.2. Method Two: Resampling Assets

One of the underlying assumptions of MVO is that there is an investable universe
of assets from which to create a portfolio, and that this universe is constant. Method
Two relaxes this assumption and applies a resampling approach to the universe of assets.
More concretely, the method consists of a number of iterations chosen by the analyst, such
as 1000 or 10,000. In each iteration, the method randomly chooses m assets out of the
total n assets, and performs MVO on the subset m. Once all the iterations are complete,
this method averages weights across all iterations to obtain the final weights. Figure 2
illustrates this process. Much like the number of iterations, m must be set by the analyst;
this parameter controls the degree of regularization, with lower values of m corresponding
to more regularization. If m is equal to n, the result is a standard MVO; if m is equal to one,
the result is the equal-weight portfolio. This asset resampling approach draws inspiration
from the random forest model in machine learning, where data features are resampled
in the tree-building process. By limiting the optimization process to a subset of assets at
each iteration, asset resampling forces the optimizer to consider investments that it would
otherwise shun.
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Table 4 presents the outcome of an intermediate value of m for the portfolio example we
have used thus far. Much like Method One, resampling assets leads to lower concentration
of asset weights compared to MVO. We will show later that it also leads to less turnover
and better risk-adjusted performance compared to MVO.

Table 4. MVO weights compared to Method One weights (θ = 0.95) and Method Two weights (m = 5).

Asset MVO Method One Method Two

US LC Eq 0.0% 4.6% 3.1%

US SC Eq 0.0% 4.6% 4.7%

Non-US Dev Eq 43.8% 24.3% 24.4%

EM Eq 0.0% 5.9% 7.1%

Cash 0.0% 4.7% 0.6%

US Agg 15.8% 15.5% 18.7%

Non-US Agg 0.0% 5.2% 5.5%

US HY 0.0% 8.3% 8.6%

US FR 40.4% 22.4% 27.0%

REITs 0.0% 4.5% 0.1%
Notes: For MVO, portfolio expected return is 8.28%, expected standard deviation is 9.84%, and expected Sharpe
ratio is 0.44. For Method One, portfolio expected return is 7.69%, expected standard deviation is 8.97%, and
expected Sharpe ratio is 0.41. For Method Two, portfolio expected return is 7.78%, expected standard deviation is
8.76%, and expected Sharpe ratio is 0.43.

4. Results

Arguably the best test of any portfolio construction method is how its created portfolios
perform in terms of returns and volatility in an out-of-sample time period. To that end,
we offer a way of testing the portfolio construction methods we have described, as well as
almost any other approach to portfolio construction. The challenge of back-testing portfolio
construction methodologies is that many require some ex ante assumptions, which can
be difficult to formulate after the fact. In the case of MVO and the two methods we have
proposed, tests require expected returns, expected volatilities and expected correlations.

We begin by simulating daily returns for all ten available assets using the annualized
capital markets assumptions found in Appendix A. We draw the returns from a multivariate
Gaussian distribution, though more complex and realistic methods could be used instead.
We simulate 10,000 runs, each lasting 504 trading days (2 years) to obtain a large sample
size of potential market activity. In each simulation run, we assume the position of an
investor standing at the end of day 252, denoted as time t, that is the midpoint of the time
series. While the investor knows the realized returns and covariances for days 1 through
252 (in-sample period), they are investing for days 253 through 504 (out-of-sample period),
and, thus, must forecast those unseen values. For each of the 10,000 runs, the investor’s
return expectations at time t are a weighted average of the previous 252 days (RP) and the
forward 252 days (RF), as seen in (3) below. The same relation holds for expected volatilities
and expected correlations.

E(R)t = (1 − η)RP + ηRF (3)

The parameter that controls the relative weights is η, which can be thought of as a
measure of investor forecasting skill. In the case of an investor with no forecasting skill, η
equals zero, and expectations are naively set to the realized values of the past 252 days; any
minimal correspondence between past and future returns will be due to autocorrelation.
If an investor is perfectly clairvoyant, η equals one, and expectations are the same as
future 252-day realized values. The η value is thus conceptually similar to the information
coefficient (IC) developed by Grinold and Kahn (2000), as each measures the correlation
between predictions and outcomes.
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For a given degree of regularization and level of forecasting skill, we create 10,000 port-
folios (one for each simulation run) and store the weights. We also compute the realized
return and volatility for each portfolio over the forward 252 days, as well as the Sharpe
ratio. Finally, we record the out-of-sample median Sharpe ratios for all combinations of
regularization and skill, which are shown in Tables 5 and 6 for Method One and Method
Two, respectively. Each row of each table corresponds to a skill level, while the columns
are degrees of regularization; note that the first column of each table is equivalent to MVO
because it assumes no regularization. The median Sharpe ratios in each row are colored in
green if they exceed the median MVO Sharpe for their row, while they are colored in red if
they fall below.

Table 5. Method One median Sharpe ratios by regularization and skill. Left-most column corresponds
to MVO.

Minimum Utility (θ)
100% 98% 96% 94% 92% 90%

Skill (η)

0.00 0.26 0.27 0.29 0.30 0.31 0.31

0.10 0.38 0.39 0.41 0.42 0.42 0.42

0.20 0.53 0.53 0.54 0.54 0.54 0.54

0.30 0.69 0.69 0.69 0.68 0.68 0.67

0.40 0.86 0.86 0.85 0.84 0.83 0.81

0.50 1.01 1.00 0.99 0.97 0.96 0.94

Notes: Numbers in each row are colored in green if they exceed the median MVO Sharpe for their row, while they
are colored in red if they fall below.

Table 6. Method Two median Sharpe ratios by regularization and skill. Left-most column corresponds
to MVO.

Resampled Assets (m)
10 9 8 7 6 5

Skill (η)

0.00 0.26 0.30 0.30 0.31 0.32 0.32

0.10 0.38 0.42 0.42 0.43 0.43 0.43

0.20 0.53 0.55 0.55 0.55 0.55 0.54

0.30 0.69 0.70 0.71 0.70 0.69 0.67

0.40 0.86 0.87 0.86 0.86 0.85 0.82

0.50 1.01 1.01 1.01 1.00 0.98 0.95

Notes: Numbers in each row are colored in green if they exceed the median MVO Sharpe for their row, while they
are colored in red if they fall below.

Two results stand out in this analysis. First, regularization does appear to improve
ex-post portfolio Sharpe ratios, especially at lower levels of forecasting skill. Only once
forecasting skill (η) rises to or above 0.4 does MVO routinely outperform the regularized
methods. Considering that an IC of even 0.2 corresponds to an impressive hit rate of
60%, it seems that the methods described could have wide applicability. Second, the two
methods exhibit somewhat different patterns of Sharpe ratio change. Method One achieves
improvements more gradually at lower skill levels than does Method 2, while Method 2
appears to be somewhat more robust at higher levels of skill. It is worth remembering that
Method One explicitly solves for minimum concentration for a given level of utility, while
Method Two is more of a heuristic that achieves broadly similar outcomes. Method One
can also accommodate any constraints, while Method Two cannot guarantee the same due
to its final step of averaging weights across iterations.
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The weights calculated by each method also contain valuable information, showing
the reduction in weight volatility as the degree of regularization increases. Figure 3a,b
illustrate this for a subset of assets, while Tables 7 and 8 contain the results for the full
asset lineup. All else equal, less volatility in weights leads to less portfolio turnover and
thus reduced transaction costs. Less movement in portfolio weights over time should also
mitigate harm from estimation error in forecasting asset returns and covariances.
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US LC Eq 22.4% 20.4% 18.6% 16.9% 15.2% 13.4% 
US SC Eq 27.2% 24.6% 22.2% 19.8% 17.5% 15.1% 
Non-US Dev Eq 33.3% 30.0% 26.9% 23.7% 20.6% 17.4% 
EM Eq 32.0% 28.9% 26.0% 23.0% 20.0% 17.0% 
Cash 18.0% 16.5% 15.1% 13.9% 12.7% 11.6% 
US Agg 26.7% 24.1% 21.7% 19.4% 17.2% 14.9% 

0%

5%

10%

15%

20%

25%

30%

35%

Non-US Dev Eq US Agg US FR

10 8 6

Figure 3. (a) Method One weight volatility by asset and regularization, η = 0.15. (b) Method Two
weight volatility by asset and regularization, η = 0.15.
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Table 7. Method One weight volatility by asset and regularization, η = 0.15. Left-most column
corresponds to MVO.

Minimum Utility (θ)
100% 98% 96% 94% 92% 90%

US LC Eq 22.4% 20.6% 19.1% 17.7% 16.4% 15.3%

US SC Eq 27.2% 25.0% 23.2% 21.6% 20.1% 18.7%

Non-US Dev Eq 33.3% 31.3% 29.5% 27.9% 26.3% 24.8%

EM Eq 32.0% 29.9% 28.1% 26.4% 24.7% 23.2%

Cash 18.0% 17.4% 16.9% 16.5% 16.0% 15.6%

US Agg 26.6% 25.5% 24.6% 23.7% 22.8% 21.9%

Non-US Agg 26.2% 25.1% 24.2% 23.3% 22.4% 21.4%

US HY 29.2% 27.6% 26.2% 24.9% 23.6% 22.3%

US FR 29.1% 27.5% 26.2% 24.9% 23.8% 22.6%

REITs 22.8% 21.1% 19.7% 18.4% 17.1% 16.0%

Table 8. Method Two weight volatility by asset and regularization, η = 0.15. Left-most column
corresponds to MVO.

Resampled Assets (m)
10 9 8 7 6 5

US LC Eq 22.4% 20.4% 18.6% 16.9% 15.2% 13.4%

US SC Eq 27.2% 24.6% 22.2% 19.8% 17.5% 15.1%

Non-US Dev Eq 33.3% 30.0% 26.9% 23.7% 20.6% 17.4%

EM Eq 32.0% 28.9% 26.0% 23.0% 20.0% 17.0%

Cash 18.0% 16.5% 15.1% 13.9% 12.7% 11.6%

US Agg 26.7% 24.1% 21.7% 19.4% 17.2% 14.9%

Non-US Agg 26.2% 23.8% 21.4% 19.2% 16.9% 14.6%

US HY 29.2% 26.4% 23.8% 21.2% 18.6% 15.8%

US FR 29.1% 26.4% 23.8% 21.1% 18.5% 15.8%

REITs 22.8% 20.8% 18.9% 17.1% 15.3% 13.4%

5. Discussion and Concluding Remarks

There are obvious practical implications for the ideas we have presented. While the
results of a study can never guarantee future outcomes, our work suggests that professional
investors managing institutional multi-asset class portfolios can make use of either regu-
larization method to build portfolios that are more diversified, more robust to changing
conditions, and possibly more efficient than those produced by classic MVO. The choice of
which method to employ will likely depend on how many constraints are needed for the
portfolio construction process, with Method One generally being more accommodating of
constraints beyond those in Equation (1). Both methods allow portfolio managers to tailor
the degree of regularization to their assumed skill level, as humbling as such an exercise
might be. Just as importantly, portfolio managers can explain the logic of these methods to
their clients without resorting to complex mathematics. Asset owners may also be drawn to
the aesthetic aspects of regularized optimization, as portfolios will contain fewer extreme
weights than in MVO. But practitioners should not be the only beneficiaries of this work.
Finance is both an applied and an academic discipline, and the latter community can
continue to develop these ideas. As always, more research is needed and welcomed.
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One direction is to adapt the regularized optimization methods to single-asset class
portfolios, possibly in combination with benchmark-relative performance metrics. This
paper has argued for the benefits of regularized optimization in a common multi-asset
setting, but we cannot guarantee that our methods produce comparable results in all in-
vestment universes (e.g., within emerging markets or among individual small-cap equities).
A second option is to extend the two methods presented to the case of multi-period port-
folio optimization. A more computationally intensive study could measure the effects of
different volatility and correlation regimes on the results we have obtained. This might
be combined with more realistic simulated returns by drawing from non-normal distri-
butions and conditional correlation assumptions. One could also separately model skill
in forecasting future returns from skill in forecasting future covariances, as the former
task has generally proven much more difficult than the latter. Yet another extension may
involve applying regularization to non-MVO methods of portfolio construction such as risk
budgeting. Whatever the course of future research, we hope this paper has contributed both
in terms of promising improvements to MVO and a method of testing various portfolio
construction approaches.
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Appendix A. Capital Markets Assumptions

Table A1. Assets, expected returns and expected standard deviations.

Short Name Long Name Representative
Index Expected Return Expected Standard

Deviation

A US LC Eq United States
Large Cap Equity Russell 1000 8.5% 17.0%

B US SC Eq United States
Small Cap Equity Russell 2000 9.0% 19.0%

C Non-US Dev Eq Non-United States
Developed Equity MSCI World ex-US 10.0% 17.0%

D EM Eq Emerging Markets
Equity

MSCI Emerging
Markets 9.5% 20.0%

E Cash United States Cash
Merrill Lynch
3-Month US
Treasury Bill

4.0% 0.0%

F US Agg United States
Aggregate Bond

Bloomberg US
Aggregate Bond 5.5% 4.0%

G Non-US Agg Non-United States
Aggregate Bond

Bloomberg Global
Aggregate ex-USD 5.0% 4.5%

H US HY United States High
Yield Bond

Bloomberg US
Corporate High

Yield
7.0% 11.0%

I US FR United States
Floating Rate Bond

Credit Suisse
Leveraged Loan

Index
7.5% 10.0%

J REITs
United States Real
Estate Investment

Trusts

NAREIT US Real
Estate 7.5% 17.0%

https://github.com/MarinLolic/MVO-Improvement
https://github.com/MarinLolic/MVO-Improvement
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Table A2. Expected correlations.

A B C D E F G H I J

A 1.00 0.90 0.70 0.80 0.00 0.00 0.00 0.40 0.50 0.80

B 0.90 1.00 0.70 0.75 0.00 0.00 0.00 0.40 0.50 0.85

C 0.70 0.70 1.00 0.70 0.00 0.00 0.00 0.50 0.40 0.70

D 0.80 0.75 0.70 1.00 0.00 0.00 0.00 0.40 0.50 0.70

E 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

F 0.00 0.00 0.00 0.00 0.00 1.00 0.40 0.40 0.10 0.20

G 0.00 0.00 0.00 0.00 0.00 0.40 1.00 0.30 0.10 0.20

H 0.40 0.40 0.50 0.40 0.00 0.40 0.30 1.00 0.50 0.40

I 0.50 0.50 0.40 0.50 0.00 0.10 0.10 0.50 1.00 0.50

J 0.80 0.85 0.70 0.70 0.00 0.20 0.20 0.40 0.50 1.00
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