
Citation: Cho, S.-H.; Kim, H.-S.; Ahn,

J.; Ryu, B.; Jea, J.-G.; Lee, K.; Kim, K.;

Ahn, G.; Lee, W.; Choi, K.-M.; et al.

Effect of Ishige okamurae Extract on

Osteoclastogenesis In Vitro and In

Vivo. Mar. Drugs 2024, 22, 137.

https://doi.org/10.3390/

md22030137

Academic Editor: Marc Diederich

Received: 19 February 2024

Revised: 19 March 2024

Accepted: 19 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Article

Effect of Ishige okamurae Extract on Osteoclastogenesis In Vitro
and In Vivo
Su-Hyeon Cho 1, Hyun-Soo Kim 2, Juhee Ahn 3 , Bomi Ryu 4, Jun-Geon Jea 5, Kyubin Lee 6, Kyunghwan Kim 6,
Ginnae Ahn 7 , WonWoo Lee 8, Kyung-Min Choi 8 and Kil-Nam Kim 1,9,*

1 Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea; chosh93@kbsi.re.kr
2 Department of Seafood Science and Technology, The Institute of Marine Industry, Gyeongsang National

University, Tongyeong 53064, Republic of Korea; gustn783@naver.com
3 Department of Medical Biomaterials Engineering, Kangwon National University,

Chuncheon 24341, Republic of Korea; juheeahn@kangwon.ac.kr
4 Department of Food Science and Nutrition, Pukyung National University, Busan 48513, Republic of Korea;

bmryu@pknu.ac.kr
5 Department of Marine Life Sciences, Jeju National University, Jeju 63243, Republic of Korea;

wpwnsrjs@gmail.com
6 Department of Biological Sciences and Biotechnology, Chungbuk National University,

Chungbuk 28644, Republic of Korea; kbl816@chungbuk.ac.kr (K.L.); kyungkim@chungbuk.ac.kr (K.K.)
7 Department of Marine Bio-Food Sciences, Chonnam National University, Yeosu 59626, Republic of Korea;

gnahn@chonnam.ac.kr
8 Honam National Institute of Biological Resources (HNIBR), Mokpo 58762, Republic of Korea;

21cow@hnibr.re.kr (W.L.); kyungmc0111@hnibr.re.kr (K.-M.C.)
9 Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
* Correspondence: knkim@kbsi.re.kr; Tel.: +82-62-712-4412

Abstract: We demonstrated the effect of Ishige okamurae extract (IOE) on the receptor activator of
nuclear factor-κB ligand (RANKL)-promoted osteoclastogenesis in RAW 264.7 cells and confirmed
that IOE inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity and osteoclast
differentiation. IOE inhibited protein expression of TRAP, metallopeptidase-9 (MMP-9), the calcitonin
receptor (CTR), and cathepsin K (CTK). IOE treatment suppressed the expression of activated T cell
cytoplasmic 1 and activator protein-1, thus controlling the expression of osteoclast-related factors.
Moreover, IOE significantly reduced RANKL-phosphorylated extracellular signal-regulated kinase
(ERK) and c-Jun N-terminal kinase (JNK). It also reduced the RANKL-induced phosphorylation of
NF-κB and nuclear translocation of p65. IOE inhibited Dex-induced bone loss and osteoclast-related
gene expression in zebrafish larvae. HPLC analysis shows that IOE consists of 3.13% and 3.42%
DPHC and IPA, respectively. Our results show that IOE has inhibitory effects on osteoclastogenesis
in vitro and in vivo and is a potential therapeutic for osteoporosis.

Keywords: Ishige okamurae; osteoclasts; NF-κB; MAPK; RAW 264.7 cells; zebrafish larvae

1. Introduction

Bone is a rigid tissue that plays many roles such as protecting various organs, generat-
ing red and white blood cells, storing minerals, and ensuring mobility [1]. Bone homeostasis
is controlled by mechanisms that maintain the balance between bone resorption and bone
formation [2]. Normal bone continuously undergoes remodeling under the control of
osteoclasts and osteoblasts [3,4]. However, impaired regulation of bone resorption and
formation results in various metabolic bone diseases such as osteoporosis [2,5].

Osteoclasts, which are multinucleated giant cells, differentiate from osteoclast precur-
sor cells originating from hematopoietic stem cell mononuclear/macrophage lineage cells
in the bone marrow [3,6]. Excessive osteoclastic activity causes extensive bone resorption,
which often manifests in bone diseases such as osteoporosis [3]. Osteoporosis is the most
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common metabolic skeletal bone disorder and is characterized by bone loss, microarchitec-
tural deterioration of bone tissue, and an increased risk of bone fracture [2,7]. Osteoclast
differentiation is initiated by the receptor activator of nuclear factor-κB ligand (RANKL).
The binding of RANKL and its receptor RANK onto osteoclast precursor cell surfaces
initiates the recruitment of tumor necrosis factor receptor-associated factor 6 (TRAF6) [8,9].
This process stimulates a cascade of downstream pathways, such as nuclear factor kappa
B (NF-κB) and mitogen-activated protein kinases (MAPKs) [10]. Moreover, these sig-
naling pathways activate the nuclear factor of activated T cell cytoplasmic 1 (NFATc1),
which is an important transcriptional factor for osteoclast differentiation [10,11]. Activated
NFATc1 promotes the expression of osteoclastogenesis-related proteins, including tartrate-
resistant acid phosphatase (TRAP), the calcitonin receptor (CTR), cathepsin K (CTK), and
metallopeptidase-9 (MMP-9) [8]. Therefore, suppressing excessive osteoclast activity is
essential for treating osteoporosis.

Bisphosphates have been widely used as first-line therapy to manage osteoporotic
fracture risks and function by inhibiting the bone resorption function of osteoclasts [12,13].
Although they are generally well tolerated when administered properly, potential adverse
effects, such as severe muscle skeletal pain, osteonecrosis of the jaw, unusual fractures in
the femur (tight bone) and the shaft (diaphysis or sub-trochanteric region) of the bone,
and the suppression of bone turnover, have been reported [14,15]. Natural products have
been demonstrated to exhibit similar therapeutic biological activity but with higher levels
of safety, and fewer side effects [16,17]. Therefore, it serves as an important source of
alternative agents for osteoporosis treatment.

Marine algae contain various bioactive substances, such as polyphenols, proteins,
polysaccharides, and lipids, and exhibit pharmaceutical, nutraceutical, and biomedical
potential in functional foods [18–20]. Marine algae have many bioactive compounds
with diverse biological activities, including anti-inflammatory, anti-melanogenesis, an-
tioxidant, and antimicrobial activities, which have been used in functional foods and
biomedical sources [20–22]. Ishige okamurae, a brown alga, is a member of the Ishigeaceae
family and is an edible seaweed inhabiting temperate coastal zone areas in Korea,
Japan, and China [23,24]. It is widely used as a food ingredient and in traditional
medicine [25]. Recent studies have reported a number of biological activities exhibited
by I. okamurae extract (IOE), including anti-inflammatory, anti-diabetic, and inhibitory
effects on HIV [25–27]. I. okamurae contains many bioactive compounds such as fucox-
anthin, phloroglucinol, diphlorethohydroxycarmalol (DPHC), and ishophloroglucin A
(IPA) [28–31]. DPHC has been demonstrated to inhibit osteoclastogenesis by blocking
the activation of the NF-κB signaling pathway in vitro [30]. Moreover, IPA has an ef-
fective inhibitory activity against osteoclastogenesis in vitro [32]. However, the effect
of IOE on osteoclastogenesis inhibition has not yet been demonstrated. In this study,
we demonstrated the effects of IOE on RANKL-induced osteoclastogenesis on RAW
264.7 cells and dexamethasone-induced zebrafish larvae.

2. Results
2.1. Effect of IOE on TRAP Activity in RANKL-Stimulated RAW 264.7 Cells

We first confirmed the viability of RAW 264.7 cells treated with IOE and found that
this preparation was not cytotoxic at concentrations up to 100 µg/mL (Figure 1). These
non-cytotoxic concentrations were used to demonstrate the effect of IOE on RAW 264.7 cell
osteoclastogenesis. Next, to investigate the effect of IOE on RANKL-differentiated osteo-
clasts in cells, we stained the cells with TRAP, an osteoclast-related factor (Figure 2). As
shown in Figure 2, RANKL promoted osteoclast differentiation and TRAP activity com-
pared to that seen in the control group, but IOE treatment significantly reduced osteoclast
differentiation and TRAP activity in a dose-dependent manner.
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Figure 1. Effect of IOE on cell viability in RAW 264.7 cells. The cells were treated with 12.5, 25, 50, 
and 100 µg/mL of IOE for 5 days. Cell viability was assessed with MTT assay. All results are ex-
pressed as mean ± standard deviation (SD) from more than three individual experiments; # p < 0.05 
compared with the control group. 

 
Figure 2. Effect of IOE on TRAP activity in RANKL-induced RAW 264.7 cells. Cells were pre-treated 
with 25, 50, and 100 µg/mL of IOE for 2 h and then treated with 100 ng/mL of RANKL for 5 days. 
TRAP activity was measured with TRAP staining. (A) Representative images of TRAP staining 
(scale bar: 100 µm). IOE treatment inhibited RANKL-induced TRAP activity and osteoclast differ-
entiation. (B) Counted TRAP positive cells. All results are expressed as mean ± standard deviation 
(SD) from more than three individual experiments; #### p < 0.0001 compared with the control group. 
*** p < 0.001, and **** p < 0.0001 compared with the RANKL-stimulated group. 

2.2. Effect of IOE on the Expression of Osteoclast Differentiation-Related Factors in RANKL-
Stimulated RAW 264.7 Cells 

We next analyzed the expression levels of osteoclast differentiation-related proteins 
in RANKL-induced RAW 264.7 cells. As shown in Figure 3, RANKL promoted CTR, CTK, 
MMP-9, and TRAP expression compared with that seen in the control group. However, 
IOE markedly suppressed CTR and TRAP expression in a dose-dependent manner. CTK 
and MMP’s expression levels were significantly inhibited in the 100 µg/mL IOE-treated 
group. These results show that IOE reduces RANKL-induced osteoclast differentiation by 

Figure 1. Effect of IOE on cell viability in RAW 264.7 cells. The cells were treated with 12.5, 25, 50, and
100 µg/mL of IOE for 5 days. Cell viability was assessed with MTT assay. All results are expressed as
mean ± standard deviation (SD) from more than three individual experiments; # p < 0.05 compared
with the control group.
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Figure 2. Effect of IOE on TRAP activity in RANKL-induced RAW 264.7 cells. Cells were pre-treated
with 25, 50, and 100 µg/mL of IOE for 2 h and then treated with 100 ng/mL of RANKL for 5 days.
TRAP activity was measured with TRAP staining. (A) Representative images of TRAP staining (scale
bar: 100 µm). IOE treatment inhibited RANKL-induced TRAP activity and osteoclast differentiation.
(B) Counted TRAP positive cells. All results are expressed as mean ± standard deviation (SD)
from more than three individual experiments; #### p < 0.0001 compared with the control group.
*** p < 0.001, and **** p < 0.0001 compared with the RANKL-stimulated group.

2.2. Effect of IOE on the Expression of Osteoclast Differentiation-Related Factors in
RANKL-Stimulated RAW 264.7 Cells

We next analyzed the expression levels of osteoclast differentiation-related proteins in
RANKL-induced RAW 264.7 cells. As shown in Figure 3, RANKL promoted CTR, CTK,
MMP-9, and TRAP expression compared with that seen in the control group. However,
IOE markedly suppressed CTR and TRAP expression in a dose-dependent manner. CTK
and MMP’s expression levels were significantly inhibited in the 100 µg/mL IOE-treated
group. These results show that IOE reduces RANKL-induced osteoclast differentiation by
downregulating the osteoclast differentiation-related mediators CTR, CTK, MMP-9, and
TRAP in RAW 264.7 cells.
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Figure 3. Effect of IOE on osteoclast-related factors in RANKL-induced RAW 264.7 cells. Cells were
pre-treated with 25, 50, and 100 µg/mL for 2 h and then treated with 100 ng/mL of RANKL for
5 days. Protein expression of osteoclast-related factors CTR, CTK, MMP-9, and TRAP. All results
are expressed as mean ± standard deviation (SD) from more than three individual experiments;
#### p < 0.0001 compared with the control group. ** p < 0.01, and **** p < 0.0001 compared with the
RANKL-stimulated group.

2.3. Effect of IOE on the Expression of Osteoclast-Related Transcriptional Factors in
RANKL-Stimulated RAW 264.7 Cells

We investigated the effects of IOE on the expression of the factors associated with
osteoclastogenesis in RANKL-stimulated RAW 264.7 cells using Western blotting analysis.
As shown in Figure 4, RANKL promoted the expression NFATc1, c-Fos, and c-Jun in RAW
264.7 cells. However, IOE treatment significantly inhibited the RANKL-induced expression
of these factors in a dose-dependent manner.
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Figure 4. Effect of IOE on expression of osteoclast-related transcription factors in RANKL-induced
RAW 264.7 cells. Cells were pre-treated with 25, 50, and 100 µg/mL of IOE for 2 h and then
treated with 100 ng/mL of RANKL for 9 h. Protein expressions were evaluated using Western
blotting analysis. (All results are expressed as mean ± standard deviation (SD) from more than three
individual experiments; #### p < 0.0001 compared with the control group. **** p < 0.0001 compared
with the RANKL-stimulated group.

2.4. Effect of IOE on ERK, JNK, and NF-κB Phosphorylation in RANKL-Stimulated RAW 264.7 Cells

To demonstrate the role of ERK, JNK, and NF-κB activation in the IOE-induced inhi-
bition of osteoclastogenesis, the phosphorylation of the ERK, JNK, and NF-κB signaling
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pathways was investigated using Western blotting analysis. Protein levels of phosphor-
ERK and phospho-JNK were normalized to that of total ERK or JNK levels. As shown in
Figures 5 and 6, the levels of RANKL-phosphorylated ERK, JNK (Figure 5), IκB, p50, and p65
(Figure 6A) were increased compared to those in the control group. However, treatment with
100 µg/mL IOE significantly suppressed the expression of RANKL-phosphorylated ERK,
JNK, and NF-κB. RANKL also induced the translocation of p65 from the cytosol to the nucleus.
However, IOE inhibited the RANKL-induced nuclear translocation of p65 (Figure 6B).
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Figure 5. Effect of IOE on activation of ERK and JNK in RANKL-induced RAW 264.7 cells. Cells
were pre-treated with 100 µg/mL of IOE for 2 h and then treated with 100 ng/mL of RANKL for
20 min. Protein levels were determined using Western blotting analysis. All results are expressed
as mean ± standard deviation (SD) from more than three individual experiments; #### p < 0.0001
compared with the control group. **** p < 0.0001 compared with the RANKL-stimulated group.
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Figure 6. Effect of IOE on activation of NF-κB in RANKL-induced RAW 264.7 cells. Cells were
pre-treated with 100 µg/mL of IOE for 2 h and then treated with 100 ng/mL of RANKL for 5 min.
(A) Protein levels were determined using Western blotting analysis. (B) The nuclear translocation of
p65 was observed by LSM700 Zeiss confocal laser scanning microscope (scale bar: 10 µm). Quantifi-
cation of p65 nuclear translocation was performed using Image J program. All results are expressed
as mean ± standard deviation (SD) from more than three individual experiments; ### p < 0.001, and
#### p < 0.0001 compared with the control group. *** p < 0.001, and **** p < 0.0001 compared with the
RANKL-stimulated group.
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2.5. Effect of IOE on Bone Mineralization in Dexamethasone-Induced Osteoporosis in
Zebrafish Larvae

To examine toxicity in zebrafish larvae, we measured survival and heartbeat rates. As
shown in Figure 7A, IOE was not toxic at concentrations up to 50 µg/mL. The heartbeat
rates of the IOE treated group were not significantly different compared to the control group
(Figure 7B). Hence, we used these concentrations to examine the effect of IOE on bone
loss in dexamethasone-induced zebrafish larvae. As shown in Figure 7C, dexamethasone
inhibited bone mineralization compared to the control group. However, 50 µg/mL IOE
significantly increased bone mineralization compared to that seen in the dexamethasone-
treated zebrafish larvae. Moreover, we demonstrated the effect of IOE on dexamethasone-
induced osteoclast-related gene expression in zebrafish larvae (Figure 8). Dexamethasone
induced the expression of mmp9, mmp13, ctsk, foxo1a2, and nfkb2. However, 50 µg/mL
IOE significantly inhibited gene expression.
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Figure 7. Effect of IOE on (A) survival rate, (B) heartbeat rate, and (C) bone mineralization in
dexamethasone (Dex)-stimulated zebrafish larvae. (A,B) Zebrafish larvae (10 dpf) were treated
with various concentrations of IOE (5, 10, 20, 50, and 100 µg/mL) for 6 day. (C) Zebrafish lar-
vae (10 dpf) were treated with 50 µg/mL of IOE and 25 µM of dexamethasone for 3 days. Bone
mineralization was evaluated using calcein staining and visualized by LSM700 Zeiss confocal
laser scanning microscope. The fluorescence intensity was quantified using ImageJ 1.53t software
(Java 1.8.0_345). All results are expressed as mean ± standard deviation (SD) from more than
three individual experiments; ### p < 0.001 compared with the control group. * p < 0.05 with the
Dex-stimulated group.
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larvae. Zebrafish larvae (10 dpf) were treated with 50 µg/mL of IOE and 25 µM of dexamethasone
for 3 days. mRNA expression was evaluated using RT-qPCR analysis. All results are expressed as
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2.6. Analysis of DPHC and IPA in IOE

We first observed the isolated DPHC and IPA and confirmed the purity of both
compounds are over 95%. The retention times of DPHC and IPA were 9.936 and 24.138 min,
respectively (Figure 9). The presence of the two compounds in the extract was confirmed by
comparing the retention times with those of each standard compound. For the calibration
curve, concentration ranges of 0.01–0.08 mg/mL for DPHC and 0.02–0.1 mg/mL for IPA
were used. As a result, we found that the IOE comprised 3.13% and 3.42% of DPHC and
IPA, respectively.
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3. Discussion

Osteoclasts facilitate bone resorption during the bone remodeling process. However,
excessive activation of osteoclast maturation, differentiation, and activity cause severe bone
diseases [33]. Therefore, it is important to identify potential compounds that can inhibit
osteoclastogenesis. Our study demonstrated the effect of IOE on osteoclastogenesis and its
mechanisms in the RAW 264.7 cells of zebrafish.

Many previous studies have used RANKL to induce the differentiation of RAW
264.7 cells into osteoclasts [34,35]. Therefore, we used RANKL as a stimulator to induce
osteoclast differentiation and the generation of osteoclast-related factors in RAW 264.7 cells
and investigated the inhibitory activity of IOE. We confirmed that IOE had no cytotoxic
effect up to 50 µg/mL, and these concentrations were used in subsequent experiments.
TRAP, a histochemical marker of osteoclasts, plays a crucial role in bone resorption [36,37].
RANKL induced an increase in TRAP-positive multinuclear cells, but IOE significantly
inhibited the RANKL-induced differentiation of TRAP-positive multinuclear cells in RAW
264.7 cells.

RANKL, a tumor necrosis factor receptor family cytokine, plays a pivotal role in osteo-
clastogenesis by activating downstream signaling pathways after binding to its receptor
RANK [38]; these pathways, including MAPK and NF-κB, are activated following the
recruitment of TRAF6 [38]. In osteoclasts, MAPKs, including ERK and JNK, regulate im-
portant transcriptional factors via direct or indirect phosphorylation [39]. ERK is involved
in the survival, proliferation, formation, disassembly, and differentiation of osteoclasts,
and activates c-Fos in response to RANKL [40]. RANKL promotes the stimulation of JNK,
which subsequently activates c-Jun [41]. In our study, RANKL treatment activated ERK
and JNK, but IOE treatment significantly inhibited the activation of these factors. IOE also
inhibited the RANKL-induced expression of c-Fos and c-Jun. Thus, our results suggest that
IOE inhibited c-Fos and c-Jun expression by blocking ERK and JNK.

NF-κB is related to osteoclastogenesis as well as MAPKs [42]. TRAF6 recruitment
activates the phosphorylation and degradation of IκB. The activated NF-κB p50/p65 het-
erodimer was ubiquitinated and translocated into the nucleus [43]. The activated MAPK
and NF-κB signaling pathways promote the activation of activator protein-1 (AP-1) and
NFATc1 [43]. Herein, we observed that IOE inhibits RANKL-induced NF-κB activation and
nuclear translocation of p65. The decline in the protein levels of c-Fos and c-Jun following
IOE treatment suggests that the inhibition of NF- κB affects the expression of c-Fos and
c-Jun. Activator protein-1 (AP-1) comprises c-Jun and c-Fos, which are critical transcription
factors for osteoclast formation [43,44]. NFATc1, a member of the NFAT family, is a master
regulator that plays a crucial role in RANK-induced osteoclast differentiation [45]. AP-1
promotes the expression of NFATc1 by binding to the NFAT promoter [46]. Upregulated
NFATc1 induces the expression of TRAP, CTR, MMP-9, and CTK; hence, these factors pro-
mote osteoclastogenesis [47]. In this study, IOE inhibited the RANKL-induced expression
of transcriptional factor NFATc1 and osteoclastogenesis-related protein such as CTR, CTK,
MMP-9, and TRAP, demonstrating that IOE suppresses the expression of osteoclastogenesis-
related proteins by blocking NFATc1. Our findings show that IOE significantly inhibited the
RANKL-induced phosphorylation of ERK, JNK, and NF-κB. Therefore, IOE is considered
to inhibit osteoclast differentiation via the regulation of AP-1 and NFATc1 by mitigating
ERK, JNK, and NF-κB phosphorylation.

Zebrafish (Danio rerio) larvae were used as an animal model to confirm the inhibitory
effect on osteoporosis. This animal model is widely used owing to its genetic similarity to
humans. It has many advantages, such as a short reproductive cycle, small size, and trans-
parent embryos [48,49]. Many researchers have reported a variety of biological activities
in zebrafish [50–52]. Glucocorticoids (GCs), including dexamethasone and prednisolone,
have been widely used to treat diseases related to autoimmunity and inflammation [53,54].
However, the long-term effect of GCs triggers rapid bone resorption by inducing the
differentiation and maturation of osteoclasts [55]. Previous studies have reported that
dexamethasone treatment induces bone loss as an osteoporosis phenotype in zebrafish
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larvae [55,56]. Therefore, this study proved the effect of IOE on dexamethasone-induced
bone loss in zebrafish larvae. After confirming the non-toxic IOE level, we investigated
its inhibitory effect on osteoporosis in the presence of IOE and dexamethasone. Using
calcein bone labeling, we demonstrated, for the first time, that IOE has an inhibitory
effect on dexamethasone-induced bone loss in zebrafish larvae. Moreover, we verified
this mechanism through gene expression analysis. IOE was found to significantly inhibit
dexamethasone-induced gene expression, including mmp9, mmp13, foxo1a2, and nfkb.
These results indicate that IOE can prevent dexamethasone-induced bone loss in zebrafish
larvae by stimulating bone mineralization.

We confirmed that DPHC and IPA are the main compounds in IOE using HPLC
analysis. Ihn et al. demonstrated DPHC from I. okamurae significantly inhibited osteoclast
differentiation by blocking the NF-κB signaling pathway. Moreover, our previous study
proved that IPA has an effective inhibitory activity on osteoclastogenesis and leads to an
improvement in osteoblastogenesis. In particular, IPA suppressed osteoclast differentiation
by downregulating the NF-κB, ERK, and JNK signaling pathways. Our present study has
shown that IOE suppresses osteoclastogenesis by inhibiting similar pathways to these com-
pounds. Therefore, this research has shown that DPHC and IPA are the active compounds
within IOE.

4. Materials and Methods
4.1. Extraction of I. okamurae

I. okamurae was collected on Jeju Island and washed three times with tap water to
remove salt and sand from its surface. The washed samples were dried at room temperature
for two weeks. The samples were homogenized using a grinder. Powdered I. okamurae
(100 g) was subjected to extraction using 70% ethanol (1 L) with continuous agitation at
37 ◦C, and the solvent was removed under vacuum using a rotary evaporator.

4.2. Cell Culture

Murine macrophage RAW 264.7 cells were purchased from the Korean Cell Line Bank
(KCLB, Seoul, Republic of Korea). The cells were maintained in Dulbecco’s Modified
Eagle’s Medium (Welgene, Gyeongsan, Republic of Korea) containing 10% fetal bovine
serum (FBS; Welgene, Republic of Korea) and 1% antibiotic–antimycotic (Gibco BRL, San
Diego, CA, USA) at 37 ◦C in a humidified incubator with 5% CO2.

4.3. MTT Assay

We seeded 2 × 104 RAW 264.7 cells/mL in a 96-well plate. After 24 h, 12.5, 25, 50,
and 100 µg/mL of IOE were added for 5 days. MTT assay was performed according to the
method reported by Cho et al. [32]. The absorbance was read at 540 nm using a SpectraMax
M2/M2e spectrophotometer (Molecular Devices, San Jose, CA, USA).

4.4. TRAP Staining

We seeded 2 × 104 RAW 264.7 cells/mL in a 24-well plate. After 24 h, the cells were
pre-treated with 25, 50, and 100 µg/mL of IOE for 2 h and then treated with 100 ng/mL
RANKL (Sigma-Aldrich, St. Louis, MO, USA) for 5 days. The medium was replaced
every 2 days. TRAP activity was measured according to the method reported by Cho
et al. [32]. TRAP-positive cells were observed and counted under a light microscope (Carl
Zeiss, Oberkochen, Germany). The number of TRAP-positive cells was calculated as a ratio
compared to the total number of cells.

4.5. Western Blotting Analysis

Protein levels were analyzed according to the method reported by Cho et al. [32]. The
membranes were incubated overnight at 4 ◦C with the following primary antibodies: anti-
TRAP, anti-MMP-9, anti-CTR, anti-CTK (Abcam, Cambridge, MA, USA), anti-NFATc1 (BD
PharmingenTM, San Diego, CA, USA), anti-c-Fos, anti-c-Jun, anti-phospho-extracellular
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signal-regulated kinase (ERK), anti-ERK, anti-phospho-c-Jun N-terminal kinase (JNK),
anti-JNK, anti-phospho-IκB, anti-phospho-p65 (Cell Signaling Technology, Danvers, MA,
USA) anti-phospho-p50, and anti-β-actin (Santa Cruz Biotechnology, Dallas, TX, USA).
Membranes washed with TBST (20 mM Tris, 137 mM sodium chloride, 0.1% Tween-20;
Sigma-Aldrich, USA) were incubated for 2 h at room temperature with the following
secondary antibodies: anti-rabbit IgG, HRP-linked antibody, anti-mouse IgG, and HRP-
linked antibody (Cell Signaling Technology, Danvers, MA, USA). The membranes were
then washed three times with TBST. Protein bands were observed using a SuperSignal
West Femto Trial kit (Thermo Fisher Scientific, Waltham, MA, USA) using the Fusion FX
Chemiluminescence system (Vilber Lourmat, Collégien, France).

4.6. Immunofluorescence (IF) Staining

We seeded 5 × 104 cells/mL RAW 264.7 cells/mL in a confocal chamber. The cells
were pre-treated with 100 µg/mL IOE for 2 h and then treated with 100 ng/mL RANKL
for 5 min. IF staining was performed according to the method described by Cho et al. [32].
The cells were incubated overnight at 4 ◦C with the following primary antibodies: anti-p65.
After being washed another three times with PBS, the cells were incubated for 1.5 h at room
temperature with the following the secondary antibodies: Alexa fluor488-labeled goat
anti-rabbit IgG (H + L) cross-adsorbed secondary antibody (1:800; Thermo Fisher Scientific,
USA). Washed cells with PBS are treated with 40 µg/mL Hoechst 33,342 to stain the nucleus
for 10 min at room temperature. Washed cells were mounted with ProLongTM Gold
antifade mountant (Thermo Fisher Scientific, USA). Fluorescence signals were detected
using a LSM 700 Zeiss confocal laser scanning microscope (Carl Zeiss, Germany).

4.7. Maintenance of Zebrafish and Survival Rate Measurement

Zebrafish (D. rerio) were purchased from a local pet market and maintained in a
circulating system under the following conditions: 28.5 ± 1 ◦C with a 14/10 h light/dark
cycle. The zebrafish were fed twice daily. One female and two males were randomly
selected from the breeding cages to obtain embryos. The embryos were collected, placed
in 1 mg/mL methylene blue solution for 1 h, and transferred to fresh embryo media
(600 mg/mL sea salt in distilled water). Fertilized embryos were maintained at 28.5 ◦C
for 72 h until the larvae hatched. Zebrafish larvae feeding was initiated 5 days post-
fertilization (dpf). Experiments were initiated at 10 dpf. The survival rate was measured
at 11–16 dpf in the presence of 5, 10, 20, 50, and 100 µg/mL of IOE. The heartbeat rate
was measured for 1 min under the microscope. The experiments were approved by the
Animal Care and Use Committee of the Korea Basic Science Institute, Daejeon, Republic
of Korea (KBSI-IACUC-23-25).

4.8. Calcein Staining

Calcein is a fluorescent marker used to detect calcium [57]. Zebrafish larvae (10 dpf)
were placed in a 6-well plate in each well and treated with 50 µg/mL of IOE and 25 µM
of dexamethasone for 3 days. Calcein solution (0.2%) was prepared by dissolving 0.1 g
of calcein powder (Sigma-Aldrich, USA) and 50 mL of distilled water. The larvae were
washed with distilled water, and 0.2% calcein solution was added for 15 min at room
temperature. Stained larvae were fixed with 4% PFA and then rinsed with distilled water
for 30 min to remove unbound and excess calcein. The larvae were visualized under a LSM
700 Zeiss confocal laser scanning microscope.

4.9. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

Total mRNA was isolated from zebrafish larvae using TRIzol according to the manufac-
turer’s instructions (Invitrogen, Carlsbad, CA, USA). cDNA synthesis was performed using
the following reagents: RNase-free DNase I (Promega, Fitchburg, WI, USA), SUPERase-in
(Ambion, Austin, TX, USA), EDTA (Promega, USA), dNTP (Invitrogen, USA), random
primers (Invitrogen, USA), and reverse transcriptase (Promega, USA). Synthesized cDNA
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was then used for PCR amplification with SYBR Green (Applied Biosystems, San Francisco,
CA, USA). Relative mRNA expression was calculated by relative quantification using
comparative threshold cycle (CT) values based on β-actin levels according to the manufac-
turer’s instructions (Applied Biosystems). Primers used for real-time qPCR are described
in Table 1.

Table 1. List of primer sequences used for RT-qPCR.

Gene Forward Primer Reverse Primer

mmp9 tcggcctaccaagcgactt tcatgtgaatcaatgggcactc
mmp13 agaccaggacacactcgcagag tcgggccgcatctcttcact
nfkb2 acaagacgcaaggagcccag aactgtctcttgcacaaagggc

foxo1a2 cgcatccccagcaacagcat aatgtggacctcggctgcct
β-actin ccatccttcttgggtatgga acaggtccttacggatgtc

4.10. High Performance Liquid Chromatography (HPLC) Analysis

In our previous study, DPHC was identified in the ethyl acetate fraction by HPLC and
LC/mass spectrometry (MS) analysis and showed antioxidant activity [58]. As mentioned
in our previous study, the column was eluted in gradient mode with a mobile phase solvent
system containing acetonitrile and water (acetonitrile-water [0–50 min: 5:95–95:5 v/v;
50–60 min: ~100:0 v/v]) with a flow rate of 0.3 mL/min, while motoring the absorbance at
230 nm.

4.11. Statistical Analysis

The data are expressed as mean ± standard deviation (SD) and were analyzed by
one-way ANOVA with Tukey’s post hoc test. Data were considered statistically significant
at p < 0.05. All statistical tests were performed using GraphPad Prism software (version 8.0;
GraphPad Software, San Diego, CA, USA).

5. Conclusions

This study demonstrated the anti-osteoporosis effects of IOE in vitro and in vivo. IOE
significantly inhibited RANKL-induced osteoclast differentiation by inhibiting NFATc1
and AP-1 via the blockade of ERK, JNK, and NF-κB signaling pathways. Dexamethasone-
induced bone loss in zebrafish larvae was also evaluated, revealing that IOE significantly
inhibited dexamethasone-induced bone loss. Taken together, our study indicates that IOE
has a potential use in the treatment of bone diseases, including osteoporosis.
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