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Abstract: The phytonutraceutical Ormona® is a product composed of purified oil of Bixa orellana
Linné, dry extract of Myrciaria dubia McVaugh, dry extract of Trifolium pratense L., and dry extract
of Euterpe oleracea Mart. obtained using Evolve® technology. This study evaluated the effects of
Ormona® on Wistar rats affected by ovariectomy-induced osteoporosis. Pre-treatment was conducted
for 15 days before surgery and continued for a further 45 days after the surgical procedure. The
experimental design consisted of five groups (n = 5): OVW: treated with distilled water (1 mL/kg, p.o);
ADS: alendronate sodium (4 mg/kg p.o); EST: conjugated estrogen (2 µg/kg, p.o); ORM: Ormona®

(20 mg/kg, p.o); ORM + EST: Ormona® (20 mg/kg, p.o) + conjugated estrogen (2 µg/kg, p.o).
Biochemical and hormonal parameters of bone histopathology and trabecular and femoral diaphysis
size were evaluated through scanning electron microscopy (SEM) and bone calcium quantification by
atomic absorption spectrophotometry. The results show that ovariectomy caused bone alterations
such as loss of femoral microarchitecture, decreased bone homeostasis parameters, and changes in
the lipid profile. Estrogen supplementation reduced parameters such as cholesterol, LDL, and Ca2+

concentration. However, Ormona® showed higher serum estradiol levels (p < 0.01), effects on the
lipid profile, including parameters that estrogen replacement and alendronate sodium did not affect,
with an increase in HDL, and positive modulation of bone metabolism, increasing osteocytes and the
presence of osteoblasts. Ormona®, therefore, produced better results than the groups treated with
estrogen and alendronate sodium.

Keywords: isoflavones; bone density; osteoporosis; climacterium; estrogen receptors

1. Introduction

Osteoporosis, a bone disease characterized by the loss of bone mass and deteriora-
tion of bone microarchitecture, is often associated with menopause in women. During
menopause, the decrease in hormonal levels, especially estrogen, can trigger a significant
increase in bone loss, substantially raising the risk of fractures and other bone complications.
In this condition, the bones become more porous and lose density, becoming more prone to
fractures. The interconnection between menopause and osteoporosis has been extensively
documented. Estrogen plays a key role in regulating bone density, helping balance bone
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formation and resorption. During menopause, estrogen levels decrease considerably. This
hormonal decline can result in an increased bone resorption rate, leading to bone density
loss and increasing the risk of osteoporosis and bone fractures [1–3].

Post-menopausal osteoporosis is a frequent clinical condition that affects nearly one
in three women. Estrogen deficiency leads to rapid bone loss, peaking within the first
2–3 years after the menopause transition. Hormone replacement therapy (HRT) can prevent
bone loss and degradation of bone microarchitecture and reduce fracture risk at all bone
sites by 20–40%. At different doses, HRT rapidly normalizes turnover and preserves
bone mineral density (BMD) at all skeletal sites, significantly reducing vertebral and non-
vertebral fractures [4].

Although HRT has been a common approach to mitigate the effects of menopause
on bone health, its potential side effects, such as an increased risk of breast cancer and
cardiovascular disease, have raised significant concerns [5,6]. Therefore, the ongoing
search for safe and effective alternatives to HRT has led to a growing interest in exploring
phytoestrogen compounds derived from plants, which can partially mimic the effects
of endogenous estrogen in the body. Phytoestrogens have been considered promising
candidates for managing menopausal symptoms and possibly preventing menopause-
related osteoporosis [7]. These compounds have an agonistic effect on estrogen receptors
(β-receptors), mimicking the action of physiological hormonal estradiol, thus replacing the
estrogen deficit post-menopause [8].

Considering these advances, the research and development of nutraceuticals, defined
as food products with health benefits beyond basic nutrition, has focused on formulating
products that can exert an osteoprotective action, preventing bone loss and strengthening
compromised bone structure [9]. In this context, Ormona®, a phytonutraceutical derived
from natural sources, has been the subject of interest due to its potential ability to mitigate
the negative effects of osteoporosis, offering a promising and potentially safe alternative to
conventional therapies.

In contrast to the clear bone-related benefits of HRT, its uncertain popularity has cul-
minated in a clinical need for well-tolerated nutritional options that can be used safely after
menopause and that effectively prevent bone loss and the development of osteoporosis [4].
The phytonutraceutical Ormona® is a phytocomplex composed of 40% oil extract of annatto
(Bixa orellana), with the same composition as Chronic® [10]. Of this 40%, ~10% is mainly
δ-tocotrienols and ~28% is geranylgeraniol. In addition, it contains 20.8% red clover extract
(Trifolium pratense), standardized with isoflavones such as daidzein, genistein, Biochanin
A, and formononetin. Another 10% of the formulation is composed of a standardized
extract of açaí (Euterpe oleracea) standardized with anthocyanins (mainly cyanidin 3-O-
glucoside) [11]. This study examined the impacts of Ormona® on Wistar rats affected by
ovariectomy-induced osteoporosis.

2. Materials and Methods
2.1. Test Material

The Ormona® samples were kindly provided by Ages Bioactive Compounds Co.
(São Paulo, SP, Brazil). The batch analysis certificate, ORM220702 (Expiry date 07/21/24),
specifies the following composition: Purified oil of Bixa orellana Linné; dry extract of
Myrciaria dubia McVaugh; dry extract of Trifolium pratense L.; and dry extract of Euterpe
oleracea Mart. The quantification method and its physicochemical characteristics are detailed
in patent application BR102022008408-4.

Two standard products were used as positive controls: Premarin® conjugated estro-
gens 0.3 mg (Pfizer Ireland Pharmaceuticals, imported by Wyeth Co., Itapevi, São Paulo,
Brazil) and alendronate sodium 70 mg (EMS laboratory Co., Hortolândia, São Paulo, Brazil).

2.2. Animals and Ethical Aspects

According to the Brazilian College of Animal Experimentation and the Federal Council
of Veterinary Medicine resolutions, this study was based on the recommendations of the
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Universal Declaration of Animal Rights. The project was submitted to the Ethics Committee
for the Use of Animals in Research (CEUA) of the Federal University of Amapá and was
approved under protocol number 017/2022.

The animals were acquired from the Multidisciplinary Center for Biological Re-
search in Laboratory Animal Science (CEMIB) of the State University of Campinas (UNI-
CAMP). The experiment was conducted at the Drug Research Laboratory, which belongs
to the Department of Biological and Health Sciences located at the Federal University
of Amapá (UNIFAP). Six-month-old female Rattus norvegicus Wistar weighing 200–250 g
were used. They were acclimatized throughout the treatment and kept in a polyethylene
cage at a controlled temperature of (~21 ◦C), with food and water ad libitum and a 12 h
light/dark cycle.

2.3. Experimental Design and Ovariectomy

The chemical characterization of Ormona® reveals a fraction rich in isoflavones, corre-
sponding to 20.8% w/w (derived from Trifolium pratense extract). The HPLC analysis of the
product identified 5.4% daidzein, 2.3% glycitein, and 3.6% genistein [11]. The chosen dose
of Ormona® was adapted from Tsuang et al. [12]. Animals in the Ormona® groups were
treated with a dose of 20 mg/kg concerning total isoflavones. The animals were divided
into 5 experimental groups (n = 5):

1. Negative control group (OVW): ovariectomized rats treated with distilled water
(1 mL/kg, p.o);

2. Alendronate sodium group (ADS): ovariectomized rats treated with alendronate
sodium (4 mg/kg, p.o);

3. Estrogen group (EST): ovariectomized rats treated with estrogen (2 µg/kg, p.o);
4. Ormona® group (ORM): ovariectomized rats treated with Ormona® (20 mg/kg, p.o);
5. Experimental group (ORM + EST): ovariectomized rats treated with Ormona®

(20 mg/kg, p.o) + estrogen (2 µg/kg, p.o).

The animals received pre-treatment for 15 days. After this period, bilateral ovariectomy
was performed, following the technique described by Yousefzadeh et al. [13]. Once the
animals had recovered from the surgery, treatment continued for another 45 days, totaling
60 days of treatment. The animals’ food and water intake were monitored throughout this
period to assess their weight development.

2.4. Hormonal and Biochemical Analysis

On the 61st day of the experiment, 1.5 mL of blood was collected from the animals
through the retro-orbital plexus. The samples underwent centrifugation for 10 min at
5000 rpm/min [14]. The evaluated parameters included estrogen, progesterone, total
cholesterol (TC) and fractions (HDL and LDL), triglycerides (TG), aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, urea, and creatinine.
The samples were processed at AlchemyPet Laboratory, specializing in veterinary labora-
tory tests in Pompeia, São Paulo and registered with CRMV/SP under no. 42697-PJ.

2.5. Scanning Electron Microscopy (SEM) of the Femur

The femurs of the euthanized rats were removed, cleaned, dehydrated in an oven at
100 ◦C, and weighed using an electronic analytical balance (Bioprecisa Model, FA2104n,
São Paulo, Brazil). The specimens were sectioned longitudinally and transversely every
0.2 cm for scanning electron microscopy (Hitachi TM3030PLUS, Osaka, Japan) analysis. All
the photographs were taken of the same area (on a scale of 1 mm to 2 mm) in all the groups,
ensuring uniformity [15].

2.6. Quantification of Calcium in Bone Matrix by Atomic Absorption Spectrophotometry

Approximately 200 mg of the bone matrix were digested with a solution of nitric and
perchloric acid in a 2:1 ratio (nitric acid, HNO3; 65%, PA, Vetec; Sigma-Aldrich Ltd., São
Paulo, SP, Brazil, and perchloric acid, HClO4; 70%, PA, ACS, Vetec; Sigma-Aldrich Co.),
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heated to 200 ◦C for complete digestion of organic matter. After this step, the samples
were transferred to 50 mL volumetric flasks. Calcium concentrations were determined by
atomic absorption spectrophotometry (Shimadzu, Tokyo, Japan) with hollow cathode lamps
(422.7 nm) and air-acetylene flame. A standard solution of Ca2+ 1000 ppm (Merck 1.09943
Titrisol, St. Louis, MA, USA) was used for the analytical curve [16].

2.7. Histopathological Analysis of Bone Tissue

For the histopathological study, the femurs were collected and kept in 10% neutral
buffered formalin for 72 h for fixation, then decalcified in 8% hydrochloric acid solution and
10% formic acid in phosphate-buffered saline for 7 days. They were then dehydrated with
alcohol baths in increasing concentrations, clarified in xylene, and embedded in paraffin.
The paraffin blocks with the samples were microtomized into 3 µm sections, placed on glass
slides, stained with hematoxylin–eosin, and analyzed using optical microscopy (Olympus
BX41-69 Micronal), and photographed with a digital camera (MDCE-5C USB 2.0) [17].

2.8. Statistical Analysis

For statistical analysis, all quantitative results were expressed as mean ± standard
deviation, and the groups were compared using one-way ANOVA followed by the Tukey
test for multiple comparisons. The ORM and ORM + EST groups were compared using
Student’s t-test. Results with p < 0.001, p < 0.01, and p < 0.05 were considered statistically
significant. The statistical software used was GraphPad Prism (version 7.0).

3. Results
3.1. Ponderal Development

The effects of the treatments on weight development are shown in Figure 1. The OVW
group had lower food and water intake and, consequently, lower body weight (p < 0.05).
However, the ADS group had a statistically significant increase in average body weight
(p < 0.05), water, and food intake. There was no weight loss in the groups treated with EST,
ORM, and ORM + EST.
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Figure 1. Effect of oral treatments with OVW (1 mL/kg), ADS (4 mg/kg), EST (2 µg/kg), ORM (20 
mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg) on the clinical parameters of ovariectomized rats. The 
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Figure 1. Effect of oral treatments with OVW (1 mL/kg), ADS (4 mg/kg), EST (2 µg/kg), ORM
(20 mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg) on the clinical parameters of ovariectomized
rats. The columns represent the mean ± standard deviation. Statistical difference *** p < 0.001,
** p < 0.01, and * p < 0.05 between groups. One-way ANOVA test followed by Tukey Multiple
Comparisons post-test.

3.2. Hormonal and Biochemical Analysis

The hormonal profile of the treated groups after 60 days is illustrated in Figure 2.
Serum hormone estradiol levels in the ORM group were significantly higher (p < 0.01)
compared to all groups. Student’s t-test revealed that the group treated with ORM + EST
had a statistically lower estradiol level (p < 0.01) than the ORM group. The progesterone
concentration tended to be higher in the rats in the OVW group after ovariectomy; however,
this was not statistically significant.
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(20 mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg) on hormonal parameters in ovariectomized rats.
The columns represent the mean ± standard deviation. Statistical difference ** p < 0.01 and * p < 0.05
between groups. One-way ANOVA test followed by Tukey Multiple Comparisons post-test. The
ORM and ORM+ EST groups were compared using Student’s t-test.

Significant differences were observed in all parameters regarding the animals’ lipid
profiles. Concerning total cholesterol levels, remarkably significant results were noted,
with the lowest values for total cholesterol presented in the EST, ORM, and ORM + EST
groups, all with p < 0.01 compared to OVW (Figure 3). Regarding triglycerides, the ORM
and ORM + EST groups showed statistically significant lower values (p < 0.05) than the
ADS group used as a positive control.
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Figure 3. Effect of oral treatments with OVW (1 mL/kg), ADS (4 mg/kg), EST (2 µg/kg), ORM
(20 mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg) on lipid profile parameters in ovariectomized
rats. The columns represent the mean ± standard deviation. Statistical difference *** p < 0.001,
** p < 0.01, and * p < 0.05 between groups. One-way ANOVA test followed by Tukey Multiple
Comparisons post-test. The ORM and ORM+ EST groups were compared using Student’s t-test.
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Although not significant, the ORM and ADS groups showed elevated levels of HDL.
The EST and ORM + EST groups exhibited statistically significantly lower HDL levels,
p < 0.01, than the OVW group. Meanwhile, the LDL level in the ADS group was higher
compared to the OVW group. Both the group treated with estradiol alone (EST) and the
ORM + EST group recorded the lowest LDL values (p < 0.01 and p < 0.05, respectively)
compared to the OVW group. The ORM group showed a statistically significant lower
level (p < 0.001) than the positive control group treated with ADS.

The levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in
the animals in the estradiol-treated group (EST) showed a statistically significant higher
level of AST (276.60 ± 102) and ALT (33.80 ± 7.22) (p < 0.01 and p < 0.05, respectively)
when compared to the OVW group. In the group treated with Ormona® (ORM) and the
animals treated with alendronate sodium (ADS), elevated levels were observed only for
ALT (p < 0.01 and p < 0.0001, respectively), as shown in Table 1. There was no statistical
difference between the groups in urea, creatinine, and alkaline phosphatase levels.

Table 1. Effect of oral treatments with OVW (1 mL/kg), ADS (4 mg/kg), EST (2 µg/kg), ORM
(20 mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg) on biochemical parameters. Results are presented
as mean ± standard deviation. *** p < 0.0001, ** p < 0.01, and * p < 0.05 represent statistically significant
results compared to the OVW group. # p < 0.05 represents statistically significant results compared to
the ADS group. One-way ANOVA test followed by Tukey Multiple Comparisons post-test.

Parameters Urea (mg/dL) Creatinine AST (U/dL) ALT (U/dL) Alkaline
Phosphatase (U/L)

OVW 29.40 ± 4.10 0.42 ± 0.16 144.40 ± 24.48 20.40 ± 2.07 55.00 ± 12.12
ADS 22.20 ± 6.42 0.38 ± 0.08 156.60 ± 33.95 37.60 ± 2.61 *** 50.80 ± 15.47
EST 31.40 ± 2.88 0.46 ± 0.15 276.60 ± 102.10 *,# 33.80 ± 7.22 ** 44.60 ± 8.53

ORM 25.40 ± 5.40 0.38 ± 0.04 201.30 ± 49.27 33.00 ± 3.74 ** 51.40 ± 19.26
ORM + EST 26.40 ± 7.27 0.48± 0.05 156.80 ± 48.02 28.80 ± 7.56 51.60 ± 4.77

3.3. Scanning Electron Microscopy (SEM) of the Femur and Calcium Quantification

The femur weight of the ORM group was statistically higher compared to the OVW
group (p < 0.05) and the ORM + EST group (p < 0.01). Bone calcium concentrations were
higher in the ORM group compared to the OVW group (p < 0.01) and the ADS group
(p < 0.05). These results are consistent with the data obtained in the analysis of trabecular
size and diaphysis thickness, where, despite no statistically significant difference, the ORM
group tended to have a more minor trabecular extension and greater femoral diaphysis
thickness (Figure 4).

Figure 5 illustrates the cross-sections of the femoral metaphysis with the trabeculae of
the animals according to each group, in which the photomicrographs were obtained using
scanning electron microscopy. The OVW negative control group (Figure 5A) shows deterio-
ration in bone microarchitecture, with extensive and prominent trabeculae, indicating loss
of bone density. In contrast, supplementation with EST (Figure 5C), ORM (Figure 5D), and
ADS (Figure 5B) alone preserved the size of the trabeculae compared to the OVW group.
However, there was no statistical difference in the average sizes.

Figure 5A,E show bone loss, mainly of the trabeculae, and the connection of the bone
trabeculae was interrupted with significant bone loss in the OVW group. As shown in
Figure 5B–D, the structure of the bone tissue in the distal femur of the other treatment
groups did not suffer bone loss, as evidenced by the uniform tissue morphology, indicating
that the trabecular microstructure of the animals was not altered after the treatments.
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Figure 5. Representative scanning electron microscopy (SEM) images of cross-sections of the femoral
epiphysis with the trabeculae after 60 days of treatment with (A) OVW (1 mL/kg); (B) ADS (4 mg/kg);
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taken of the same area (on a scale of 1 mm to 2 mm) between the groups.
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3.4. Histopathological Analysis of Bone Tissue

H&E staining showed through light microscopy that the thickness of the cortical bone
and the trabecular bone area was reduced in the OVW negative control group (Figure 6A),
with a thin trabecular meshwork, little medullary tissue, and loss of bone microarchitecture.
There was a loss of connectivity in both the primary and secondary cancellous portions,
where the endosteal surface of the OVW group appeared worn, with an absence of os-
teogenic lining. Many osteoporotic cavities, resorption cavities, and calcified cartilage were
analyzed in the tissue.
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However, the groups treated with Ormona® were able to attenuate the signs of bone
degeneration in the ovariectomized rats. In particular, the ORM and ADS groups showed
denser trabeculae with a significant presence of medullary tissue inside the trabeculae
(Figure 6D and 6B, respectively).

The OVW group showed resorption of bone tissue, marked mineral loss, dispersed
trabecular tissue with a fragmented shape, and rare osteogenic activity (Figure 6). In
addition, there was a reduced number of osteocytes and lamellae with no medullary
content, signaling a process of osteopenia. An improvement in morphological architecture
was seen in the bone matrix of the groups treated with ADS (4 mg/kg), EST (2 µg/kg),
ORM (20 mg/kg), and ORM + EST (20 mg/kg + 2 µg/kg), revealing cell-rich bone tissue
with osteocyte lacunae (arrows marked with OT) on the endosteal surface. It is also possible
to observe an increase in trabecular bone density and the thickness of the cortical region in
the treated groups (Figure 7B–E).

Treatment of the ORM group attenuated the pathological changes in preserving the
spongy portion of the femur, evidenced by smaller trabeculae (Figure 6D). Bone mineral
retention and trabecular bone density were marked with the ORM and ORM + EST treat-
ments, and active proliferation of osteoblasts (marked with the acronym OB) was observed
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around the growth plate (Figure 6D,E). Meanwhile, treatment with ADS resulted in a
smaller volume of trabecular tissue and minerals, demonstrating a retarding effect on bone
loss in the tissue sections with EST, which was similar to that of ORM and ORM + EST.
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4. Discussion

Ovariectomy is a preclinical model for post-menopausal osteoporosis and is considered
the first choice and most used for such studies [18,19], and recommended by the Food
and Drug Administration [20]. This experimental model has bone loss characteristics
similar to osteoporosis in post-menopausal women. From the age of three months, when
they are in the reproductive phase, rodents respond appropriately to the deficiency of sex
hormones acquired due to ovariectomy. In this experimental model, in addition to bone
loss, there is hypercholesterolemia, an increase in bone remodeling markers, a decrease in
calcium absorption, and the protective effect of obesity on bone loss resulting from estrogen
deficiency [21].

In this study, ovariectomized rats developed bone alterations similar to those observed
during osteoporosis due to hypoestrogenism, as indicated by a decrease in femur weight,
bone calcium content, an increase in alkaline phosphatase concentration, deformity of the
microarchitecture of the epiphyses, a decrease in the number of osteocytes, and the absence
of osteoblasts. Treatment with estrogen suppressed the effects of estrogen deficiency in
most parameters. These results are in line with several studies that have used ovariectomy
as a model for inducing osteoporosis in vivo [22–27].

Estrogens are directly involved in regulating energy homeostasis and are crucial in
modulating food intake and energy expenditure. The literature reports that reduced levels
of estradiol (E2, the main ovarian estrogen) after menopause in women and ovariectomy
(OVX) in rodents lead to hyperphagia and reduced energy expenditure (EE), inducing
overall weight gain [28–30]. There is evidence that the effects of estradiol on food intake
are regulated by estrogen receptors in the hypothalamus (for example, the arcuate nucleus
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(ARC) and the hypothalamic paraventricular nucleus (PVN)) and in the nucleus of the
solitary tract in the brainstem. However, which estrogen receptor is involved has yet to be
made clear [31].

Contrary to what is observed in the literature [29,30,32], in this study, no increase in
weight or food intake was observed in the OVX group. The “classical view” of estrogen
action has been widely regarded as canonical dogma, as it integrates well not only the
actions of E2 on the energy balance but also its effects on the hypothalamic–pituitary–
gonadal (HPG) axis. A recent study [33] shows that the effect of E2 on eating depends on
nutritional status.

However, there was a significant increase in weight in the ADS group. These animals’
higher food consumption could partly explain this. As weight gain occurred in parallel
with food consumption in this study, demonstrating that the increase in weight induced
by ovariectomy, which has been reported previously [34–36], can be attributed to food
efficiency or possible changes in energy metabolism and deprivation of estrogenic activity
since this was the only group that did not have estrogen hormone replacement.

The results of the hormonal profile showed that ovariectomy caused a significant
decrease in the concentration of serum estradiol and progesterone in the OVX group. How-
ever, this surgical procedure did not influence the group treated with the phytonutraceutical
Ormona®, as it showed a higher serum estradiol level (p < 0.005) when compared to the
OVX group. Similar results were obtained in previous studies [37,38], which determined
the dose-dependent pro-estrogenic profile in ovariectomized rats treated with increasing
concentrations of T. pratense extract. Supplementation with T. pratense for 6 weeks increased
estrogen and progesterone levels in mice. This result can be attributed to the action of
isoflavones on the endogenous synthesis of estrogens, through changes in enzymes in-
volved in steroid metabolism, including aromatase, 17β-hydroxysteroid dehydrogenases,
and steroid sulfatases and sulfotransferases reported in the literature [39,40].

Among the isoflavones found in the T. pratense species, four bind competitively to ERα
and ERβ receptors (genistein > daidzein > biochanin A > formononetin) with affinities ap-
proximately one-thousandth of 17β-estradiol [41,42]. In the phytonutraceutical Ormona®,
5.4% daidzein, 2.3% glycitein, and 3.6% genistein were identified [11], justifying the potent
estrogenic activity performed by Ormona®.

In 2000, the North American Menopause Society (NAMS) published an evidence-
based consensus on the role of isoflavones in menopausal health. Although the health
effects observed in humans cannot be attributed to isoflavones alone, it has become clear
that foods or products containing these substances have some physiological effects, mainly
cardiovascular benefits. Since Ormona® phytonutraceutical is a product that combines
various bioactives, the composition of this product favors its use for improving the health
of premenopausal and menopausal women [43].

It was also observed that the group treated with the combination of Ormona® +
estradiol showed a reduced osteogenic profile (p < 0.005). This result can be explained
in part by the potential drug interaction between T. pratense and other anti-osteoporotic
drugs, such as tamoxifen, since studies report that preparations containing T. pratense can
interfere with the steady-state mRNA levels of the main drug-metabolizing enzymes. This
interference can be either by induction, as in the case of CYP3A2, or inhibition/suppression,
as in the case of CYP 1A2, 2B1/2, 2C11, and 2E1. Both situations can lead to changes in the
metabolism of co-administered drugs [44].

Furthermore, it can be inferred that the ovariectomized rats model lacks an endoge-
nous estrogen environment, as the higher endogenous estrogen environment can cause
competition between isoflavones and estradiol for receptor binding sites, and therefore the
weaker estrogenic potency of isoflavones, as well as the different binding preferences to the
α and β estrogen receptors (ERs), can lead to an anti-estrogenic effect. In a higher estrogen
environment, isoflavones act in vitro as antiestrogens; in a low estrogen environment, they
act as estrogens, characteristic of a post-menopausal situation [42,45,46].
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Another aspect to consider is the low serum estrogen concentration in the
ORM + EST group. The competition for the same binding site between estradiol (an
endogenous estrogen) and phytoestrogens (“plant-origin estrogens”) is a topic discussed in
the scientific literature. Some studies suggest phytoestrogens may have weaker estrogenic
effects due to competition for estrogen receptors, leading to decreased serum estrogen
levels. However, it is important to note that the extent of this competition and its effects on
serum estrogen levels may vary according to several factors, including the amount and type
of phytoestrogens consumed, the duration of exposure, and individual characteristics. In
addition, studies on this topic can present conflicting results, and there needs to be a clear
consensus on the effects of phytoestrogens on regulating serum estrogen levels [41,47].

In terms of biochemical parameters (Figure 3), higher levels of total cholesterol (TC),
LDL, and triglycerides (TG) were observed in the OVW group, while HDL was not affected.
These higher levels are explained by the increase in LDL cholesterol in the OVW group and
corroborate other studies that have shown hypercholesterolemia in ovariectomized rats,
reporting an association between estrogen deficiency and early onset changes in hepatic
cholesterol and triacylglycerol synthesis [48–50].

Women in hypoestrogenic conditions are susceptible to various lipid metabolism
disorders after menopause since epidemiological and prospective studies associate estrogen
with a relevant role against metabolic syndrome precisely because it has effects on many
organ systems that contribute to cardiovascular protection, including the regulation of
hepatic lipid metabolism and serum lipoprotein levels [51,52].

The group treated with estrogen (EST) showed lower levels of TC and LDL, and
higher HDL (p < 0.01), but it was unable to prevent an increase in TG compared to the
negative control group. This can be explained by the hepatic action of estradiol (E2),
which regulates the rate of synthesis of structural apolipoproteins for VLDL and HDL, and
reduces the rate of synthesis of apoB-100 while stimulating the synthesis of apoA-I and
apoA-II. The HDL fraction containing apoA-I and apoA-II is necessary for the degradation
of chylomicrons and VLDL and for the direct and indirect transportation of cholesterol to
the liver. Furthermore, in hepatocytes, estrogens stimulate the synthesis of apoC-III while
decreasing the synthesis of hepatic lipase (LH) [52–54].

Meanwhile, both Ormona® (ORM) and Ormona® in combination with estrogen
(ORM + EST) reduced TC and TG levels and increased HDL levels. These effects can
be explained by the composition of the phytonutraceutical Ormona®, which has phyto-
chemical markers such as geranylgeraniol and tocotrienols from B. orellana, which can
reduce the biosynthesis of cholesterol and triglycerides by negatively regulating HMG-CoA
reductase (HGMR) [14,52–54]. In addition, reports show that supplementation with T.
pratense (the main component of Ormona®) reduced LDL and TG levels in mice. Phytoestro-
gens, by inhibiting 7a-hydroxylase and estrogenic effects on the LDL receptor, modulate
the PCSK9 enzyme to decrease LDL [38,55].

The significant increase in aspartate aminotransferase (AST) and alanine aminotrans-
ferase (ALT) following the administration of estradiol (EST) may be associated with various
factors, including direct and indirect effects of estradiol on the liver or hyperandrogenemia.
During hepatic metabolization, estradiol can increase blood flow to the liver. This hyperac-
tivation of liver metabolism can cause damage to hepatocytes, releasing AST and ALT into
the bloodstream. In addition, the liver can produce toxic by-products that can damage liver
cells and release AST and ALT [56].

Although the ORM group showed a statistically significant increase only in the ALT
level, no other signs of toxicity were observed during the experiment. In some cases,
isolated ALT elevation may be related to different factors that are not directly linked to
liver toxicity. The activities of transaminases are altered not only in the liver but also in
other organs due to the modification of gluconeogenesis by nutritional or hormonal factors,
and this phenomenon leads to changes in the activity of transaminases in the blood [57].
Previous toxicity studies with the phytonutraceutical Ormona® demonstrated that it had a
low mortality rate, even at higher doses (1000 and 2000 mg/kg). In addition, no deaths
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occurred in the group treated with Ormona® at a 500 mg/kg dose. This study’s histopatho-
logical analysis of the liver demonstrated that Ormona® did not induce significant toxicity
at 500 mg/kg [11].

Although the OVW group showed a higher serum alkaline phosphatase (ALP) serum,
the differences were not statistically significant (Table 1). Despite this, the treated groups
showed lower levels of ALP, demonstrating a modulating action on bone metabolism.
Measuring biochemical markers of bone metabolism leads to understanding bone transition
in advanced age. ALP is a component of the cell membrane of many body tissues, with
the highest concentrations of this enzyme found in bone cells (osteoblasts) and the liver.
ALP is increased in skeletal system diseases associated with increased osteoblastic activity
and bone remodeling [58,59]. Studies have reported increased ALP in ovariectomized
rats [60–64].

The deposition of calcium salts in the process of osteogenesis is a process dependent
on the nutritional state of the bone and immunological and biochemical factors [65]. When
assessing the total weight of the femur, the ORM group had a statistically higher bone mass
(p < 0.05) compared to the OVW (Figure 5). Similarly, the ORM group also had higher Ca2+

levels than the OVW and ADS groups (p < 0.05). These results were confirmed in the SEM
images, where observation of the femur’s microstructure showed the cancellous bone’s
epiphysis preserved (Figure 6), indicating Ormona® osteoprotective action.

In the current study, histopathological evaluation revealed that treatment of ovariec-
tomized rats with Ormona® resulted in an increase in the thickness of the femoral shaft
compared to the OVW group and a decrease in the trabeculae. There was also an increase
in the number of osteocytes, the presence of osteoblasts, and the absence of osteoclasts.
These results align with the observations of other researchers, who have reported the
protective action of T. pratense against bone alterations characteristic of osteoporosis due to
hypoestrogenism [22,42,64,66–68].

Also present in Ormona® is geranylgeraniol (GGOH), which may play an osteoprotec-
tive role, as observed in a previous study by our research group [16]. Exogenous GGOH
may inhibit osteoclast formation by suppressing the receptor activating NF-κB ligand
expression [69]. However, the mechanism of action proposed for the osteoprotective and
anabolic action of the phytoestrogens present in Ormona® is based on specific effects on
osteoblasts and osteoclasts in vitro and in vivo.

The most abundant isoflavones in T. pratense, biochanin A and formononetin, are
metabolized into genistein and daidzein, respectively [70,71]. In in vitro studies, it has
been shown that the phytoestrogens daidzein [72,73], genistein [74,75], biochanin A, and
formononetin [73,76,77] promote the differentiation and growth of osteoblasts and stimulate
the formation and prevention of bone resorption by regulating calcium absorption, the
intestinal microbiota, and various metabolic pathways. By mobilizing bone calcium into the
circulation, isoflavones enhance calcium homeostasis during the calcium uptake [64,66,78].

Phytoestrogens are selective modulators of estrogen receptors (ER). Their main affinity
is for the beta type (β-RE), which is more present in bone cells, especially in osteoblasts
responsible for bone formation. Genistein, daidzein, biochanin A, and formononetin
have been implicated in the estrogenic activity of T. pratense and have been shown to
competitively bind to ERα and ERβ with similar affinities to 17-β estradiol [72,79,80].

Clinical data on the action of isoflavones shows that aglycones (most found in fer-
mented products) have beneficial effects against bone loss due to estrogen deficiency in
women compared to the glycoside form of isoflavones. With this, the EFSA ratified the
safety of isoflavones for women in a more comprehensive report [81].

Therefore, ascorbic acid from Myrciaria dubia extract tends to act as a catalyst, favoring
the acid hydrolysis necessary to absorb these phytoestrogens. This is due to the pharma-
cokinetic aspect, since the absorption rates of isoflavones are favored at acidic pH, as it is
necessary to break the bonds with the sugars present in the molecule, enabling the release
of the aglycones present in glycosylated isoflavones, such as glycitein and daidzein [82].
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Zhu et al. [82] showed that ascorbic acid prevented bone density loss in ovariectomized
mice, suggesting that the nutrient may help prevent osteoporosis. The combined action
of ascorbic acid and polyphenols present in M. dubia extract (approximately 1797.0 mg
EAG·100 g−1) provides antioxidant effects and benefits against menopausal symptoms.

Osteoprotegerin (OPG) and receptor activator ligand NF-j B (RANKL) are crucial in
bone remodeling. The modulation of these factors has profound effects on bone formation
and resorption. Interleukin 6 (IL-6) can inhibit apoptosis and directly increase the activ-
ity of osteoclasts, thus prolonging their lifespan and promoting bone loss by activating
OPG/RANKL/RANK (osteoprotegerin/receptor activator of nuclear factor kappa B lig-
and/receptor activator of the nuclear factor kappa B) [83,84]. In contrast, genistein and
daidzein could suppress IL-6 release and increase OPG production in a dose-dependent
manner [85].

In osteoblasts, genistein stimulates their proliferation (osteoblast-like cells MC3T3-
E1) and protects against oxidative cell damage from free radicals [86], increases collagen
synthesis, and prevents apoptosis in MC3T3-E1 [87]. However, in vitro studies show
that genistein can inhibit bone resorption by osteoclasts by inhibiting the formation and
differentiation of osteoclastic cells from bone marrow cells and inducing apoptosis of
osteoclasts in their mature form through the mechanism of Ca2+ channels. This suppressive
effect of genistein on these bone cells is due to partial inhibition of protein tyrosine kinase
and activation of protein tyrosine phosphatase [64,88].

In vivo tests with subcutaneous administration of genistein in ovariectomized rats
showed an increase in the number of osteoblasts [27]. Similarly, treatment with daidzein
and 17β-estradiol has been shown to affect the maturation and activity of osteoclasts
in vitro, providing evidence of inhibition of osteoclast differentiation by the mechanism of
apoptosis of their specific precursors [26].

The formation of osteoclasts is regulated in response to the secretion of osteoclast differ-
entiation factor (RANKL) and osteoprotegerin (OPG). RANKL is produced by osteoblasts
or osteogenic stromal cells, and it is involved in the formation of osteoclast-like cells, the
fusion of osteoclast precursor cells, and bone resorption. OPG inhibits osteoclastogenesis
by masking RANKL in osteoblasts or osteogenic stromal cells. Phytoestrogens decreased
RANKL mRNA levels and increased OPG mRNA levels by inhibiting topoisomerase II
(topo II) and protein tyrosine kinase [19].

Because of all the above, the ovariectomy model used in this study demonstrated
fidelity in replicating osteoporosis induced by low hormonal levels after menopause, reflect-
ing a similar response to the estrogen deficiency observed in post-menopausal women. The
results obtained with ovariectomized rats were consistent with the typical characteristics
of osteoporosis, corroborating previous studies and validating the effectiveness of this
experimental model [22–25].

In this context, the nutraceutical Ormona® appears to be a promising formulation
composed of botanical extracts that potentially prevent bone loss, as demonstrated by
its effects on increasing estradiol levels and modulating biochemical markers associated
with bone metabolism [37,38]. The unprecedented composition of Ormona®, including
phytoestrogens and antioxidants derived from plants such as annatto (B. orellana), red
clover (T. pratense), and açaí (E. oleracea), proposes a multifaceted approach to bone health,
which represents an innovation compared to traditional therapies.

However, it is essential to recognize some limitations of this study. The absence of a
sham control group may have limited a broader understanding of post-ovariectomy weight
gain and its implications for observed outcomes. Additionally, the need to evaluate the
safety and drug interactions of Ormona®, especially when co-administered with conven-
tional therapies, stands out as a crucial aspect to be investigated in subsequent studies.

Therefore, this research shows that the results with the phytonutraceutical Ormon®

were favorable for regulating the activities of bone cells, providing a possible way to
support the regulation of menopause-related osteoporosis symptoms in women. However,
simultaneous administration with synthetic estrogens requires greater attention, as possible
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anti-estrogenic activity has been observed. The effects of Ormona® on the skeletal system of
estrogen-deficient rats differed from those exerted by estradiol, indicating a more complex
mechanism of action.

5. Conclusions

Based on the biochemical, hormonal, and histopathology results, it can be suggested
that the phytonutraceutical Ormona® promoted the highest serum estradiol concentration
compared to the other experimental groups. The positive estrogenic effect was associated
with increased bone calcium concentration and preservation of bone microarchitecture,
which was also observed in the group treated with estrogen and alendronate sodium. How-
ever, only treatment with Ormona® improved the lipid profile (cholesterol, triglycerides),
especially by increasing HDL.
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