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Abstract: Background: The emergence and evolution of socioeconomic inequalities in 

health involves multiple factors interacting with each other at different levels. Simulation 

models are suitable for studying such complex and dynamic systems and have the ability to 

test the impact of policy interventions in silico. Objective: To explore how simulation models 

were used in the field of socioeconomic inequalities in health. Methods: An electronic 

search of studies assessing socioeconomic inequalities in health using a simulation model 

was conducted. Characteristics of the simulation models were extracted and distinct 

simulation approaches were identified. As an illustration, a simple agent-based model of the 

emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 

61 studies published between 1989 and 2013. Ten different simulation approaches were 

identified. The agent-based model illustration showed that multilevel, reciprocal and 
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indirect effects of social determinants on health can be modeled flexibly. Discussion and 

Conclusions: Based on the review, we discuss the utility of using simulation models for 

studying health inequalities, and refer to good modeling practices for developing such 

models. The review and the simulation model example suggest that the use of simulation 

models may enhance the understanding and debate about existing and new socioeconomic 

inequalities of health frameworks. 

Keywords: models; simulations; socioeconomic; health  

 

1. Introduction 

Socioeconomic status (SES) has traditionally been defined by relevant PROGRESS factors, i.e., 

Place of Residence, Race/ethnicity, Occupation, Gender, Religion/culture, Education, Socioeconomic 

status, Social capital/networks [1]. An association between SES and health has been demonstrated in 

numerous studies [2], resulting in the so-called socioeconomic gradient in health.  

Moreover, when these health inequalities are quantified by the concentration index [3] as an 

indicator, they can be “unpacked” through a decomposition analysis [4]. Such an analysis provides 

interesting insights on the contribution of different determinants to socioeconomic health inequality 

(e.g., quantifying the importance of illiteracy among women on child health inequalities) [5–9]. 

However, a decomposition analysis is based on a generalized linear model [4] and may therefore suffer 

from limitations inherent to such a model.  

Generalized linear models are appropriate for identifying isolated relationships between covariates 

and health while taking into account potential confounders. However, interrelations among individuals 

can lead to violations of the stable unit treatment value assumption, since e.g., an education 

intervention affecting the health condition of one individual could also affect the health condition of 

his/her friend. A further limitation is that in these models all variables are dealt with at the same level 

(i.e., additively, as explanatory variables at the right side of the linear equation), whether endogenous 

(such as genes), individual-level (such as age, education, or an individual behavior), neighborhood-level 

(such as the suitability of the environment), school-level (such as availability of health education), 

policy-level, and so forth. An analysis of socioeconomic health inequalities should embrace the  

multi-level aspect of the different determinants.  

Multilevel, or hierarchical, regression models can consider the contribution of factors at multiple 

levels, but do little to deal with a fundamental limitation of all generalized linear models, namely that 

these models hardly take into account the dynamic, reciprocal, discontinuous or changing relations 

between exposures and outcomes [10]. In alcohol consumption, for example, individual socioeconomic 

position contributes to the type of neighborhood a person can afford to live in and to the level of alcohol 

consumed. But individual socioeconomic position is also a product of the types of income-generating 

opportunities afforded by the neighborhood socioeconomic environment [11].  

In studies on socioeconomic inequalities in health it may also be important to incorporate complex 

and indirect health effects for a better understanding of causal pathways. Nandi et al. show an example 

of how early exposure to a poor socioeconomic environment may impact health in later life is [12].  
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In their example, the methodological challenge is twofold: first, early life SES is associated with later 

life SES, and second, and more challenging methodologically, early life SES may lead to behaviors 

adopted (e.g., smoking, poor diet) that impact SES in later life. Although structural equation models 

can assist in understanding causal pathways, more complex models may be needed for estimating 

relations between variables in a dynamic process that produces health inequality over time. Simulation 

models, offering simplified representations of a certain real-life system [10,13,14], have the potential 

to fulfill this need. Simulation models can be specified in many different ways, and the various 

existing simulation approaches may deal with different aspects of a complex system.  

By identifying the mechanisms responsible for the generation and maintenance of health 

inequalities, simulation models can be used as a tool for identifying new options for policy 

interventions. Furthermore, once a simulation model is established, it can be used as a virtual lab to 

assess the effects of specific interventions. Indeed, complex systems modeling approaches have the 

potential to integrate the growing knowledge about multilevel causes of health and their patterns of 

feedback and interaction, and to inform how specific policy interventions could influence the health of 

populations [10]. This paper provides a systematic review on the use of simulation models developed 

to better understand or modify socioeconomic inequalities in health. Using a simple agent-based model 

(ABM), we show how simulation models can be developed and used to study socioeconomic 

inequalities in health. 

2. Experimental Section 

2.1. Systematic Review 

The systematic review followed the reporting guidelines of PRISMA [15] and PRISMA-Equity 

2012 [16]. However, as the review focused on a qualitative synthesis of the simulation models 

(and not their results), several items in the PRISMA statement (e.g., “summary measures”) were not 

applicable in our review.  

2.1.1. Eligibility Criteria 

Studies with the following characteristics were eligible: the target population is human individuals 

or groups; the intervention or exposure involves a socioeconomic factor; the outcome variable is a health 

status, behavior or access to health care; and the study design is a simulation model. No restrictions 

were applied on the year, language, type or status of the publication. 

2.1.2. Information Sources and Search 

Electronic searches were conducted using PubMed, Scopus and the Web of Knowledge on  

22 January 2013. The following terms and operators were used and applied on title/abstract/keywords 

((tw) in PubMed): (“simulat*” OR “equation based-model*” OR “process-based model*” OR 

“dynamic model*” OR “multi-agent*” OR “differential equation*” OR “compartmental model*” OR 

“difference equation*” OR “projection model*” OR “systems analysis” OR “systems model*” OR 

“computer model*” OR “agent based” OR “individual based” OR “rule based” OR “mathematical 

model*” OR “microsimulation”) AND (polarization OR polarisation OR imparit* OR parit* OR 
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unjustness OR discrimination OR inequalit* OR disparit* OR equit* OR inequit* OR equalit*) AND 

(sickness OR sanity OR medical OR health OR healthy* OR healthi* OR illness* OR disabilit* OR 

morbidit* OR mortalit* OR disease OR diseases). The search terms were discussed and approved by 

four of the authors based on their expertise in simulation models or in health inequalities research. 

The search strategy was tested and fine-tuned in Scopus. Records were imported into Reference 

Manager (Thomson Reuters Professional Edition version 12) and duplicates, defined as records with 

similarity in titles >87% (default parameters in Reference Manager) and the same publication date, 

were removed. The remaining duplicates identified by progressively decreasing the degree of 

similarity between titles and not using the publication date criterion were manually removed.  

2.1.3. Study Selection 

Titles (and abstracts if necessary) were screened for eligibility. As the number of eligible studies 

was greater than expected, selection criteria were refined to better meet the aim of the review. Studies 

assessing socioeconomic inequalities in health using a simulation model were selected if the following 

criteria were met: (1) the study aims to better understand or modify a difference in health (health 

status, health behavior, access to health care or exposition to a health-threatening exposure) between 

socioeconomic (PROGRESS) sub-groups of the population; and (2) the method used is a simulation 

model, defined as an experiment performed on a representation of a system. Finally, only full research 

articles published in English were selected.  

2.1.4. Data Collection Process and Data Items 

The aim of the study, the type and features of the simulation model, the structural determinant(s), 

the health outcome(s), the country, the target population, the main findings, authors and publication 

dates were extracted into a pre-designed form. The number of studies by characteristic was counted 

and plotted using R version 3.0.1 [17]. 

Simulation models were first classified in two classes according to the level of experimentation. 

“Individual-based simulation models” perform simulation experiments at individual level (e.g., 

individuals’ attributes, behaviors or relationships). “Population-based simulation models” perform 

simulation experiments at population level (e.g., state processes and transition probabilities, 

components or dynamics). In the individual-based simulation models group, three different approaches 

were identified: microsimulation, agent-based and network. In the population-based simulation models 

group, seven different approaches were identified: state-transition, optimization, risk assessment, 

projection, game, behavioral/stress and diffusion. The description of the different simulation 

approaches is presented in Table 1.  

Socioeconomic determinants were categorized into: place of residence, race/ethnicity, occupation, 

gender, socio-cultural factors, education, economic status, social capital, insurance coverage, marital 

status and housing. Health outcomes were categorized into health status, life expectancy, mortality, 

child health, mental health, obesity, infectious disease, cancer, health behavior, access to health 

care/treatment/prevention and environmental exposition. These categorizations helped in identifying 

the main situations of inequality studied and the related simulation approach used. 
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Table 1. Description of simulation model approaches. 

Individual-based  

Microsimulation 
In these models, individuals are represented as passive micro-level entities.  
The experiment consists in modifying individuals’ attributes. Analyses are made using 
regression-based or econometric methods. 

Agent-based 
In agent-based models, individuals are represented as active (i.e., are able to adapt to the 
environment, interact with others and make autonomous decisions) micro-level entities. 
The experiment consists in modifying agents’ rules or the system structure. 

Network 
In network models, individuals are represented as micro-level entities interacting with 
each other. The experiment consists in modifying individuals’ relationships. 

Population-based  

State-transition 

State-transition models are developed with differential equations. The population is 
divided in subgroups through which individuals pass. These subgroups may be defined 
according to health states or by SES. This category includes system dynamics models 
with stocks, flows and feed-back loops, epidemic models (e.g., 
Susceptible/Infected/Recovered models), and Markov models. 

Optimization 
In this category, the basic components modeled are facilities or services. The optimal 
allocation of health care resources is estimated by maximizing or minimizing a function.

Risk assessment 
In these models, the unequal distribution of a health risk of a simulated exposure is 
estimated.  

Projection 
Based on actual population data and rates, these models project future population 
demographics under several assumptions.  

Game 
These models study strategies in which the decision of an individual or group depends 
on the decision of the others.  

Behavioral/stress 
Behavioral: the model consists in a recursive system of equations. In this model, 
individuals maximize a lifetime utility function. Stress: individual’s health is determined 
by endowments, permanent shocks, and transitory shocks. 

Diffusion 
Temporal and spatial diffusion of an innovation are modeled as subsystems transitions 
from dynamic to steady states. 

The description of simulation model approaches was based on the studies included in the review.  

Several characteristics of the systems modeled in the studies were extracted as described by the 

following keywords: (1) multilevel—the system components may be aggregated at distinct levels (e.g., 

endogenous, individual, network, neighborhood), (2) dynamic—the system evolves over time; the 

relations between some elements of the system depend on time, (3) stochastic—the system includes an 

element of random nature or an element that can be specified only probabilistically, (4) heterogeneous 

individuals—differentiated (with at least two attributes) individuals are represented as micro-level 

entities and, if active, are able to interact with each other or to adapt to their environment, (5) feedback 

loop—the system includes a chain of causes and effects that forms a loop, and (6) spatial—the system 

has a spatial dimension; the relations between some elements of the system depend on space.  

Finally, information about the model validation and utilization was extracted. The method section 

of the studies was screened for validation methods. Whether or not the model aimed to develop a 

framework or to test an intervention or scenario was extracted. 
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2.2. Agent-Based Model (ABM) 

To illustrate the use of simulation models for studying socioeconomic inequalities of health,  

a simple ABM aiming to study how socioeconomic differences in alcohol abuse may emerge was 

developed. Figure 1 shows a schematic representation of this model. 

Figure 1. Schematic representation of the agent-based simulation model of alcohol abuse 

in two neighborhoods with distinct socioeconomic levels. 

 

The model simulates the life course of individual women, who are born, age, give birth, and die (the 

system represented is dynamic). Two neighborhoods are defined, reflecting low and high SES (the 

system is multilevel); however, the model is not spatially explicit, as the distance between neighborhoods 

is not explicitly modeled. The model consists of heterogeneous individuals, who interact with each other 

and their environment. The attributes of the individuals may change over time, based on probabilistic 

processes. Each individual has an education level that depends on the mother’s education level, but can 

change based on the neighborhood. Indeed, the model assumes that children may increase or decrease 

their education level based on the average education level in their neighborhood. Individuals are 

further allowed to develop alcohol abuse depending on prior alcohol abuse and on the education level 

of the individual and its mother. Alcohol abuse in childhood is assumed to depend on the individual’s 

education level and that of its mother, while alcohol abuse in adulthood is assumed to depend on the 

individual’s education level and alcohol abuse during childhood. This situation represents the baseline 

model. In a next scenario, we allow individuals to change neighborhood based on their education level. 

Individuals with a high education will move with a certain probability to a high SES neighborhood, 

and vice versa. As a result, we thus create a feedback loop between education level and neighborhood. 

Indeed, the education level in childhood is assumed to depend on the neighborhood, while the 

neighborhood in adulthood is assumed to depend on education level.  
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Validation of the model only occurred through expert judgments of the input parameters and 

simulated outputs. If the model were to be used for more in-depth research, rather than as an example 

of the use of ABMs, model validation through comparison with observed alcohol abuse patterns would 

be essential. Table A1 provides a more detailed description of the ABM, following the Overview, 

Design concepts and Details (ODD) protocol proposed by Grimm et al. [18]. The model was 

developed and run in R version 3.0.1 [17], and the model’s source code is provided in Table A1 and 

Algorithm A1. 

3. Results  

3.1. Review 

3.1.1. Description of Selected Studies 

The 61 studies selected [19–79] were published between 1989 and 2013 (Figure 2). They were 

conducted in all continents: America (n = 28), Europe (n = 16), Asia (n = 10), Africa (n = 5) and Australia 

(n = 3) (Table A2). The review of the simulation models identified 16 individual-based models and  

45 population-based models. The different approaches are summarized in Table 2.  

Figure 2. Flow of information through the different phases of the review. 

 
5,968 records identified 

through database 

searching (2,772 Scopus + 

881 PubMed + 2,315 Web 

of Knowledge) 

4,061 records after 

duplicates removed 

349 titles/abstracts 

screened 

211 records excluded 

Not relevant (n = 211) 

138 full-text articles 

assessed for eligibility 

77 Full-text articles excluded 

Not relevant (n = 61) 

Not research paper (n = 7) 

Non-English (n = 4) 

Not found (n = 3) 

Duplicates (n = 2) 
61 Studies included in 

qualitative synthesis 
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Table 2. Number of studies reporting several features of simulation models in total and by model type.  

Individual-based Population-based 

 
Total Microsimulation

Agent-
based

Network
State. 

transition
Optimization

Risk 
assessment

Projection Game Behavioral Diffusion 

Total number of 
studies 

61 11 4 1 21 13 4 2 2 2 1 

Characteristics of the system modeled 

1. Multilevel 59 10 4 1 20 13 4 2 2 2 1 

2. Dynamic 40 6 4 1 20 2 2 1 1 2 1 

3. Stochastic 34 6 4 1 13 4 3 0 1 2 0 

4. Heterogeneous 
micro-level entities 

40 11 4 1 13 3 2 2 1 2 1 

 interacting with 
each other 

6 0 2 1 2 0 0 0 1 0 0 

adapting to their 
environment 

10 1 3 0 3 1 0 0 1 1 0 

5. Feed-back loop 7 0 2 0 5 0 0 0 0 0 0 

6. Spatial 37 6 4 0 6 13 4 1 1 1 1 

Validation and utilization of the model 

Validation on 
observational data 

14 2 1 0 6 4 1 0 0 0 0 

Development of a 
framework 

17 1 1 0 3 8 2 1 0 1 0 

Test of an 
intervention/scenario

48 5 4 1 18 13 3 2 2 0 0 
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The most common simulation approaches were state-transition models, optimization models and 

microsimulations. In several studies [39,40,43,45,47,49,50], state-transition models were used with a 

microsimulation. In one study [38], state-transition and network approaches were combined. To facilitate 

the description, these studies were classified as state-transition models as this was considered as the 

main approach of the study. All PROGRESS factors were represented in the selected set of 

publications. The determinants reported were mostly place of residence, race/ethnicity and economic 

status (Figure 3). The health outcomes modeled are shown in Figure 4. Inequalities in health status 

(self-reported, nutritional status, disease, mortality, life expectancy, preterm birth) were modeled in  

31 studies. Unequal access to health care (health facilities, treatment or prevention) was modeled in  

27 studies. The remaining studies modeled inequalities in an environmental exposure (n = 3) [70–72] 

and inequalities in health behavior (n = 2) [30,31].  

Figure 3. Structural determinants included in the selected studies. 

 

Figure 4. Health outcomes included in the selected studies. 
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3.1.2. Characteristics of the System Modeled 

In the selected studies the use of simulation models allowed for a better understanding the complex 

dynamics giving rise to health inequalities. The system encompassing a health inequality may be 

multilevel, dynamic, spatial stochastic, and includes active heterogeneous micro-level entities or  

feed-back loops. These complex features were appropriately taken into account through the various 

simulation modeling approaches (Table 2), as illustrated hereafter.  

The complexity of the relationships between the components of the system was present in all 

studies to varying degrees. Complexity was high in a study assessing the causal pathways of the 

multiple social and biological determinants of health in the city of Toronto [48]. In this simulation 

model, many determinants interact with direct or indirect impacts on health, strong or weak causal 

effects and time delays.  

Nearly all reported models included more than one level of factors, e.g., cold-ischemia time of an 

organ transplant (endogenous), waiting time of the patient (individual), location of the health center 

(neighborhood) and allocation rules (policy) [57].  

Two-thirds of the models were dynamic. The time dimension was especially essential when 

outcomes such as inequalities in future disease incidence (e.g., state-transition models) or life 

trajectories (e.g., behavioral/stress model) were studied.  

Stochasticity was introduced in the models in several ways and for various reasons. In a spatial 

stochastic multimedia exposure model [69], probability density distributions of random model input 

variables were used to compute exposure and risk indicators. In a spatial interaction study [60], 

random fluctuations were introduced in the data to test the robustness of the model. In the network 

simulation of HIV transmission [34], every contact (relationship) was made with a randomly chosen 

member of the population.  

Individuals were represented as micro-level entities in two-third of studies. In 16 studies, 

individuals were active, either able to interact with others or to adapt to their environment. Modeling 

individual interactions was essential in a study on influenza vaccination and transmission [32]. Indeed, 

this study emphasized that poorer counties tend to have high-density populations and more children 

and other higher-risk people per household, resulting in more interactions and both increased 

transmission of influenza and greater risk for worse influenza outcomes. In this simulation, virtual 

people moved throughout a region in patterns similar to those actually observed in real life, interacting 

with each other at places such as offices and schools, based on the day of the week and each person’s 

characteristics. Ten papers modeled an adaptive behavior between people and their environment over 

time. For example, Auchincloss et al. [30] assessed income inequalities in diet in the context of 

residential segregation. In this study, the selection of a food store by the household was determined by 

the price of food, the distance to the store, its habitual behavior and the preference for healthy food.  

A feed-back loop was modeled in seven papers, mainly agent-based or state-transition models. As an 

example, a study found that feedbacks between disease ecology and economics can create clusters of 

low income and high disease that can stably persist in populations that become otherwise 

predominantly rich and free of disease [38].  

The spatial dimension was introduced in the model as observable geographical units (region, 

county, census output area…) in most studies and in all optimization and risk assessment models.
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An artificial space was simulated in the four agent-based models (grid space) and in two other 

studies (Banach space) [44,75].  

3.1.3. Validation and Utilization of the Model 

Among the 16 studies having reported a validation process in their methods, most (n = 14) 

compared predicted results with observational data (i.e., pattern-oriented modeling; discussed in more 

detail below) and two compared model results to experts’ opinions [37,48].  

In 17 studies, mainly for optimization models, an explicit aim was to provide a conceptual 

framework of the studied phenomenon.  

If validated, the simulation model may then be used as a tool to test the effect of a virtual 

intervention. Most studies tested the impact of several scenarios/interventions on inequalities: 

allocation policies, health reform strategies, treatment or prevention programs, relocation of facilities 

etc. Some studies used existing simulation models. The MISCAN model projects US cancer population 

trends and was used to test the impact of cancer screening [39,40,45,50]. The Prevent model estimates the 

health benefits in a population due to changes in risk factor prevalence and was used to test the impact 

of interventions to prevent smoking [52,54]. The Life Saved Tool projects the reduction in the 

mortality rates and stunting that could be achieved if the coverage levels of specific interventions were 

increased on the basis of baseline characteristics, demographic characteristics, and coverage targets. 

The tool was used to estimate the effects of different intervention packages and coverage levels on 

under-5 mortality and malnutrition [74]. 

3.2. Agent-Based Illustrative Model 

Figures 5 and 6 show the simulated level of alcohol abuse in both neighborhoods, for the baseline 

and the extended model.  

Figure 5. Simulated prevalence of alcohol abuse in two neighborhoods (“nbhA” and 

“nbhB”, with high, respectively, low, socioeconomic status), assuming no education-dependent 

mobility between neighborhoods; the thin lines (highly variable) represent the output of 

100 individual model runs, while the thick lines represent the averages of all individual 

model runs. 
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Figure 6. Simulated prevalence of alcohol abuse in two neighborhoods (“nbhA” and 

“nbhB”, with low, respectively, high, socioeconomic status), assuming education-dependent 

moving between neighborhoods; the thin lines represent the output of 100 individual model 

runs, while the thick lines represent the averages of all individual model runs. 

 

In the baseline model, where no education-dependent moving between neighborhoods was 

assumed, the alcohol abuse prevalence in both neighborhoods evolves from the original state to a 

similar state. In other words, in this situation no inequalities are observed between the two 

neighborhoods. In the extended model, however, a clear qualitative difference between both 

neighborhoods emerges, reflecting clear inequalities between the two neighborhoods. This observation 

suggests that, subject to the model assumptions, mobility may be a driving force behind socioeconomic 

health inequalities. Note that the quantitative differences are the result of arbitrary parameter settings, 

and should thus not be interpreted directly. 

4. Discussion and Conclusions 

Determinants of health shape health inequalities in complex ways, requiring innovative approaches 

such as the use of simulations. Data, mostly collected survey data, allow the identification of gaps in 

health between socio-economic groups, and can in addition be analyzed with traditional statistical 

techniques such as generalized linear models, revealing relationships between observed health 

inequalities and their determinants. Such analyses can be indicative of health gaps and important 

determinants, but may not reveal the mechanisms driving socio-economic inequalities of health.  

The detection of such mechanisms requires tools that can account for feedbacks, interrelations among 

agents (e.g., humans and the environment) and discontinuous non-linear relations. 

Through a systematic literature review, we explored how simulation models have been used so far 

to study health inequalities. The review shows that simulation models of health inequalities were used 

in several areas such as health systems research, epidemiology, environmental health or demography. 

The 61 studies selected used many different types of simulation models. This review sought to identify 

the main simulation approaches used. The choice of the most appropriate simulation approach should 

depend on the aim of the study and on the characteristics of the system being modeled. Table 3 

summarizes the main situations of inequality modeled in the studies, linking them with the 
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characteristics of the systems modeled and the simulation approach used. Depending on the situation, a 

characteristic of the system may be more or less important to model (e.g., modeling a dynamic system 

with active individuals may be particularly interesting when studying the impact of a policy on health 

behavior, because this impact depends on individuals’ adaptation and may vary over time). Some studies 

reported in their limitations that their model lacked dynamic [56,62], stochastic [57,75] or individual 

heterogeneity [25]. These concerns reflect the different considerations that must be balanced when 

developing any simulation model: the accuracy of the model, its validity and its applicability. 

Table 3. Overview of the main situations of inequality modeled, main related 

characteristics of the system, and approach used. 

Situation of inequality Most frequently reported characteristics of the system Approach used 

Unequal access to health 
care resources  

Static, deterministic, spatial 
Interdependency of components’ decisions  
Passive heterogeneous individuals 

Optimization 
Game 
Microsimulation 

Unequal health behavior 
Dynamic, stochastic, heterogeneous individuals adapting 
to their environment 

Agent-based 

Unequal transmission of 
a disease or unequal 
disease stages transitions 

Dynamic, stochastic, passive (heterogeneous) individuals 
 
Heterogeneous individuals interacting with each other 

State-transition  
(+ microsimulation) 
Network, agent-based

Unequal environmental 
exposition/risk 

Static, passive (heterogeneous) individuals, spatial 
 
Dynamic, spatial diffusion 

Risk assessment  
(+ microsimulation) 
Diffusion 

Unequal health status or 
mortality 

Static, deterministic, passive heterogeneous individuals 
 
Dynamic, stochastic 

Microsimulation, 
projection 
Behavioral 

Among all approaches explored in the review, ABM is likely the most suitable tool for studying a 

complex health inequality situation as it integrates most of the characteristics of a complex system. 

We illustrated the simulation process through the example of a simple hypothetical agent-based 

simulation model of alcohol abuse. We showed how such simulation models can incorporate feedback 

loops and provide insights that may not be obtained through classical statistical data models. Indeed, 

ABMs translate our understanding of a process into simple computer rules, making it possible to 

simulate complex interactions and non-linear relations. As extending existing ABMs comes down to 

adding more rules to the model, generating more detailed models can easily be accomplished. ABMs 

may therefore serve as “virtual labs”, in which our understanding of the process or the impact of 

possible intervention measures may be tested in silico. In our example, this could mean the evaluation 

of other factors contributing to alcohol abuse, or the evaluation of intervention strategies aimed at e.g., 

improving the mothers’ education level. As such, ABMs have the potential to become important tools for 

guiding policy. However, as all models come with inherent assumptions and uncertainties, the usefulness 

and limitations of the model results need to be clearly communicated with the policy makers. Indeed, as 

models merely present a simplified representation of reality, they can never replace reality, nor can 

they exactly predict future events. Therefore, if simulation models were to be used as policy tools, 

policy makers and other stakeholders should be involved throughout the modeling process [80]. 
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When developing models, good modeling practices should be followed to enhance confidence in 

the model’s findings. One prominent good modeling practice is model validation, i.e., the process of 

testing the realism of the model and its outcomes. We note that models can be validated in several 

ways, depending on the purpose of the model [81]. Structural validation, i.e., an evaluation of the 

coherence of the simulation model with theory, is not often done. This seems a logical step since, 

unlike methods for describing epidemics, no mathematical theory exists for health inequalities. 

Predictive validation, tested by comparing results produced by the models with observations, may help 

to assess whether or not the mechanism modeled reflects reality. Comparing the simulated results to an 

observed pattern appears to provide the best validity check. This so-called pattern-oriented approach 

[82] therefore requires that the model generates patterns that can be observed in real life. In our ABM 

example, the generated pattern was alcohol abuse prevalence, which is an observable pattern. 

Furthermore, pattern-oriented modeling makes it possible to calibrate the model, by fine-tuning the 

parameters to better reproduce the observed pattern. However, our review showed that simulation 

models of health inequalities are not always validated. The assessment of the model validation used in 

the selected studies was not straightforward given the diversity of the types of models included, each 

having their own validity standards. Nevertheless, it appears that validity was not systematically 

reported, and a test for predictive validity was found in only 22% of studies. Sometimes data are not 

available, but this does not have to stop the modeler from checking that the results produced are logical 

e.g., by comparing model results to experts’ opinions [83], as reported in two studies. 

Apart from proper validity checks of the models, good modeling practices also include structured 

documentation of the models and communication with stakeholders. Grimm et al. proposed the 

Overview, Design concepts and Details (ODD) protocol as a standard protocol for reporting ABMs [18]. 

This idea is extended as a framework for transparent and comprehensive ecological modeling 

documentation (TRACE), in which all aspects of the modeling cycle are represented, including model 

development, model testing and analysis, and model application [80]. Although developed for 

simulation models in ecology, these good modeling practices also apply to simulation models for 

health inequalities. A transparent and systematic reporting of models will increase confidence in the 

usefulness of the results.  

Frameworks used for conceptualizing health inequalities and their determinants have been 

described in various forms in the past [2,84,85]. These frameworks actually already represent models, 

namely visual models, or, when described in text form, verbal models. However, none of these 

frameworks was experimented through a simulation model in the selected studies. Testing frameworks 

quantitatively may be an opportunity for further research in the field of socioeconomic determinants of 

health inequalities. Indeed, the further development of such frameworks could be guided by simulation 

models. The review showed that some (17%) models were already used for developing a new 

framework. We therefore promote the further use of simulation models in line with developing new 

frameworks. 

The review has several limitations. Firstly, the search was limited to three electronic databases. 

Moreover, the search strategy contains keywords related to inequality but a simulation study of 

socioeconomic inequalities not containing the chosen terms in its title/abstract/keywords might have 

been missed. Secondly, the selection of the studies and data extraction was conducted by a single 

reviewer, increasing the probability of selection/extraction errors. Finally, there is no standard 



Int. J. Environ. Res. Public Health 2013, 10 5764 

 

classification of simulation models to apply to our selection of studies. For the majority of studies, the 

simulation approach was explicitly reported in the studies, but for several studies (e.g., “risk 

assessment”) an approach was assigned according to the characteristics found in the model.  

With the complexity surrounding the way determinants shape inequalities in health, simulation 

models will provide a useful added value to the set of more traditional analytical techniques. Studies 

with a complex design are needed to explore these mechanisms. Simulation models can guide optimal 

data collection by testing different designs virtually before conducting the study. Although complex 

issues such as feedback loops can be accounted for by models such as ABMs, the wider use of such 

models in teaching and research will convince researchers and policy makers to use the available 

flexibility even more, by e.g., including adaptive behavior of individuals. Furthermore it will guide the 

data collection in a more efficient way towards policy making and not merely reporting the existence 

of inequalities. The list of examples published and referred to in this paper together with the 

illustrative ABM example may assist researchers to develop their own simulation models in the future.  
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Appendix 

Table A1. The following description of the agent-based model for studying  

socio-economic inequalities in health follows the “ODD” (Overview, Design concepts, and 

Details) protocol proposed by Grimm et al. [18]. 

Overview 
Purpose To understand the emergence of socioeconomic health inequalities. 

Entities, state 
variables, and 
scales 

The main model entities are the individual females, each having six state variables: 
 id: unique identification number 
 age: age category (1 = newborn; 2 = child; 3 = adult) 
 edu: own education level (0 = low; 1 = high) 
 edm: mother's education level (0 = low; 1 = high) 
 hlt: own alcohol consumption (0 = no; 1 = yes) 
 nbh: own neighborhood (0 = A; 1 = B) 
The neighborhood acts as a secondary entity. Its state variables are defined by the 
inhabitants: 
 average education 
 average alcohol consumption 

Process overview 
and scheduling 

The model is updated in discrete time steps: 
 ageing 
o each individual moves to next age group 
o children improve or decrease their education level based on the average education 
level in their neighborhood 
o adults change neighborhood based on own education level (high edu  nbhA; low edu 
 nbhB) 
o alcohol consumption in childhood gets determined based on own and mothers’ 
education level 
o alcohol consumption in adulthood gets determined based on own education and 
alcohol use in childhood 
 deaths 
o individuals who have passed adulthood get removed from the population 
 births 
o new individuals get added to the population 
o newborns get neighborhood from mother 
o newborns get education from mother with certain probability 
 prevalence assessment 
o determination of neighborhood-specific average education and alcohol consumption

Design concepts 

Basic principles 

The model is based on the ideas that education level depends on the neighborhood and on 
the mothers’ education level; and that alcohol consumption depends on the own and the 
mothers’ education level. 
Optionally, the model can be allowed to assume that adults change neighborhood based on 
own their education level. 
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Table A1. Cont. 

Design concepts 

Emergence 
The main model results are the neighborhood-specific average education and 
alcohol consumption levels. 

Adaptation 
The model contains two adaptive traits: 
 change in education level based on average education level in neighborhood
 change in neighborhood based on education level 

Objectives The adaptive traits are not linked to any objective. 

Learning There is no change in adaptive traits over time. 

Prediction There are no predictions assumed. 

Sensing The individuals sense the average education level in their neighborhood. 

Interaction 
There is interaction between mothers and offspring: 
 the newborn gets the neighborhood of the mother 
 the newborn gets the education of the mother with a certain probability 

Stochasticity 

Mother’s education  newborn’s education: 
 edu ~ Bernoulli(0.70), if edm = 1 
 edu ~ Bernoulli(0.30), if edm = 0 
∆ Child’s education 
 eduA ~ Bernoulli(eduതതതതത

nbhA) 
 eduB ~ Bernoulli(eduതതതതത

nbhB) 
∆ Adult’s neighborhood 
 nbh ~ Bernoulli(0.20), if edu = 0 and nbh = 1 
 nbh ~ Bernoulli(0.80), if edu = 1 and nbh = 0 

Collective 
Individuals belong to two different neighborhoods; these neighborhoods are entities 
with own state variables. 

Observation No external data are observed. 

Details 

Initialization 

The model gets initialized with 100 individuals, equally distributed over both 
neighborhoods. 
The initial education level is randomly assigned based on neighborhood: 
 eduA ~ Bernoulli(0.20) 
 eduB ~ Bernoulli(0.80) 

Input data No external input data is used. 

Submodels See R script. 
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Algorithm A1. R code for the agent-based model example. 

##=========================================================================== 
##= life functions ========================================================== 
 
initiate <‐ 
function(n){ 
  inds <‐ data.frame( 
    id = seq(3 * n),                       # unique id per ind 
    age = rep(c(0, 1, 2), each = n),       # age group of inds (0/1/2) 
    edu = NA,                              # education 
    edm = NA,                              # education mother 
    hlt = NA,                              # healthy = no alcohol consumption 
    nbh = sample(rep(c(0, 1), 3 * n / 2))  # 0 = bad, 1 = good 
  ) 
 
  ## randomly define 'edu' based on 'nbh' 
  inds$edu[inds$nbh == 0] <‐ rbinom(n / 2, 1, .2) 
  inds$edu[inds$nbh == 1] <‐ rbinom(n / 2, 1, .8) 
 
  return(inds) 
} 
 
births <‐ 
function(pop, nBirths){ 
  ## new individuals 
  ## ‐> 'nbh' = 'nbh' mother 
  ## ‐> 'edm' = 'edm' mother 
  ## ‐> 'edu' ~ 'edu' mother 
 
  mothers <‐ subset(pop, age == 2)  ## all adults 
  mothers_id <‐ pop$id %in% mothers$id 
 
  newborn <‐ data.frame( 
    id  = seq(from = max(pop$id) + 1, length = nBirths),  # id 
    age = 0,                                              # age group 
    nbh = pop$nbh[mothers_id], 
    edm = pop$edu[mothers_id], 
    edu = NA, 
    hlt = NA 
  ) 
 
  ## newborn gets 'edu' from mother with certain probability 
  newborn$edu[newborn$edm == 0] <‐ rbinom(sum(newborn$edm == 0), 1, .3) 
  newborn$edu[newborn$edm == 1] <‐ rbinom(sum(newborn$edm == 1), 1, .7) 
 
  return(rbind(pop, newborn)) 
} 
 
ageing <‐  
function(x, change_nbh){ 
  ## increase age group of each individual 
  x$age <‐ x$age + 1 
 
  ## change in 'edu' in childhood 
  ## improve/loose edu ~ average edu nbh 
  n_nbh_0 <‐ x$age == 1 & x$nbh == 0 
  n_nbh_1 <‐ x$age == 1 & x$nbh == 1 
  x$edu[n_nbh_0] <‐ 
    rbinom(sum(n_nbh_0), 1, sum(x$edu == 1 & x$nbh == 0) / sum(x$nbh == 0)) 
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  x$edu[n_nbh_1] <‐ 
    rbinom(sum(n_nbh_1), 1, sum(x$edu == 1 & x$nbh == 1) / sum(x$nbh == 1)) 
 
  if (change_nbh){ 
    ## change in 'nbh' in adulthood 
    ## low edu & good nbh ‐> move to bad nbh 
    ## hgh edu & bad nbh ‐> move to good nbh 
    n_edu_0 <‐ x$age == 2 & x$edu == 0 & x$nbh == 1 
    n_edu_1 <‐ x$age == 2 & x$edu == 1 & x$nbh == 0 
    x$nbh[n_edu_0] <‐ rbinom(sum(n_edu_0), 1, .2) 
    x$nbh[n_edu_1] <‐ rbinom(sum(n_edu_1), 1, .8) 
  } 
 
  ## alcohol use in childhood 
  ## p ~ edu, edm, nbh 
  age_1 <‐ x$age == 1 
  x$hlt[age_1] <‐ 
    rbinom(sum(age_1), 
           1, 0.4 * x$edu[age_1] + 0.4 * x$edm[age_1]) 
 
  ## alcohol use in adulthood 
  ## p ~ edu, nbh, hlt 
  age_2 <‐ x$age == 2 
  x$hlt[age_2] <‐ 
    rbinom(sum(age_2), 
           1, 0.4 * x$edu[age_2] + 0.4 * x$hlt[age_2]) 
 
  return(x) 
} 
 
deaths <‐ 
function(x){ 
  ## remove individuals in age group '2' 
  x <‐ subset(x, x$age < 3) 
  return(x) 
} 
 
 
##= function to summarize model run ========================================= 
summarize <‐ 
function(x){ 
  table(x$nbh, x$hlt)[, 2] / table(x$nbh[!is.na(x$hlt)]) 
} 
 
##= function to run simulation model ======================================== 
f <‐ 
function(samples, n, change_nbh = TRUE){ 
  x <‐ initiate(n) 
  for (i in seq(3)){ 
    x <‐ ageing(x, change_nbh) 
    x <‐ deaths(x) 
    x <‐ births(x, n) 
  } 
  y <‐ as.numeric(summarize(x)) 
 
  for (i in seq(samples)){ 
    x <‐ ageing(x, change_nbh) 
    x <‐ deaths(x) 
    x <‐ births(x, n) 
    y <‐ rbind(y, as.numeric(summarize(x))) 
  } 
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  return(invisible(list(x, y))) 
} 
 
## function to plot simulations over time =================================== 
plot_sim <‐ 
function(x){ 
  win.graph(4.5, 3.5) 
  par(mar = c(4, 4, 0, 0) + .5) 
  plot(c(0, 100), c(0, 1), type = "n", las = 1, 
       xlab = "time (years)", ylab = "prevalence alcohol abuse") 
  legend("topright", legend = c("nbhA", "nbhB"), 
         lty = 1, col = seq(2), cex = .8) 
  nbhA <‐ nbhB <‐ numeric() 
  for (i in seq(length(x) / 2)){ 
    nbhA <‐ cbind(nbhA, x[2, i][[1]][, 1]) 
    nbhB <‐ cbind(nbhB, x[2, i][[1]][, 2]) 
    lines(x[2, i][[1]][, 1], col = rgb(0, 0, 0, .1), lty = 1) 
    lines(x[2, i][[1]][, 2], col = rgb(1, 0, 0, .1), lty = 1) 
  } 
  lines(rowMeans(nbhA), lwd = 2, col = 1) 
  lines(rowMeans(nbhB), lwd = 2, col = 2) 
} 
 
## situation without feedback loop ========================================== 
rep <‐ 50 
a <‐ replicate(rep, f(samples = 100, n = 100, change_nbh = FALSE)) 
plot_sim(a) 
 
## situation with feedback loop ============================================= 
rep <‐ 50 
a <‐ replicate(rep, f(samples = 100, n = 100, change_nbh = TRUE)) 
plot_sim(a) 
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Table A2. Description of selected studies. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

Microsimulation 

Microsimulation 

model 

Rural/urban, 

income, 

employment 

Access to GP Australia X 
  

X 
   

X 
  

X [19] 

Microsimulation+ 

decomposition 

Household 

size, income 

Number of 

GP/specialist visits 
France X 

  
X 

   
 

  
X [20] 

Microsimulation 

model 

Income, 

expenditures, 

taxes 

Delivery of health 

care 
UK X X X X 

   
 

   
[21] 

Simulation model 

Race, 

education, 

employment, 

marital status 

Preterm birth, low 

birth weight, 

maternal binge 

drinking 

USA 
  

X X 
   

 X 
 

X [22] 

Spatial 

microsimulation 

model 

Gender, marital 

status, 

economic 

activity, 

occupational 

social class 

Mental health 

surveillance 
England X 

  
X 

   
X 

   
[23] 

Microsimulation+ 

decomposition 

Household 

expenditures, 

education, 

occupational 

activity, marital 

status, 

insurance 

coverage, place 

of residence 

Utilization of 

health services 
Palestin X 

  
X 

   
X 

   
[24] 

Discrete 

simulation model 

Ethnicity, 

insurance 

Access to health 

care 
USA X X X X 

   
 

   
[25] 
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Table A2. Cont. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

Microsimulation 

Spatial 

microsimulation+ 

location-

allocation model 

Census output 

area 

Access to antenatal 

care 
UK X X 

 
X 

   
X X 

 
X [26] 

Roy's model of 

selectivity 
Insurance Medical utilization USA X X X X 

   
X 

 
X 

 
[27] 

Microsimulation Education Mortality USA X X X X  X [28] 

Spatial 

microsimulation 

SES, 

geographic 
Health status  UK X X X X 

 
X 

 
X 

   
[29] 

Agent-based 

Agent-based 

model 

Residential 

segregation 
Diet USA X X X X 

 
X X X X 

 
X [30] 

Agent-based 

model 
SES Walking USA X X X X X X X X 

  
X [31] 

Microsimulation 

model 
Salary, income

Influenza 

vaccination and 

transmission 

USA X X X X X 
  

X 
  

X [32] 

Sugarscape model Wealth Mortality (Iran) X X X X  X    X X [33] 

Network 

Network 

simulation model 

Ethnicity, 

social network 
HIV transmission USA X X X X X 

  
 

  
X [34] 

State-transition 

Medicare 

demonstration 

Ethnicity, 

education, 

public 

assistance, 

poverty, 

unemployment

Primary health care 

payment 
USA X X  X    X   X [35] 

 
Ethnicity, 

insurance 

Ambulatory health 

care utilization 
US X X     X    X [36] 
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Table A2. Cont. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

State-transition 

System dynamics 

model 
Insurance Disease or injury USA X X 

    
X  X X X [37] 

Individual-based 

network model 
Poverty 

Infectious disease 

transmission 
(USA) X X X X X 

 
X  

 
X X [38] 

State-transition 

model 
Race 

Breast cancer 

outcomes 

incidence and 

mortality 

USA X X X X 
   

 X 
 

X [39] 

Microsimulation 

model 
Race 

Colorectal cancer 

rate 
USA X X X X 

   
 X 

 
X [40] 

Markov state-

transition model 
Race 

Treatment of 

hypertension, 

hyperglycemia, 

hyperlipidemia 

(cost-effectiveness) 

adult X X X 
    

 
  

X [41] 

Mathematical 

transmission 

model 

Health system 

resources 

Mortality from 

pandemic influenza 

Cambodia, 

Indonesia, 

Lao PDR, 

Taiwan, 

Thailand 

and 

Vietnam 

X X X 
    

X 
  

X [42] 

Markov model + 

decomposition 
Race Obesity prevalence USA X X X X 

   
X 

   
[43] 

Transmission 

model 
Gender 

HIV/AIDS 

transmission 

African 

countries 
X X X 

    
X 

   
[44] 

Microsimulation 

model 
Race, gender 

Colonoscopic 

screening 
USA X X X X 

   
 X 

 
X [45] 

Simple 

deterministic 

mathematical 

model 

Race, gender 

Sexually 

transmitted 

infections 

incidence 

UK X 
  

X X 
 

X  X 
 

X [46] 

Disease 

simulation model 
Race Cancer control USA X X X X 

   
 

 
X X [47] 
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Table A2. Cont. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

State-transition 

System dynamics 

model 

Ethnicity, 

immigration 

status, gender, 

income, 

housing, social 

cohesion 

Chronic disease, 

disability, and 

mortality rate 

Canada X X 
   

X X  
  

X [48] 

Discrete-time 

Markov-chains + 

microsimulation 

Race, 

education, 

marital history 

Remaining years of 

life and proportion 

of remaining years 

with disability 

USA 
 

X X X 
   

 
   

[49] 

Microsimulation 

model 
Race 

Breast cancer 

mortality rate 
USA X X X X 

   
 X 

 
X [50] 

State-transition 

model 
Race, gender Life-expectancy USA X X X X 

   
 

  
X [51] 

State-transition 

simulation model 
SES 

Lung cancer 

incidence 
UK X X 

 
X 

 
X 

 
 

  
X [52] 

SIRS model Region 
Infectious disease 

transmission 
(UK) X X X 

    
X 

  
X [53] 

State-transition 

model 
Education 

Lung cancer 

incidence 
Denmark X X 

 
X 

 
X 

 
 

  
X [54] 

Dynamics 

systems 
Region Health, mortality (Spain) X X 

     
X 

  
X [55] 

Optimization 

Optimal 

allocation model 
Region HIV prevention USA X 

      
X X X X [56] 

Location- 

allocation model 
Region 

Access to organ 

transplantation 
Italy X 

      
X X X X [57] 

Catchment 

population 

formulae 

Region 
Access to the 

health care system 
Australia X 

 
X 

    
X X 

 
X [58] 

Location- 

allocation model 

Geographic 

location 

Access to health 

services 
India X 

  
X 

   
X 

 
X X [59] 
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Table A2. Cont. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

Optimization 

Spatial interaction 

model 
Region 

Acute-care hospital 

utilization, 

accessibility 

Australia X X X 
    

X 
  

X [60] 

Spatial 

mathematical 

model 

Region 
Access to 

antiretrovirals 

South 

Africa 
X 

      
X 

 
X X [61] 

Deterministic 

epidemic model 
Province 

Access to male 

circumcision 

South 

Africa 
X 

      
X 

 
X X [62] 

Mathematical 

programming 

model  

Program 

resources 

Access to health 

care resources 
(USA) X 

      
 

 
X X [63] 

Goal programming 

model 
Region 

Nurses for 

maternal and child 

health services 

China X X 
     

X 
  

X [64] 

Resource 

allocation 

formulae 

Region 
Patterns of health 

care delivery 
UK X 

      
X 

 
X X [65] 

Formula for 

resource allocation 
Local districts 

Use of hospital 

services 
Sweden X 

 
X X 

   
X 

  
X [66] 

Resource 

allocation model 

Zone of 

residence 

Access to public 

service facilities 
USA X 

 
X 

    
X X 

 
X [67] 

Capacity-distance 

model 

Commuting 

time 
Access to dialysis Japan X 

  
X 

 
X 

 
X 

 
X X [68] 

Risk assessment 

Stochastic 

multimedia 

exposure model 

Region Exposure to metals France X X X X 
   

X 
 

X X [69] 

Energy balance 

model 

Income, 

poverty, 

education, 

ethnicity, 

geographic 

location 

Exposition to heat 

stress 
USA X X X X 

   
X X 

  
[70] 
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Table A2. Cont. 

Name of the 

model 

Socioeconomic 

determinant(s)
Health outcome(s) Country Multilevel Dynamic Stochastic

Heterogeneous 

entities 

… 

interacting

… 

adapting

Feed-

back loop
Spatial

Validated 

(predictive)

Framework 

created 

Intervention/ 

scenario test 
Ref. 

Risk assessment 

Environmental 

equity rule 
Ethnicity 

Environmental risk 

on human health 
USA X 

      
X 

  
X [71] 

Source-receptor 

matrix 

Geographic 

location 
Premature death USA X 

 
X 

    
X 

 
X X [72] 

Projection 

Population 

projection model 
Gender Mortality, birth China X X 

 
X 

   
 

  
X [73] 

Mathematical 

modelling 

Geographic, 

economic  

sociocultural 

factors 

Child mortality, 

stunting 
14 X 

  
X 

   
 

 
X X [74] 

Game 

Evolutionary 

variational 

inequality model 

Perception of 

vaccine 
Vaccination (Canada) X X X X X X 

 
X 

  
X [75] 

Stackelberg game 
Payment 

mechanism 

Utilization of 

hospital services 
Zambia X 

      
 

  
X [76] 

Behavioral/stress 

Behavioral model 

+ decomposition 

Social class 

based on 

occupation 

Mortality, lifestyle 
Great 

Britain 
X X X X 

 
X 

 
X 

   
[77] 

Stress model 
Gender, 

education 

Self-rated health 

status 
any X X X X      X  [78] 

Diffusion 

Mortality decline 

diffusion model 

Geographic 

location 
Mortality (Israel) X X 

 
X 

   
X 

   
[79] 
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