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Abstract: Until recently, the standard treatment of chronic hepatitis C virus (HCV) 

infection was a combination therapy with PEG-IFN-α plus ribavirin. Previous studies have 

proven that several markers predict the outcome of such therapy, e.g., pretreatment plasma 

levels of interferon inducible protein IP-10, HCV RNA and IL28B-related single 

nucleotide polymorphisms (SNP). Altered activity of tryptophan metabolizing enzyme 

indoleamine 2,3-dioxygenase (IDO) has been also shown in patients suffering from HCV 

infection. In this study, we investigated whether IL28B SNP in patients infected with HCV 

is related to the tryptophan breakdown rate. Before therapy, serum tryptophan and 

kynurenine concentrations were determined in 25 patients with established HCV infection 

and the kynurenine to tryptophan ratio (KYN/TRP) was calculated as an estimate of the 

tryptophan breakdown rate. In parallel, neopterin and nitrite concentrations were 

determined. A significant difference of serum KYN/TRP existed between the three IL28B 

polymorphism groups: C/C genotype had the highest and T/T genotype had the lowest 

KYN/TRP (p < 0.05). Likewise, C/C genotype was associated with higher KYN/TRP than 

non-C/C genotype (p = 0.01). There was a smaller difference between the three groups 

regarding the absolute kynurenine concentrations, the C/C genotype being associated with 

higher kynurenine concentrations. None of the other comparisons revealed any statistical 

significance. In conclusion, patients with C/C genotype presented with the highest 

tryptophan breakdown rate already before antiretroviral therapy with IFN-α/ribavirin.  
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The differences in tryptophan metabolism might relate to HCV clearance and also to side 

effects of IFN-α therapy. 

Keywords: IL28B polymorphism; tryptophan breakdown; indoleamine 2,3-dioxygenase; 

kynurenine to tryptophan ratio; neopterin 

 

1. Introduction 

Until recently, the standard treatment of chronic hepatitis C virus (HCV) infection involved pegylated 

interferon-α (IFN-α) plus direct antiviral substances with or without ribavirin, and sustained 

suppression of HCV is feasible in approximately over 90% of patients with all-oral combination [1,2]. 

A genome-wide screening identified IL28B gene nucleotide polymorphisms to be associated with 

HCV clearance [3–6]). Single nucleotide polymorphisms (SNPs) in the 19q13 region, in close proximity 

to three genes (IL28A, IL28B, and IL-29) encoding cytokines of the IFN-l (i.e., type III IFN) family, 

predict spontaneous clearance of HCV infection [5,7,8]. IL28B encodes for IFN-lambda-3 (IFN-l-3), 

which is potentially involved in the pro-inflammatory response. IL28B polymorphism is not only 

associated with HCV clearance but was also found to relate to adverse effects of IFN-α which limits its 

clinical use [9]. 

Multiple genes and biochemical effector pathways mediate the antiviral activity of IFN-α during 

therapy [10], breakdown of essential amino acid tryptophan may represent one of the key components. 

The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) is strongly induced by  

pro-inflammatory cytokines [11,12]. Thereby interferon- (IFN-) is the most potent in vitro-stimulus 

of tryptophan breakdown in human monocyte-derived macrophages [13], whereas in human dendritic 

cells IFN-α, IFN- and IFN- were found to act equally strong [14]. 

Within the Th1-type immune response, tryptophan breakdown is devoted to limit availability of the 

essential amino acid which restricts proliferation of invading pathogens or tumor cells [15]. Activation 

of IDO has been already demonstrated to possess strong antimicrobial and antiviral activity [16,17], 

and moreover enhanced tryptophan breakdown as is indicated by an increased kynurenine to tryptophan 

ratio (KYN/TRP) was already described in patients suffering from chronic HCV infection [18,19].  

In parallel to IDO, IFNs stimulate several other biochemical pathways which counteract cell proliferation, 

among them inducible nitric oxide synthase (iNOS) is of comparable importance as IDO [20] and  

the IFN-inducible GTP-cyclohydrolase I (GCH-I, EC 3.5.4.16), that gives rise to production of 

pteridines [21]. Thereby most human cells and cells from other species form 5,6,7,8-tetrahydrobiopterin 

(BH4), cofactor of several monoxygenases including iNOS, whereas high output neopterin production 

at the expense of BH4 is observed in human monocyte-derived macrophages and dendritic cells [22]. 

In order to investigate whether IL28B polymorphism is related to IDO activity and to the innate 

immune host response, we determined the rate of tryptophan breakdown in serum of 25 patients with 

established HCV infection by measurement of tryptophan and kynurenine concentrations and 

calculated KYN/TRP as an estimate of the tryptophan breakdown rate. In parallel, concentrations of 

macrophage marker neopterin and nitrite levels were determined. 
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2. Experimental Section 

2.1. Patients 

Twenty-five patients (12 females, 13 males) with confirmed HCV infections were included in this 

study. They were aged 41.9 ± 12.1 years (mean ± SD; Table 1). Fibrosis stage was assessed by 

transient elastography using Fibroscan equipped with an M-probe. In patients in whom transient 

elastography was technically impossible or where the results did not pass quality control (i.e., IQR of 

10 measurements > 25% or success rate < 80%), clinical assessment for the presence of cirrhosis was 

made. These patients are labelled. Patients without clinically detectable cirrhosis were labelled  

“no cirrhosis”. As indicated treatment response could not be assessed in all patients, because some 

patients were lost to follow up. 

Table 1. Demographics, IL28B genotype, HCV load and biomarker concentrations in the 

study population. 

Age (y) Sex Fibrosis status 
IL28B 

genotype 

HCV 

genotype 

HCV 

LOG10 
Therapy Response * 

23.5 Female No cirrhosis T/T 3a 5.36 SVR 

24.5 Female No cirrhosis C/T 3a 5.67 SVR 

25.2 Female F0-1 T/T 1a 5.50 LFU 

30.1 Male F0-1 T/T 3a 5.34 SVR 

30.4 Female F0-1 C/T 1a 5.75 SVR 

30.6 Female F0-1 C/C 1b 7.02 Relapse 

31.1 Male F0-1 C/C 3a 4.64 SVR 

32.5 Female No cirrhosis C/T 3a 5.82 LFU 

34.0 Female F0-1 C/T 4 3.90 SVR 

38.9 Male F2 T/T 4 5.05 SVR 

39.8 Male F0-1 T/T 1a 6.91 No response 

39.9 Female F0-1 C/T 3a 5.93 SVR 

40.7 Male F3 C/T 3a 4.72 Relapse 

42.3 Male No cirrhosis C/T 3a 5.62 SVR 

45.1 Female No chirrhosis C/C 3a 3.43 SVR 

45.3 Female F3 C/T 3a 6.53 SVR 

48.0 Male Chirrhosis Child a C/C 1b 5.36 SVR 

48.2 Male F0-1 C/T 1a 7.52 Relapse 

49.1 Male F3 C/T 3a 6.34 Relapse 

54.0 Female F0-1 C/C 1a 7.01 Relapse 

54.0 Male F3 C/C 3a 6.61 Relapse 

54.8 Male Chirrhosis Child A C/T 3 6.48 Relapse 

55.0 Female F3 C/T 1b 6.16 SVR 

60.0 Male Chirrhosis Child A C/C 2 6.30 SVR 

70.1 Female F2 C/C 1b 4.13 LFU 

* LFU = lost through follow-up, SVR = sustained viral response. 

The patients were referred to initiate treatment with pegylated IFN-α plus ribavirin, but did not 

receive this therapy until blood was drawn for this study. Samples were stored at −80 °C until thawed 
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for biological assays. The candidate C/T single-nucleotide polymorphism upstream from IL28B 

(rs1297860) was genotyped, and the distribution of CD28B polymorphisms was 8 C/C, 12 C/T, 5 T/T. 

All participants’ rights were protected, and according to the Helsinki Declaration, informed consent 

was obtained that a small portion of their blood collected for routine examinations was forwarded for 

further scientific testing. 

2.2. Laboratory Variables 

HCV load was determined by quantitative polymerase chain reaction using the Roche assay 

(COBAS AmpliPrep/COBAS TaqMan HCV Test, v2.0, Roche, Basel, Switzerland). Tryptophan and 

kynurenine concentrations were measured by high performance liquid chromatography as described [23]. 

After precipitation of protein with trichloroacetic acid, tryptophan was measured by detection of its 

native fluorescence at 285 nm excitation and 365 nm emission wavelengths. Kynurenine and internal 

standard L-nitrotyrosine were monitored by UV-absorption at 360 nm wavelength. Standard 

preparations containing tryptophan, kynurenine and nitrotyrosine in the presence of albumin underwent 

the whole procedure like serum specimens. To estimate the breakdown rate of tryptophan, the ratio of 

the concentrations of the enzyme product kynurenine to the substrate tryptophan (KYN/TRP) was 

calculated [24]. In addition, neopterin concentrations were measured by enzyme-linked immunosorbent 

assay (BRAHMS GmbH, Hennigsdorf, Germany) [25]. To estimate production of nitric oxide (NO.), 

the stable NO. metabolite nitrite (NO2
−) was determined in the sera by the Griess reaction assay [26]. 

2.3. Statistical Analysis 

Statistical comparisons were made using non-parametric tests because some of the data sets did not 

show normal distribution: Kruskal-Wallis test was used for comparison of several groups, and 

Wilcoxon paired rank test for comparisons of two groups only. Two-sided Spearman rank correlation 

was applied to test for associations between variables. P-values below 0.05 were considered to indicate 

significant differences or associations. 

3. Results 

Average ± S.D. HCV load in patients was 5.7 ± 1.0 lg copies/µL. Tryptophan concentrations were 

51.4 + 14.6 µmol/L vs. 67.4 ± 10.2 µmol/L in healthy controls of similar age distribution (Geisler  

et al. [27]) (p < 0.001), and kynurenine concentrations were 2.1 ± 1.0 µmol/L vs. 1.78 ± 0.42 µmol/L 

in healthy controls (p < 0.05), resulting in KYN/TRP of 41.6 ± 22.3 µmol/mmol vs. 26.7 ± 6.2 µmol/L 

in healthy controls (p < 0.01). Neopterin concentrations were 7.8 ± 8.7 nmol/L and higher than normal 

(p < 0.05) and nitrite levels were 11.9 ± 21.2 µmol/L. 

When comparing different subgroups according to IL28B polymorphisms, kynurenine concentrations 

were found to significantly differ between the three groups (² = 6.22, p <0.05; Table 2). Further 

analysis revealed that the C/C genotype was associated with higher KYN/TRP (56.4 ± 33.7 µmol/mmol,  

n = 8) than the C/T genotype (35.7 ± 10.9 µmol/mmol, n = 12; U = 2.08, p <0.05) or the T/T genotype 

(31.9 ± 4.51 µmol/mmol, n = 5; U = 2.20, p < 0.05), see Figure 1. 
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There was no difference between C/T and T/T genotypes regarding KYN/TRP. C/C genotype was 

associated with higher KYN/TRP than non-C/C genotype (C/C 33.7 ± 9.50 µmol/mmol; U = 2.447,  

p = 0.01). Although the range of KYN/TRP in the 8 IL28B CC patients is wide (individual levels: 

25.7, 36.0, 46.3, 47.1, 47.2, 52.8, 59.9, 136 µmol/mmol), 2/8 patients with CC genotype had higher 

ratios (>37 µmol/mmol) than the highest ratio found in TT. On the other hand, CT genotype was 

associated with in-between levels, 8/12 patients presenting with KYN/TRP above the threshold level. 

There was only a trend of a difference between the three groups for kynurenine concentrations  

(² = 5.63, p = 0.060), C/C genotype presented with higher kynurenine concentrations (2.76 ± 1.48 

µmol/L, n = 8) than the T/T genotype (1.41 ± 0.44 µmol/L, n = 5; U = 2.08, p < 0.05), and there was a 

tendency towards a difference between C/C and C/T genotypes (U = 1.90, p < 0.06, Figure 1). 

 

Figure 1. Distribution of concentrations of kynurenine to tryptophan (KYN/TRP, upper 

left) kynurenine (upper right), tryptophan (lower left) and nitrite (lower right) 

concentrations in patients with HCV infection split into 3 groups according to IL28B 

genotypes C/C, C/T and T/T (mean + S.E.M. is shown for each genotype, * p < 0.05,  
# p <0.06). 
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Mean neopterin concentrations also showed a tendency towards higher levels in patients with C/C 

genotype than in patients of the other two groups (Figure 2), but this difference did not reach statistical 

significance. The opposite trend was observed for nitrite with lower levels in patients with C/C 

genotype as compared with the other 2 groups (Figure 2), but again failed to reach the level of 

statistical significance. Likewise, HCV load was not different between any of the genotypes  

(all p-values > 0.200). 

 

Figure 2. Distribution of HCV load (upper left), neopterin concentrations (upper right) and 

age in patients (lower) with HCV infection split into three groups according to IL28B 

genotypes C/C, C/T and T/T (mean + S.E.M. is shown for each genotype, * p < 0.05). 

Patients with the C/C genotype were older (49.1 ± 13.6 years) than those with C/T (41.4 ± 9.67) or 

T/T genotype (31.5 ± 7.57; U = 7.044, p < 0.05), and also C/C genotype patients were older than the 

patients with other than C/C genotype (U = 2.446, p = 0.014). Older age was associated with higher 

kynurenine concentrations (rs = 0.470, p < 0.05), but there was neither such association of age with 

KYN/TRP nor (rs = 0.283, n.s.) with neopterin (rs = 0.065, n.s.). 
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There was no statistically significant relationship between any of the biomarkers of tryptophan 

metabolism and HCV load (all p > 0.150). By contrast, neopterin concentrations correlated inversely 

with HCV load (rs = −0.406, p < 0.05) without interferon therapy, indicating that higher neopterin 

concentrations at baseline were associated with SVR independent of IL28B status. There was also a 

trend towards a correlation with nitrite levels (rs = 0.369, p = 0.070). Notably there was no significant 

correlation between KYN/TRP and neopterin concentrations. 

4. Discussion 

IL28B polymorphism is a major determinant of treatment efficacy with pegylated IFN-α + ribavirin 

and has also been found to predict treatment response in patients receiving direct antivirals [28].  

Not only HCV clearance but also side effects of therapy were observed to be influenced by IL28B 

genotype, e.g., genotype C seemed to show better treatment response and less side effects of therapy [5]. 

Existing data indicate that antiviral and neuropsychiatric biochemical pathways are differently influenced 

in patients according to their genotype. Alterations of tryptophan metabolism could play a key role for 

both aspects, because on the one hand, cytokine induced tryptophan breakdown represents a key 

element of the antiviral immune responses and also in immunoregulation [17,29]. On the other hand, 

tryptophan availability is central for neurotransmission as a precursor molecule of neurotransmitter  

5-hysdroxytryptamine (5HT, serotonin) and of neurotoxins like quinolinic acid and of nicotinamide 

adenine dinucleotides NAD/NADH [30–32]. 

An increased tryptophan breakdown rate has been described in patients with HCV infection and was 

regarded as a result of activated IDO due to an antiviral immune response [18,19]. IDO activity was 

further accelerated during IFN-α + ribavirin treatment [33]. In our cohort of untreated patients with 

HCV infection an accelerated tryptophan breakdown rate was indicated by higher KYN/TRP as 

compared with healthy controls, results agreeing well with data from the literature [18,19]. However, 

neither kynurenine nor KYN/TRP and tryptophan concentrations correlated with neopterin levels.  

This is an unusual observation because in earlier studies in several groups of patients with, e.g.,  

human immunodeficiency virus infection, autoimmune syndromes like rheumatoid arthritis or systemic 

lupus erythematosus or various types of cancer, close positive correlations between KYN/TRP and 

neopterin production were reported [34]. And such a close relationship between an immune activation 

marker like neopterin and KYN/TRP can be regarded as an indicator for an activated IDO when a  

pro-inflammatory stimulus would induce tryptophan breakdown in parallel with neopterin production 

in macrophages. However, the lack of correlation between neopterin and KYN/TRP in our study 

cannot confirm this relationship. It may suggest that other cells than macrophages, e.g., hepatocytes 

are important for IDO activity and/or that the second tryptophan-degrading enzyme, namely hepatic 

tryptophan 2,3-dioxygenase (TDO), could be involved in the enhancement of KYN/TRP [30].  

Both aspects are supported by the fact that HCV infection is strongly affecting liver metabolism and 

could represent part of an immune evasion strategy of HCV. Moreover, in an earlier study it was found 

that while neopterin levels in HCV infected patients correlated significantly with endogenous IFN- 

levels, this correlation disappeared under therapeutic administration of IFN-α [35]. 

IL28B genotype was found to influence kynurenine concentrations and KYN/TRP, C/C genotype 

being associated with highest levels whereas patients with C/T genotype presented with lower levels, 
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and lowest levels were observed in T/T genotype patients (Table 2). Neopterin concentrations showed 

some trend towards the same direction (Figure 1), the differences of neopterin levels did not reach the 

level of statistical significance. Data shows that it is not just the treatment response which is influenced 

by IL28 polymorphism, already the baseline tryptophan breakdown rate was different between groups. 

Similar observations were made earlier when concentrations of IFN- inducible protein 10 kDa (IP-10 

or CXCL10) were compared [36,37]. With this background of a significant association between 

neopterin and IFN- concentrations in HCV infection [35] one would expect that significant alterations 

of neopterin concentrations existed between patients with different genotypes, but although the mean 

values of neopterin concentrations seemed to follow the same trend as KYN/TRP, the number of 

patients studied was obviously too small and the study might be underpowered to detect such a 

difference statistically. 

Table 2. HCV load, tryptophan, kynurenine, nitrite and neopterin concentrations as well as 

the kynurenine to tryptophan ratio (KYN/TRP) in patients with HCV infection grouped 

according to IL-28B polymorphisms (mean ± S.D. are shown; n.s. = not significant). 

IL28B Polymorphism 
C/C C/T T/T non-C/C 

2, p * U, p ** 
(n = 8) (n = 5) (n = 12) (n = 17) 

HCV load [log 10 copies/µL] 5.56 ± 1.38 5.87 ± 0.92 5.63 ± 0.73 5.80 ± 0.85 0.183, n.s. 0.146, n.s. 

Age [y] 49.1 ± 13.6 41.4 ± 9.67 31.5 ± 7.57 38.5 ± 10.1 7.044, 0.030 1.806, 0.075 

Tryptophan [µmol/L] 49.5 ± 10.5 55.8 ± 17.7 43.8 ± 9.54 52.2 ± 16.4 2.603, n.s. 0.058, n.s. 

Kynurenine [µmol/L] 2.76 ± 1.48 1.92 ± 0.55 1.41 ± 0.44 1.77 ± 0.55 5.627, 0.060 1.748, 0.086 

Kyn/Trp [µmol/mmol] 56.4 ± 33.7 35.7 ± 10.9 31.9 ± 4.52 33.7 ± 9.50 6.218, <0.05 2.447, 0.014 

Nitrite [µmol/L] 6.58 ± 5.16 10.6 ± 16.7 14.32 ± 15.3 8.17 ± 10.1 0.916, n.s. 0.233, n.s. 

Neopterin [nmol/L] 10.1 ± 14.8 6.96 ± 4.30 5.28 ± 1.53 6.47 ± 3.73 0.805, n.s. 0.175, n.s. 

* p-values, comparison of C/C, C/T and T/T groups, Kruskal Wallis test; ** p-values, comparison of C/C vs. 

non-C/C groups, Mann Whitney U-test/. 

Nitrite concentrations were highest in patients with the T/T genotype, lower in C/T and lowest in 

C/C genotype (Table 2), but again the differences between groups were not significant. Higher nitrite 

levels are considered to allow some conclusions about NO. production rates [38]. The determination of 

nitrite concentrations is regarded to be superior to nitrate or nitrite+nitrate measurements because 

nitrates are not only final products of NO. oxidation via nitrites, but could also be produced from 

peroxynitrites, formed upon the reaction of NO with oxygen free-radicals like superoxide anion (O2
−). 

Since it is well known that NO. production could affect IDO expression and activity [39], one might 

expect to exist an inverse relationship between KYN/TRP and nitrite concentrations. Indeed the 

comparison between IL28B genotypes gives the impression that mean values of nitrite behave in  

a mirror shaped from when compared to KYN/TRP, kynurenine or neopterin concentrations.  

However, no significant relationship was found in our cross-sectional data set when correlation 

analysis was performed. Again the small number of patients studied might prevent to detect such a 

difference by statistics. 

In our study, there existed a significant relationship between IL28B polymorphism and tryptophan 

breakdown expressed as KYN/TRP. Tryptophan breakdown could thus play a role in the distinct  

IFN-α responses of patients according to the C/C, C/T and T/T genotypes. Especially the observation 
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that C/C genotype was associated with higher KYN/TRP than non-C/C genotype is in good agreement 

with the observed treatment response in patients according to IL28B polymorphism. Differences in 

tryptophan metabolism could contribute to the findings regarding HCV clearance, because tryptophan 

breakdown represents an important antiviral mechanism. Also influence of IL28B polymorphism on 

side effects of IFN-α therapy could easily relate to a distinct biochemical background which is  

pre-existing in untreated patients. Earlier studies have proven that IL28B polymorphism is a major 

determinant of treatment efficacy in patients treated with PEG-IFN-α plus ribavirin [40,41]. Not only 

HCV clearance but also side effects of therapy were observed to be influenced by IL28B genotype.  

So the C allele in rs1297860 was associated with both, improved viral clearance with more frequently 

sustained viral response but also with more somatic complaints, like loss of energy, worsened sleep 

and change in appetite [36,37,41,42]. Tryptophan availability is crucial for neurotransmission as a 

precursor molecule of serotonin and of neurotoxins like quinolinic acid and of nicotinamide adenine 

dinucleotides NAD [30–32]. 

Also in patients with HIV and HCV co-infection, low pre-treatment levels of IP-10 are associated 

with significantly higher sustained viral response rates upon IFN-α therapy than patients with high  

IP-10 levels. Surprisingly in our study, kynurenine levels and KYN/TRP were highest in patients with 

the C/C genotype which is usually an indicator of superior treatment response. So the question arises 

whether IDO activity as is indicated by higher KYN/TRP is representative for the immunosuppressive 

consequences of the enzyme rather than its relationship to IFN production. Like IDO, IP-10 has an 

antiviral and immunosuppressive function by activating the innate immune system. This may also 

explain the fact that patients with lower levels of IP-10 have a higher first-phase decline in HCV RNA, 

so these are good virological responders and high pre-treatment IP-10 were associated with  

non-response [40,41]. 

IFNs are well known to activate the kynurenine pathway of tryptophan metabolism. The results of 

this study suggest a previously unknown association between response to antiviral treatment and 

activity of tryptophan metabolism. Literature data pointed to an inverse correlation between antiviral 

response and concentrations of proteins, production of which is encoded by interferon-stimulated 

genes [41]. In the absence of treatment response data we can only speculate that IFN-induced 

expression of genes is of greater relevance in the control of HCV than previously thought. Also the 

induction of neopterin and ß2-miocroglobulin was found previously to relate to outcome of therapy 

with IFN-α2b [35]. Those patients with lower baseline levels of the biomarkers were those who 

responded better to IFN-α therapy when a greater increase of neopterin and B2M concentrations can be 

achieved. Moreover, the rate of response to antiviral therapy was reported to be higher among HCV 

patients with lower pretreatment neopterin levels [42]. Neopterin predicted rate of response even after 

controlling for HCV genotype status, one the strongest predictors of response to treatment. In our 

study, there was a statistically significant inverse relationship between HCV load and neopterin 

concentrations before IFN therapy, indicating that in the natural history of HCV infection higher 

baseline neopterin concentrations were associated with SVR independent of IL28B status. Data might 

correspond to an endogenous immune response against HCV which is to some part able to control 

virus production rates. 

Former studies revealed that patients’ age influenced the viral clearance upon therapy [43,44].  

Our patients with the C/C genotype were older than patients with the T/T genotype, and according to 
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literature there exists a relationship between older age and higher tryptophan breakdown rates and 

usually also between kynurenine and KYN/TRP with neopterin concentrations that is most probably 

due to increasing inflammation with older age [45]. However, in our patients there were no such 

correlations between increased tryptophan breakdown and age or neopterin concentrations. Still older 

age could contribute to the association of kynurenine levels and KYN/TRP with IL28-2B genotypes. 

Data may indicate that in patients with C/C genotype HCV infection progresses to a slower degree 

than in patients with other genotypes thus seeking the physician and hospital later. 

Limitations 

The number of patients investigated in this study is still low and so the results of the study need to 

be confirmed in independent and larger study cohorts. The predictive value of tryptophan metabolic 

changes regarding treatment response still needs to be elaborated. 

5. Conclusions 

There exists a significant relationship between IL28B polymorphism and kynurenine production 

due to tryptophan breakdown. Tryptophan breakdown could thus play a role in the distinct IFN-α 

responses of patients according to the C/C, C/T and T/T genotypes. Differences in tryptophan metabolism 

could relate to HCV clearance, because tryptophan breakdown represents an important antiviral 

mechanism. Also influence of IL28B polymorphism on neuropsychiatric side effects of IFN-α therapy 

could easily relate to a distinct biochemical background, which is pre-existing in untreated patients. 

Moreover, cirrhosis/stage, age, HCV genotype, viral load and gender are important and could all 

influence the values reported (see characteristics of patients in Table 1), but could not be adequately 

controlled for. However, we analyzed baseline values only and any conclusion about a relationship 

between tryptophan breakdown and treatment response cannot be drawn. Such a relationship still 

needs to be demonstrated. One might speculate that spontaneous clearance or fibrosis progression 

might relate to the immune mechanisms which were found to exist already before the treatment of 

patients with IFN. This is especially of relevance when meanwhile IL28B genotype has lost prognostic 

impact in nearly all phase 3 trials. 

In sum the results of our study can only be regarded as preliminary and the number of patients still 

needs to be extended to be able to prove an association between the IL28B polymorphism and the 

tryptophan breakdown rate and the possible involvement of IDO. 
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