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Abstract: Thromboembolic conditions are the most common cause of death in developed countries.
Anticoagulant therapy is the treatment of choice, and heparinoids and warfarin are the most adopted
drugs. Sulphated polysaccharides extracted from marine organisms have been demonstrated to
be effective alternatives, blocking thrombus formation by inhibiting some factors involved in the
coagulation cascade. In this study, four acidic glycan fractions from the marine sponge Sarcotragus
spinosulus were purified by anion-exchange chromatography, and their anticoagulant properties were
investigated through APTT and PT assays and compared with both standard glycosaminoglycans
and holothurian sulphated polysaccharides. Moreover, their topographic localization was assessed
through histological analysis, and their cytocompatibility was tested on a human fibroblast cell line.
A positive correlation between the amount of acid glycans and the inhibitory effect towards both
the intrinsic and extrinsic coagulation pathways was observed. The most effective anticoagulant
activity was shown by a highly charged fraction, which accounted for almost half (about 40%) of the
total hexuronate-containing polysaccharides. Its preliminary structural characterization, performed
through infrared spectroscopy and nuclear magnetic resonance, suggested that it may consist of a
fucosylated chondroitin sulphate, whose unique structure may be responsible for the anticoagulant
activity reported herein for the first time.

Keywords: fucosylated chondroitin sulphate; marine invertebrates; anticoagulant activity; sustainable
sponge culture; Porifera

1. Introduction

Coagulation, also known as clotting, is a dynamic biochemical process responsible for
the healing and prevention of bleeding occurring after blood vessel injury [1]. It involves
the activation of a series of coagulation factors interacting in a precise sequence to form a
clot at the site of injury. This process is essential for the survival of organisms, as it prevents
excessive blood loss and maintains blood vessel integrity [2]. The balance between factors
that promote and inhibit the formation of the clot is called haemostasis, a term that literally
means “stop of bleeding” and comes from the two ancient Greek words haeme and stasis,
which stand for blood and to stop, respectively [3].
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The first theories describing blood coagulation processes date back to the 1960s, when
the hypotheses of two theories called the “waterfall” and “cascade” were proposed by
Davie and Ratnoff [4], as well as by Macfarlane [5], explaining how a series of inactive
enzymes can be activated one after the other, like a cascade, ultimately leading to the
formation of a blood clot [6].

The coagulation process can be divided into three main pathways: the extrinsic, the
intrinsic, and the common pathway. The first one is activated by tissue factor (TF), abun-
dantly expressed by both adventitial cells surrounding blood vessels and subendothelial
tissues [7] and exposed as a consequence of tissue damage, which binds with and activates
factor VII [8], finally leading to the formation of a fibrin clot. On the other hand, the intrinsic
pathway, also known as the contact pathway, is triggered by negatively charged surfaces
coming into contact with factor XII, which is converted into its active conformation and
can, in turn, activate factor XI and sequentially factor IX, which binds with factor VIII [9,10].
Both pathways converge on the common pathway by activating factor X, which forms
a complex with its cofactor (factor V), tissue phospholipids, platelet phospholipids, and
calcium, thus creating a stable clot [2].

All these events are tightly regulated to prevent excessive clotting, which can lead to
life-threatening conditions such as deep vein thrombosis, pulmonary embolism, stroke,
and other complications associated with vascular-related diseases, which represent the
most common cause of death in developed countries [11–13]. At the same time, it is also
important to maintain adequate clotting to prevent excessive bleeding, particularly during
surgery or injury [14].

The identification of new natural molecules with anticoagulant activity is a key issue,
as it can lead to the development of new drugs able to prevent excessive clotting without
increasing the risk of bleeding and avoiding other side effects. Currently, the most widely
used drugs for therapeutic purposes are warfarin, heparin (Hep), and Hep derivatives,
whose ability to prevent excessive coagulation is effective but induces some considerable
collateral effects, such as nausea, vomiting, abdominal pain, thrombocytopenia, significant
haemorrhagic episodes, bruising, osteoporosis, and changes in lipid metabolism [15–17].
Furthermore, since clinically used Hep and its low-molecular-weight forms are commonly
of porcine or bovine origin, some patients may not be prone to its use, for example, due to
religious beliefs or nutritional habits. To overcome all these problems, alternative molecules
purified from different sources have been tested so far, with promising results [9,18–20].

In this context, it has been widely reported that marine organisms are a rich source
of bioactive compounds, potentially useful for various medical applications. Among
them, sulphated polysaccharides show interesting biological properties similar to those
reported for mammalian glycosaminoglycans (GAGs) [21], including anticoagulant [20],
antimalarial [22], antitumoral [23], and anti-HIV-1 [24], as well as anti-inflammatory [25],
activities. More in detail, anticoagulant properties have been reported for fucoidan purified
from holothurians [26] and seaweeds [27,28], as well as for fucosylated chondroitin sulphate
(FCS), which, as yet, has been found only in the holothurians’ body wall [29,30]. The latter,
by selectively interfering with the intrinsic coagulation pathway with negligible bleeding
risk if compared to heparinoids and warfarin, represents a very promising alternative to
commonly used anticoagulant drugs [31].

Other marine invertebrates, such as Porifera, have been proven to produce a wide
array of bioactive compounds that are potentially useful for both pharmaceutical and
commercial applications [9,32–35].

A wide diversity of sulphated polysaccharides is synthesized by different species of
marine sponges; their structural heterogeneity and complexity, concerning the molecular
masses, the relative proportions of constituent sugars, and especially the sulphation degree,
have been related to their biological role as cell adhesion factors involved in species-specific
cell re-aggregation [36–43].

The usefulness of sponge acid polysaccharides for medical applications in the context
of cardiovascular diseases has not been investigated so far.
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This study focused on the proteolytic extraction of acidic glycans from the marine
sponge Sarcotragus spinosulus, their purification by anion-exchange chromatography, and
the evaluation of their anticoagulant activity. Furthermore, their distribution in the extra-
cellular matrix (ECM) was determined by histological analysis, and their cytocompatibility
was determined on a human skin fibroblast cell line.

Corresponding polysaccharide fractions were obtained by the same purification proce-
dures from the body wall of Holothuria tubulosa, one of the most abundant Mediterranean
sea cucumber species, and were used, in this study, as a positive control for coagulation
assays, since it has been widely demonstrated that some hexuronate-containing glycans,
particularly sulphated fucoidans [44] and FCSs [45,46] extracted from several holothurian
species, represent efficient inhibitors of the coagulation cascade. The structural characteri-
zation of the sponge acidic glycan fraction with the highest anticoagulant potential was
assessed via FT-IR and NMR.

2. Results and Discussion

All data collected for Sarcotragus spinosulus were compared with those obtained from
the marine invertebrate Holothuria tubulosa, for which the presence of acidic polysaccharides
able to interfere with the coagulation cascade has been reported by various studies [19,26].

2.1. Histological Analysis
2.1.1. Sarcotragus spinosulus

The sponge body, lined by the epidermis, was characterized by two districts, i.e., an
outer district (ectosome) rich in canals and cavities (aquiferous system) and an inner district
(endosome/choanosome) with choanocyte chambers, cavities, and canals. Both districts
were filled by extracellular matrix (ECM) harbouring different types of isolated cells. The
ECM layout was supported by densely structured collagenic skeletal networks (filamentous
and fibrous) and scanty exogenous mineral structures.

The ECM staining with Alcian blue highlighted varying intensities of blue-turquoise in
both body districts, where cell nuclei were pinkish. In particular, (i) the subepidermis area
and (ii) the outlines of cavities and canals (aquiferous system) were intensely blue-turquoise
(Figure 1). At the inner district (endosome/choanosome), the ECM was blue-turquoise
as well but was somewhat less intensely coloured than that of the ectosomal district
(Figure 1A,C). The skeletal networks were made of light blue to uncoloured filaments and
light pinkish to uncoloured fibres, the latter sometimes with light blue-turquoise areas
(Figure 1A,E).

These results suggest that the ECM of S. spinosulus is particularly rich in acidic glycans,
confirming data from the literature [47]. Although sponges are the most basal and oldest
metazoans, their ECM, similarly to that of higher taxa, is mostly composed of collagen
and proteoglycan-like molecules, together with minor amounts of structural proteins.
According to the recent literature, the poriferan polysaccharidic chains of the proteoglycan-
like molecules differ from classical mammalian glycosaminoglycans [42,48].

2.1.2. Holothuria tubulosa

The sea cucumber body wall district was characterized by (i) an epidermis covered
by a thin acellular cuticle and (ii) a dermis connective tissue with few cells embedded in
an extremely abundant ECM occupying most of the wall’s thickness (Figure 2A). Below
the dermis, two muscular layers internally lined the perivisceral coelom (body cavity),
i.e., a circular muscle layer and a layer composed of five pairs of longitudinal muscles
(Figure 2A,D). The body wall was crossed by the pedicellar canals of the aquiferous vascular
system (Figure 2A,C). The cuticle and dermis were intensely blue-turquoise coloured on
staining with Alcian blue (Figure 2). The epidermis was less intensely coloured (Figure 2B).
The ECM delimiting the aquiferous pedicellar canals was slightly more coloured than the
surrounding dermis ECM (Figure 2A,C). Also, the ECM compact layer supporting the
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circular muscles was more coloured than the surrounding dermis (Figure 2A,D). A light
blue turquoise stain was evident within the circular and longitudinal muscles (Figure 2C,D).

The abundant presence of polysaccharides in the ECM of sea cucumber body wall
previously reported [49,50] has been confirmed in the present study, as evidenced by the
intense blue-turquoise staining, indicative of a high amount of acidic glycans in this body
district of holothurians.
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Figure 1. Sarcotragus spinosulus (Porifera, Irciniidae) as a model of body plan architecture in a
marine basal Metazoa. (A) Acidic glycans’ topographic distribution (evidenced by Alcian blue
staining) in the ubiquitous ECM is highlighted as a range of light blue to blue-turquoise shades
at the level of both outer (ectosome, namely ect) and inner (endosome/choanosome, namely cho)
body districts. (B) Outer body district (ectosome) has a dermal membrane compact layout (intensely
blue-turquoise, red asterisk) and the less-coloured underlying layer is rich in canals and cavities
(inner ectosome). Cells with nuclei are pinkish spots. (C) Intensely blue-turquoise shades show the
aquiferous system (aq sys) outlines (cavities and canals, endosome/choanosome) surrounding a
less-coloured ECM. Cells with nuclei are pinkish spots. (D) Choanocyte chambers within a light blue
ECM (endosome/choanosome). (E) Acidic glycans within the skeletal fibres (red arrow).
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Figure 2. Holothuria tubulosa (Echinodermata, Holothuriidae) as a model of body wall architecture
in a complex marine invertebrate (Metazoa). (A) Architecture of the body wall district. Compact
dermis with extremely abundant ECM occupying most of the wall’s thickness. (B) Intensely blue-
turquoise-coloured thin acellular cuticle and dermis on staining with Alcian blue. The epidermis
was less intensely coloured. (C) Outline of a pedicellar canal (aquiferous vascular system) is more
coloured than the surrounding body wall dermis ECM. (D) Circular muscles supported by a compact,
coat-like ECM are more coloured than the surrounding dermis. A light blue-turquoise stain is evident
in circular and longitudinal muscles. Epidermidis (e), dermis (d), aquiferous vascular system (avc),
circular muscles (cm), longitudinal muscles (lm).

2.2. Purification and Biochemical Analyses

Following papain extraction from the ECM of both species, four polysaccharide frac-
tions were obtained through anion-exchange chromatography by increasing the ionic
strength stepwise (0.5 M, 1.0 M, 1.5 M, and 2.0 M LiCl concentration). Each fraction
was analysed for its hexuronate content and subjected to qualitative analysis using elec-
trophoretic techniques. For the sake of clarity, each of the fractions purified from both
marine invertebrates was assigned an acronym composed of the initials of the systematic
name and number, from 1 to 4, corresponding to the sequential elution order.

2.2.1. Quantitative Analysis

All purified fractions were quantified using the carbazole assay as described beyond,
yielding positive results for each fraction eluted from all specimens. As reported in Table 1,
the total yield of hexuronate-containing glycans isolated from S. spinosulus was 2.234 mg/g
dry weight. Concurrently, considerable variability in the content of uronic acid (UA) was
registered for each fraction purified. In particular, the most abundant glycan fractions are
represented by Ss3 (43.78%) and Ss1 (40.15%).
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Table 1. Yield of each purified fraction based on the weight of dehydrated delipidated tissue (DDT)
from Sarcotragus spinosulus (Ss) and Holothuria tubulosa (Ht). Data are reported as mean ± standard
deviation (* n = 18, § n = 7).

Fraction Total Yield
(mg UA/g DDT)

Yield
(mg UA/g DDT)

Fraction % over Total
Glycans Purified

Ss1 *

2.234

0.897 ± 0.018 40.15

Ss2 * 0.289 ± 0.011 12.94

Ss3 * 0.978 ± 0.072 43.78

Ss4 * 0.070 ± 0.005 3.13

Ht1 §

5.068

0.332 ± 0.010 6.55

Ht2 § 0.226 ± 0.017 4.46

Ht3 § 4.400 ± 0.115 86.82

Ht4 § 0.110 ± 0.010 2.17

On the other hand, the total amount of hexuronate-containing glycans extracted from
the holothurian body wall was more than double the amount from sponge samples and
mainly represented by the Ht3 fraction (86.82%).

Overall, quantitative data indicated that the distribution of hexuronate-containing
polysaccharides in the S. spinosulus fractions was different compared to H. tubulosa frac-
tions, with the high-charge and low-charge molecular species being in similar proportions
(Table 1).

2.2.2. Electrophoretic Profiles

Preliminary structural characterisation of hexuronate-containing glycan fractions was
performed through comparative analysis of electrophoretic profiles on a polyacrylamide gel.

Carbohydrate electrophoresis (C-PAGE) allows for the separation of polysaccharides
based on their molecular masses; moreover, the treatment with the cationic carbocyanine
dye Stains-all stains polysaccharides with specific colours, which turn from blue to purple
to yellow as the degree of sulphation increases [51].

All acidic glycan fractions purified from both marine invertebrates consisted of a wide
range of molecular weight polysaccharides; each lane was somewhat smeared, just as is
evident for standard polysaccharides (Figure 3).

Moreover, thanks to the metachromasia phenomenon caused by the dye used, it could
be appreciated that different eluted fractions exhibited different degrees of sulphation,
which increased together with the ionic strength of the elution buffer used.

By comparing the colours of sponge fractions lanes with those of standard glycans, it
was possible to perceive that Ss1 showed a colour shade between that of the non-sulphated
high- and low-molecular-weight hyaluronic acid and fucoidan, thus suggesting a very
low sulphation degree. Moreover, fraction Ss2 showed a profile similar to the fucoidan
standard, while Ss3 and Ss4 exhibited a more purplish colour with respect to fucoidan
but less yellowish than chondroitin sulphate (CS), dermatan sulphate (DS), heparin (Hep),
and enoxaparin (E-Hep), suggesting that they were composed of less sulphated glycans
compared to standard glycosaminoglycans. Overall, by comparing corresponding fractions
obtained from S. spinosulus and H. tubulosa, we detected similar patterns for Ss3 and Ht3
only, and the holothurian polysaccharide was considerably more sulphated.
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Figure 3. Electrophoretic profiles of standard polysaccharides (high-molecular-weight hyaluronic
acid (HMW-HA), low-molecular-weight hyaluronic acid (LMW-HA), fucoidan, chondroitin sulphate
(CS), dermatan sulphate (DS), heparin (Hep), and enoxaparin (E-Hep)) and purified fractions from
Sarcotragus spinosulus (Ss1–Ss4) and Holothuria tubulosa (Ht1–Ht4).

2.2.3. In Vitro Cytocompatibility Assessment

A preliminary evaluation of the cytocompatibility of each hexuronate-containing
glycans fraction purified from S. spinosulus was performed herein, for the first time, on
human fibroblasts, well known to be a model for cell proliferation and adhesion studies
to evaluate their potential side effects on cellular metabolic activity. Reduction potential,
positively correlated with cell viability, was evaluated by using PrestoBlue™ reagent
(Waltham, MA, USA) in triplicate for each condition at each timepoint.

Overall, the obtained data showed that all hexuronate-containing fractions purified
from S. spinosulus did not have remarkable effects on cell viability or proliferation, as no sig-
nificant changes in reducing potential were observed for any of the assayed concentrations,
after 96 and 168 h of incubation, with respect to untreated controls (Figure 4).
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Figure 4. Metabolic activity of human fibroblast cell line incubated with purified fractions from
Sarcotragus spinosulus, measured after 4 and 7 days (panels (A) and (B), respectively). Each eluate
was tested at different concentrations, ranging from 0.001 µg/mL to 10 µg/mL, and fluorescence was
measured after incubation with PrestoBlue™ reagent.
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2.3. Anticoagulant Activity of Purified Glycan Fractions

The acidic glycans purified from S. spinosulus were herein assessed for their potential
activity, in vitro, towards the coagulation cascade. The ability of purified fractions from
S. spinosulus to prolong the clotting time for both the intrinsic and extrinsic pathway
of the coagulation cascade was evaluated using activated partial thromboplastin time
(APTT) and prothrombin time (PT) assays, respectively, and compared with standard
glycosaminoglycans (GAGs) (Hep, E-Hep, CS + DS, and CS) and H. tubulosa fractions,
assuming both Hep and E-Hep as positive controls.

2.3.1. Inhibition of the Intrinsic Pathway of Coagulation

Figure 5 reports the effects of purified fractions from S. spinosulus (Ss1–Ss4), com-
pared to both standard GAGs and H. tubulosa (Ht1–Ht4) glycans, on the intrinsic cascade
of coagulation. As expected, data concerning standard GAGs were consistent with the
literature, confirming that Hep, together with its low-molecular-weight fragments, were
the most effective compounds able to inhibit clot formation [52], whereas low or no effects
were evidenced for both CS + DS and CS, as previously described [53]. Regarding the four
sponge fractions, no activity was evidenced for the first one, whereas Ss2, Ss3, and Ss4
showed variable inhibitory effects. More in detail, the Ss2 fraction showed a limited effect
at 25 µg/mL, whereas Ss3 and Ss4 fractions were found to be the most effective inhibitors
of the intrinsic pathway at 10–25 µg/mL and 25 µg/mL, respectively, with results between
those recorded for Hep and E-Hep. By comparing each of the fractions obtained from the
two species, those from holothurian samples were more effective in inhibiting coagulation.
Indeed, Ht2, Ht3, and Ht4 had remarkable effects, as their inhibitory potential was higher
than that of E-Hep although lower than unfractionated Hep, in agreement with the data
reported elsewhere [19,26].
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reported as mean ± SD.

As far as we know, the obtained data indicated, for the first time, that acidic polysac-
charides from marine sponges, similar to those extracted from sea cucumbers, can interfere
selectively with the contact pathways, even though it is with a lower activity compared
to Hep.

2.3.2. Inhibition of the Extrinsic Pathway of Coagulation

Figure 6 reports the effects of both standard GAGs and purified fractions from sponge
(Ss1–Ss4) and holothurian (Ht1–Ht4) on the extrinsic cascade of coagulation. Among the
standard GAGs, only Hep showed inhibitory activity, whereas, as expected, no significant
effects on the PT assay were evidenced for E-Hep due to the low concentrations used, as
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indicated by the manufacturer and stated elsewhere [54], and for CS + DS and CS. With
regard to the purified fractions, only Ss3 and Ss4 were found to be able to slightly extend
the PT, with an activity comparable to that observed for Ht3 and Ht4, in agreement with
previous papers reporting that holothurians’ most negatively charged fractions have an
inhibitory effect, although reduced with respect to Hep, on the extrinsic pathway [55–57].
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All these results were consistent with the literature, indicating that sea cucumbers
contain FCS with strong anticoagulant activity, particularly on the intrinsic pathway [58].
The anticoagulant properties that we have described for some purified fractions from
S. spinosulus may be due to peculiar structural features including saccharide composition,
chain length, sulphation pattern, and glycosidic bonds.

Since the fraction that demonstrated to be more effective in inhibiting the formation of
the clot, towards both the intrinsic and extrinsic pathway, was Ss3, we decided to elucidate
its structure by means of spectroscopic analyses.

2.4. Structural Characterization via FT-IR and NMR Spectroscopy
2.4.1. Fourier Transform Infrared (FT-IR) Spectroscopy

FT-IR spectra of the fractions showing the most remarkable anticoagulant activity
from both S. spinosulus and H. tubulosa, and of CS and fucoidan standards, were collected
between 400 cm−1 and 4000 cm−1, as reported in Figure 7A,B. The different signals obtained
from standard polysaccharides and the purified fractions showed a high percentage of
matching. In fact, a significant absorbance at around 570 cm−1, 1025 cm−1, 1220 cm−1, and
1370 cm−1 was detected for every sample, corresponding, respectively, to S-O stretching
vibration [59], C-O and C-C stretching vibrations of the pyranose ring, demonstrated to
be common to all polysaccharides [60,61], symmetric stretching of S=O [62], and uronic
acid O-C=O bending or, alternatively, CH3 group bending of L-fucopyranosyl [63,64]; all
these signals are distinctive of polysaccharides, thus proving that the adopted method was
effective for the purification of acidic glycans from different sources.

Signals at around 720 cm−1, 930 cm−1, 1130 cm−1, 1160 cm−1, 1417 cm−1, and
2945 cm−1 were collected, corresponding to C-H bending, to the presence of 3,6-anhydro-D-
galactose [60], to C-C-C symmetric vibrations of glycosidic linkage cycles [26], to a C-O-C
glycosidic linkage group [64], to O-C=O uronic acid presence [26], and to C-H stretching
vibrations [56], respectively. All these characteristic absorptions suggest that the backbone
of the glycans present in the third fraction of both S. spinosulus and H. tubulosa is similar
to CS since they all contain glucuronic acid and that the differences observed may be due
to the presence of fucosyl branches in Ss3 and Ht3 polysaccharides, as suggested by the
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signal detected at 962 cm−1, corresponding to both asymmetric and symmetric vibrations
of methenyl groups in fucose residues, as reported by previous studies [65].
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As highlighted by some signals recorded at 677 cm−1, as well as in the region of
800–840 cm−1, the third fraction from both S. spinosulus and H. tubulosa contains polysac-
charides with a high degree of sulphation, in addition to containing a secondary amine, as
evidenced by the signal recorded at 1544 cm−1 and 1555 cm−1, for Ss3 and Ht3, respectively,
corresponding to C-N vibrations of the N-acetyl group [64].

Overall, the analysis of acquired spectra, corroborated by both FT-IR and NMR data
from the literature, allowed us to determine characteristic absorption bands, likely cor-
responding to the FCS polysaccharide chain, consisting of the repeating trisaccharide
unit N-Acetyl-D-glucosamine and D-glucuronic acid backbone branched with L-Fucose,
previously reported to be exclusive to the body wall of several sea cucumber species. There-
fore, FT-IR data suggest the presence of the branched acidic glycan FCS in the complex
three-dimensional dynamic network that surrounds and provides structural support to
sponge cells.

2.4.2. Nuclear Magnetic Resonance (NMR) Analysis

A preliminary analysis was conducted by proton (1H) nuclear magnetic resonance
(NMR). Recorded signals indicated that the purified fractions Ss3 and Ht3 showed char-
acteristic signals of fucose (Fuc), N-Acetylgalactosamine (GalNAc), and glucuronic acid
(GlcA) (Figure 8).

More in detail, signals recorded at δ 1.21 ppm were assigned to unsulphated Fuc [66,67],
at δ 2.00 ppm to GalNAc [67–69], and at δ 3.59 to non-substituted GlcA residues [66].

Moreover, the Ss3 spectrum presented a further peak at δ 3.39, corresponding to H-2
of the non-substituted GlcA residues [66], thus confirming the presence of hexuronic acid
in the structure of this polysaccharide fraction.

No information on the branching, sulphation degree, or molar ratio of monosaccha-
rides was obtained from the structural analyses performed. Although data recorded by
NMR confirmed results obtained by infrared spectroscopy, indicating that Ss3 and Ht3
polysaccharides share common structural features, these findings deserve further confirmation
due to the great heterogeneity and complexity described for poriferan ECM polysaccharides.



Mar. Drugs 2024, 22, 139 11 of 19

Mar. Drugs 2024, 22, x FOR PEER REVIEW 11 of 20 
 

 

As highlighted by some signals recorded at 677 cm−1, as well as in the region of 800–
840 cm−1, the third fraction from both S. spinosulus and H. tubulosa contains polysaccha-
rides with a high degree of sulphation, in addition to containing a secondary amine, as 
evidenced by the signal recorded at 1544 cm−1 and 1555 cm−1, for Ss3 and Ht3, respectively, 
corresponding to C-N vibrations of the N-acetyl group [64]. 

Overall, the analysis of acquired spectra, corroborated by both FT-IR and NMR data 
from the literature, allowed us to determine characteristic absorption bands, likely corre-
sponding to the FCS polysaccharide chain, consisting of the repeating trisaccharide unit 
N-Acetyl-D-glucosamine and D-glucuronic acid backbone branched with L-Fucose, pre-
viously reported to be exclusive to the body wall of several sea cucumber species. There-
fore, FT-IR data suggest the presence of the branched acidic glycan FCS in the complex 
three-dimensional dynamic network that surrounds and provides structural support to 
sponge cells. 

2.4.2. Nuclear Magnetic Resonance (NMR) Analysis 
A preliminary analysis was conducted by proton (1H) nuclear magnetic resonance 

(NMR). Recorded signals indicated that the purified fractions Ss3 and Ht3 showed char-
acteristic signals of fucose (Fuc), N-Acetylgalactosamine (GalNAc), and glucuronic acid 
(GlcA) (Figure 8). 

 
Figure 8. 1H NMR spectra of fucosylated chondroitin sulphates from Ss3 (Sarcotragus spinosulus) 
and Ht3 (Holothuria tubulosa). 

Figure 8. 1H NMR spectra of fucosylated chondroitin sulphates from Ss3 (Sarcotragus spinosulus) and
Ht3 (Holothuria tubulosa).

Species-specific variations in both chemical composition and molecular masses of
sulphated polysaccharides have been reported [37,42]. This wide structural diversity prob-
ably reflects their pivotal role in sponge ECM organization and in the well-known sponge
adaptive strategies, such as cell totipotence, cell dedifferentiation, chronic morphogenesis,
and modular/clonal organization of the body plan [36,38–41,43].

3. Materials and Methods
3.1. Chemicals and Equipment

High-molecular-weight hyaluronic acid (HMW-HA) sodium salt from Streptococcus
equi (1,500,000–1,750,000 Da), low-molecular-weight hyaluronic acid (LMW-HA) sodium
salt from Streptococcus equi (8000–15,000 Da), chondroitin sulphate (CS) sodium salt from
bovine trachea, dermatan sulphate (DS) from porcine intestinal mucosa, heparan sulphate
(HS) sodium salt from bovine kidney, heparin (Hep) sodium salt from porcine intestinal mu-
cosa, fucoidan from marine brown algae Macrocystis pyrifera, glycerol, Stains-all, cresol red,
deuterium oxide, trizma base (Tris), lithium chloride, sodium acetate, acrylamide/bis-



Mar. Drugs 2024, 22, 139 12 of 19

acrylamide 30% solution (29:1), alcian blue 8GX, diethylaminoethyl-(DEAE)Sephacel,
ethylenediaminetetraacetic acid (EDTA), L-cysteine, neutral red, and glucuronolactone were
purchased from Merck (Merck KGaA, Darmstadt, Germany). Ethanol was bought from
Honeywell International Inc. (Charlotte, NC, USA). Papain, sulphuric acid, magnesium
chloride, Dulbecco’s Modified Eagle Medium (DMEM) high glucose, GlutaMAX™ Supple-
ment, Fetal Bovine Serum (FBS), phosphate-buffered saline (PBS), and PrestoBlue™ Cell
Viability Reagent were acquired from Themo Fisher Scientific Inc. (Waltham, MA, USA). A
low-molecular-weight heparin (E-Hep), namely enoxaparin, with the trade name Clexane®,
was purchased from Sanofi (Paris, France), while activated partial thromboplastin time
(APTT) (Dade® Actin® FSL) and prothrombin time (PT) (Dade® Innovin®) assay kits were
purchased from Siemens Healthcare GMBH (Erlangen, Germany). Coagulation control
plasma was from Biolab Diagnostics (Sant’Antonio Abate, Italy). Formic acid, formalin,
acetone, sodium tetraborate decahydrate, carbazole, and acetic acid were from Carlo Erba
Reagents GMBH (Emmendingen, Germany). The human fibroblast (CRL-2522 ATCC®)
cell line was collected from the American Type Culture Collection (Rockville, MD, USA).
Amicon Ultra-15 Centrifugal Filter Units were produced by Millipore (Burlington, MA,
USA). Xylene and paraffin were from Bio-Optica Milano spa (Milano, Italy). Econo-Column
chromatography columns, the GS-800 calibrated densitometer, and the Mini Protean II
cell vertical slab gel electrophoresis apparatus were acquired from Bio-Rad laboratories
(Hercules, CA, USA). A VictorX5 Multimode Plate Reader was bought from PerkinElmer
(Waltham, MA, USA). The Bruker alpha compact FT-IR spectrometer and Bruker Avance
III 400 MHz NMR spectrometer were from Bruker (Karlsruhe, Germany). The Edwards
Modulyo Freeze Dryer was from Edwards Vacuum (Burgess Hill, UK). A Nikon ECLIPSE
80i Light Microscope, Nikon Digital-Sight DS-FI camera, and Nikon D3100 reflex camera
were acquired from Nikon Corporation (Tokyo, Japan).

3.2. Experimental Models

Sarcotragus spinosulus Schmidt, 1862 (Porifera, Dictyoceratida, Irciniidae) is a sessile,
benthic, basal Metazoa with no organs and true tissues. It is a photophilous demosponge
inhabiting Mediterranean shallow waters, with an asymmetric, massive, rounded growth
form. Its body surface, brownish in colour, black to dark grey in vivo, is irregularly conulose
and entirely covered by a dermal membrane; the interior is orange to light brown. The three-
dimensional collagenic (horny) endoskeleton with a complex architecture is embedded in
the amorphous jelly-like extracellular matrix (ECM) of the entire sponge body [47].

Holothuria tubulosa Gmelin, 1791 (Echinodermata, Holothuroidea, Holothuriidae) is
a benthic, sedentary, complex Metazoa living in the Mediterranean Sea (surface to 100 m
depth). Its bilateral body is roughly cylindrical along the oro-aboral axis and dark brown,
with numerous conical papillae [70]. The body wall of connective tissue, rich in ECM,
with embedded calcareous skeletal ossicles, encircles the coelom in which internal organs
are localized.

3.3. Sponge and Holothurian Sample Harvesting

Reared specimens of S. spinosulus were collected from a sustainable, shallow water ex-
perimental sponge culture plant [71,72] harboured in the Tramariglio Cove (40◦35′32.47′′ N
8◦10′11.50′′ E, Capo Caccia—Isola Piana Marine Protected Area, Northern Sardinian Sea,
Western Mediterranean).

Wild specimens of H. tubulosa were collected along the Porto Torres coast (40◦50′17.781′′ N
8◦24′33.955′′ E, Asinara Gulf, Northern Sardinian Sea, Western Mediterranean).

All specimens of sponges and holothurians were immediately kept in seawater in
refrigerated bags and transferred to the Sassari University laboratories.

3.4. Histological Analyses

Representative body fragments of S. spinosulus were dissected, after hypothermia,
using a scalpel.
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For downstream histological evaluation, samples were fixed in formalin 10% at room
temperature before being fully dehydrated in ascending ethanol series, cleared in xylene,
and embedded in paraffin.

Specimens of H. tubulosa were killed by hypothermia, and body wall fragments were
fixed in formalin 10% at room temperature, rinsed in distilled water, and decalcified in
formic acid 8% for 24 h to remove skeletal ossicles. After decalcification, samples were
rinsed in distilled water and then dehydrated in an ascending ethanol series, cleared in
xylene, and embedded in paraffin.

Sponges and holothurian samples were sectioned at intervals of 3 µm and stained with
Alcian blue (pH 2.5) to verify the presence and topographic distribution of acidic glycans
and counterstained with neutral red to detect the nuclei of cells. Slides were examined
under a Nikon ECLIPSE 80i Light Microscope, and microphotographs were taken with a
Nikon Digital-Sight DS-FI camera.

3.5. Acidic Glycan Purification

Body fragments (n = 18) of S. spinosulus and body wall fragments (n = 7) of H. tubulosa
were put in absolute ethanol for 120 h, at 4 ◦C, and then finely minced, before being
incubated in acetone for 24 h in order to achieve complete dehydration and delipidation.
Samples were centrifuged at 5000× g for 15 min, and the supernatant was discarded. After
complete acetone evaporation, dehydrated and delipidated tissue (DDT) was rehydrated
with 0.1 M sodium acetate buffer, pH 6.0, containing 5 mM EDTA, and 5 mM cysteine
(15 mL per gram of tissue), at 4 ◦C for 24 h. Proteolytic treatment was performed by
adding 1 U of papain per mg of DDT at 56 ◦C for 48 h; enzyme activity was stopped by
boiling the mixture at 100 ◦C for 5 min. After centrifugation at 5000× g for 10 min, the
supernatant was recovered and immediately loaded into a chromatography column packed
with DEAE-Sephacel anion-exchange resin (10 mL of resin per gram of digested tissue),
previously equilibrated with 50 mM sodium acetate, pH 6.0. The same buffer was used
to wash the column until absorbance, measured at 280 nm, was less than 0.05. Acidic
glycans were fractionated by performing four separate elution steps using 20 mM Tris-
HCl buffer, pH 8.6, containing, alternatively, 0.5 M, 1 M, 1.5 M, and 2 M lithium chloride.
Eluates were concentrated and dialysed against deionized water by means of Amicon
Ultra-15 Centrifugal Filter Units with a 3 kDa cut-off, according to the manufacturer’s
instructions. The following acronyms have been assigned to each purified fraction to
indicate the four different elutions: 0.5 M fraction from S. spinosulus and H. tubulosa,
Ss1 and Ht1, respectively; 1 M fraction from S. spinosulus and H. tubulosa, Ss2 and Ht2,
respectively; 1.5 M fraction from S. spinosulus and H. tubulosa, Ss3 and Ht3, respectively;
and 2 M fraction from S. spinosulus and H. tubulosa, Ss4 and Ht4, respectively. All samples
were assayed in duplicate.

3.6. Hexuronic Acid Quantification

Each eluate was assayed for uronic acid (UA) content using the method of Bitter and
Muir [73] with glucuronolactone as the standard, as reported elsewhere [74]. Briefly, 250 µL
of either standard (from 5 to 40 µg UA/mL) or eluate were added with 1.25 mL of 25 mM
sodium tetraborate decahydrate in concentrated sulphuric acid and incubated at 85 ◦C
for 10 min. Afterwards, 50 µL of carbazole was added and, following 15 min of boiling,
absorbance was read at 530 nm.

3.7. C-PAGE

Carbohydrate electrophoresis [51] was carried out in a Mini Protean II cell vertical slab
gel electrophoresis apparatus, using 13.5% T, 3% C polyacrylamide running gels, overlaid
with 5% T, 3% C stacking gel, using 40 mM acetic acid, and 40 mM Tris-HCl, pH 7.8, solution
as the running buffer. A volume corresponding to 2.5 µg, in terms of UA, of each standard
polysaccharide and glycan fraction was freeze-dried and then resolubilized in 10 µL of
62.5 mM Tris-HCl, pH 7.8, 10% glycerol, and 0.002% cresol red and loaded into the wells.
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The run was performed at 50 V for the first 10 min and then at 120 V until the dye front
reached the bottom of the gel. Staining was performed by incubating every gel with 50 mL
of a solution of 50% ethanol containing 0.005% Stains-all dye overnight and in the dark at
room temperature. Gels were rehydrated with distilled water before being photographed
with a Nikon D3100 reflex camera and acquired using a GS-800 calibrated densitometer.

3.8. Cell Culture and Metabolic Activity Assay

The cytocompatibility of all fractions of acidic glycans purified from S. spinosulus was
assessed, in vitro, on a human skin fibroblasts cell line (ATCC, CRL-2522) to preliminarily
evaluate the biological effects of these compounds. More in detail, metabolic activity was
evaluated by means of PrestoBlue™ Cell Viability Reagent, according to the manufacturer’s
instructions. Briefly, 5 × 104 cells/well were suspended in 90 µL of DMEM added with
10% FBS, seeded in a 96-well plate, and treated with 10 µL of complete culture medium
containing different polysaccharide final concentrations (0.001, 0.01, 0.1, 1, and 10 µg/mL,
expressed as UA content). Untreated cells were used as controls.

At every time point, 11 µL of PrestoBlue™ was added to each well, and well plates
were incubated at 37 ◦C and 5% CO2. After 45 min, the solution of PrestoBlue™/DMEM + 10%
FBS was transferred into a new well plate, and fluorescence was measured with the exci-
tation/emission wavelengths set at 540/590 nm, with VictorX5 multilabel counter. Cells
were rinsed with PBS, and 100 µL of new culture media containing 10% FBS, together with
the abovementioned concentrations of acidic glycans, was added to each well. Experiments
were performed in triplicate.

3.9. Coagulation Assays

The anticoagulant activity of the four eluted fractions from S. spinosulus was evalu-
ated in vitro and compared with that of H. tubulosa purified glycans, as well as standard
glycosaminoglycans (GAGs), including Hep and E-Hep, as well as CS and DS, using
commercially available kits by Siemens Healthcare. In particular, activated partial throm-
boplastin time (APTT) (Dade® Actin® FSL) and prothrombin time (PT) (Dade® Innovin®)
assays were performed to evaluate the inhibition of the intrinsic and extrinsic coagulation
pathways, respectively. Commercial human coagulation control plasma was used for all
coagulation tests.

Four dilutions of each sample were prepared and tested in order to assess the effects
of these polysaccharides on the inhibition of clot formation. In particular, the APTT assay
was performed with the following concentrations of either standard GAGs or purified
glycans: 1 µg/mL, 5 µg/mL, 10 µg/mL, and 25 µg/mL, while the impact on the extrinsic
pathway of the coagulation cascade was assayed for concentrations of 5 µg/mL, 10 µg/mL,
25 µg/mL, and 50 µg/mL.

The APTT assay was carried out according to the manufacturer’s guidelines. Briefly,
100 µL of plasma, previously added with purified polysaccharides or standard GAGs, was
mixed with 100 µL of prewarmed FSL reagent and incubated at 37 ◦C for 3 min; then,
100 µL of a prewarmed 25 mM calcium chloride solution was added, and the resulting
fibrin clot formation time was measured by optical detection.

The PT assay was performed following the producer’s instructions as well. More
in detail, 100 µL of plasma, containing purified acidic glycans or standard GAGs, was
incubated at 37 ◦C for 1 min, and 200 µL of prewarmed Dade® Innovin® Reagent was
added. Clot formation time was measured by optical detection.

All measurements were conducted in triplicate, and the results were reported as mean
and standard deviation.

3.10. Fourier Transform Infrared (FT-IR) Spectroscopy

Hexuronate-containing fractions with remarkable anticoagulant properties, as well
as standard fucoidan and CS, were freeze-dried overnight, followed by Fourier transform
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infrared spectroscopy (FT-IR) analyses. Spectra were collected using a Bruker Alpha
spectrometer, with 128 scans at a spectral resolution of 2 cm−1.

All measurements were performed in the range of 400–4000 cm−1 at room tempera-
ture. Data were acquired and processed by Bruker Opus software, release 8.7 (Billerica,
MA, USA).

3.11. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectra were recorded on a Bruker Avance III 400 MHz spectrometer (1H NMR:
400.13 MHz), (Billerica, MA, USA). A volume corresponding to 10 mg of both Ss3 and
Ht3 fractions was freeze-dried and dissolved in 650 µL of 99.9% D2O. Measurements were
performed at 298 K, with HOD suppression by pre-saturation. Signals were analysed by
TopSpin 4.3.0 software (Bruker, Billerica, MA, USA).

4. Conclusions

In this study, four acidic polysaccharide fractions purified from the marine sponge
Sarcotragus spinosulus were analysed to evaluate their biological activity towards the co-
agulation pathway, in addition to determining their localization and abundance in the
extracellular matrix (ECM), as well as assessing their cytocompatibility in vitro. Histologi-
cal analyses on representative sponge samples allowed us to confirm that Porifera ECM is
rich in acidic glycans.

All purified fractions were proven to contain hexuronic acid, although in variable
proportions. A preliminary assessment, in terms of sulphate content, was performed by
C-PAGE, confirming that sulphation degree increased together with the ionic strength of
the buffer used for elution. Additionally, cytocompatibility of all sponge fractions was
evaluated on a human cell line, showing no remarkable negative effects on cell viability,
thus suggesting that these glycans did not interfere with essential metabolic pathways.
Further experiments will be carried out to assess the full biocompatibility of these acidic
glycans in vivo.

Moreover, the ability to inhibit the coagulation process was evaluated for each of
the four sponge fractions, and the results indicated that the third and fourth hexuronate-
containing fractions were able to strongly interfere with the intrinsic pathway of the
coagulation cascade, showing effects comparable to the activities obtained for heparin
(Hep) and enoxaparin (E-Hep). The same fractions also showed inhibitory activity, albeit to
a lesser extent, on the extrinsic pathway. In this context, our results can have a valuable
impact, as sulphated polysaccharides from marine invertebrates have been shown to
possess beneficial and adjustable anticoagulant activity, even though with a lower activity
with respect to Hep.

Both FT-IR and NMR analyses performed on the Ss3 fraction suggested that, by
comparing obtained spectra with those from Ht3 and with data reported in the literature,
the most abundant polysaccharide contained hexuronic acid, N-Acetylgalactosamine, and
fucose, indicative of a fucosylated chondroitin sulphate.

Altogether, the results presented in this paper demonstrate, for the first time, the
presence of acidic glycans with anticoagulant activity in the ECM of keratose sponges
belonging to the genus Sarcotragus, whose structure showed similarities with fucosylated
chondroitin sulphate extracted from sea cucumbers’ body wall. Further investigations
will be carried out, aiming at confirming the obtained results, performing more detailed
structural analyses, and assessing the clear structure–activity relationship of the sponge
acidic polysaccharides, in addition to evaluating which coagulation factors are inhibited by
these glycans.

The great diversity and metabolite complexity of marine sponges, as a key renewable
source in sustainable shallow water plants, could represent a useful tool for applications in
bioinspired bioactive compound science and technologies. The present findings suggest
that the fucosylated chondroitin sulphate fraction purified from S. spinosulus could be a new
anticoagulant drug candidate, useful as a substitute for currently adopted antithrombotics.
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