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Abstract: The advancement of high-throughput sequencing and genomic analysis revealed that
acute lymphoblastic leukemia (ALL) is a genetically heterogeneous disease. The abundance of such
genetic data in ALL can also be utilized to identify potential targets for drug discovery and even drug
repurposing. We aimed to determine potential genes for drug development and further guide the
identification of candidate drugs repurposed for treating ALL through integrated genomic network
analysis. Genetic variants associated with ALL were retrieved from the GWAS Catalog. We further
applied a genomic-driven drug repurposing approach based on the six functional annotations to
prioritize crucial biological ALL-related genes based on the scoring system. Lastly, we identified the
potential drugs in which the mechanisms overlapped with the therapeutic targets and prioritized
the candidate drugs using Connectivity Map (CMap) analysis. Forty-two genes were considered
biological ALL-risk genes with ARID5B topping the list. Based on potentially druggable genes that
we identified, palbociclib, sirolimus, and tacrolimus were under clinical trial for ALL. Additionally,
chlorprothixene, sirolimus, dihydroergocristine, papaverine, and tamoxifen are the top five drug
repositioning candidates for ALL according to the CMap score with dasatinib as a comparator. In
conclusion, this study determines the practicability and the potential of integrated genomic network
analysis in driving drug discovery in ALL.

Keywords: acute lymphoblastic leukemia; bioinformatics; leukemia; drug repurposing; genetic
variants; genomic network analysis

1. Introduction

Acute lymphoblastic leukemia (ALL) is not a common disease. However, it is the most
common type of cancer in childhood [1]. ALL also represents 75–80% of acute leukemias
in children but only 20% in adults [2] and is characterized by proliferation of immature
lymphoid cells mainly in the bone marrow and peripheral blood [3]. Although disparities in
the region, sex, and age were found, the incidence rate and death rate of ALL were relatively
stable during 1990–2017 [3]. During that period, the global incidence case of ALL increased
by 30.81% while the age-standardized incidence rate remained stable [3]. ALL-related
death also increased by approximately 40.15% worldwide [3]. Due to advancements in the
understanding of the molecular genetics and pathophysiological aspects of the disease,
risk-adapted treatment algorithms, development of targeted agents, and integration of
allogeneic hematopoietic stem cell transplantation (HSCT), the cure rates and survival
outcomes for childhood ALL patients have improved significantly over the past several
decades [4]. However, there is a subset group that has a proportionally inferior outcome
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such as the older adolescent and young adult (AYAS) patients, patients with induction
failure and relapse in pediatric ALL [5].

Years of research revealed that ALL is a genetically heterogeneous disease. The
advancement of high-throughput sequencing and genomic analysis, such as genome-wide
association studies (GWAS), have led to numerous studies identifying multiple inherited
conditions with predispositions to ALL. ALL can be classified according to the presence
of different somatic genetic variations that influence the therapeutic response and overall
prognosis [6]. Hence, such information is critical for disease evaluation, optimal risk
stratification, and treatment planning.

Certain recurrent genetic abnormalities, such as translocation t(9;22)-BCR-ABL1 fusion
(Ph-positive ALL), hypodiploidy (< 44 chromosomes), BCR-ABL1-like (Ph-like) ALL, hyper-
diploidy (51–67 chromosomes), t(v;11q23.3) (KMT2A-rearranged), t(12;21) (ETV6-RUNX1),
t(1;19) (TCF3-PBX1) and t(5;14) (IL3-IGH) represent prognostic factors in children and
adolescents with ALL [7,8]. Philadelphia-positive ALL (Ph-positive ALL), which accounts
for around 3% of childhood and increases up to 30% as the age of the patients increases,
shows a poorer prognosis than other ALL types [7,9]. The incorporation of tyrosine kinase
inhibitors (TKIs) such as imatinib significantly improved outcome in Ph-positive ALL pa-
tients [10]. Due to the developing imatinib resistance, the second generation TKI dasatinib
is also included in the treatment of childhood Ph-positive ALL [7]. However, the rapid
development of resistance to TKIs remains a problem that drives the development of new
therapies for relapsed/TKI-resistant Ph-positive ALL.

The abundance of such genetic data in ALL can also be utilized to identify poten-
tial targets for drug discovery and even drug repurposing. Under such circumstances,
ALL-associated genomic variants may ultimately be a good starting point for the imple-
mentation of drug repurposing through the concept of genomic-driven drug repurposing.
The concept of drug repurposing is proposing an alternative path to utilize the old drug
for a new indication. This concept is one of the most promising strategies for translational
medicine nowadays [11,12]. In the era of genomic medicine, genomic information (i.e.,
through GWAS) can be utilized to accelerate the discovery of new indications for old
drugs [13]. Several approaches can be applied, including the identification of compounds
by linking individual loci to genes and pathways that can be pharmacologically modu-
lated, transcriptome-wide association studies, gene-set association, causal inference by
Mendelian randomization, and polygenic scoring [11]. Such an approach can also lead to
more effective and targeted drug discovery. However, using high-throughput omics data
from multiple studies to further guide effective drug development remains a challenge.
Through this study, we aimed to determine potential genes for drug development and
further guide the identification of candidate drugs repurposed for treating ALL through
integrated genomic network analysis—an in silico-based approach.

2. Results
2.1. Prioritizing Variants from the GWAS Catalog

Using the predetermined criteria, our search within the GWAS Catalog resulted in
128 hits revealing 74 ALL risk-associated SNPs spreading across 57 known genes (Table 1).
Details of search results can be found in Table S1. Expansion of these genes using HaploReg
v4.1 resulted in 57 ALL-associated genes.

2.2. Prioritizing Biological Risk Gene for ALL

Six biological functional annotations were then applied to 57 ALL-associated genes
for further prioritization. Most of the identified genes (n = 42; 73.7%) were considered
biological ALL-risk genes with scores ≥ 2. We found that 5 out of 57 genes (8.8%) were
identified through enrichment analysis in the KEGG database. Missense variations were
found in seven genes (12.3%). Cis-eQTL data were found in 12 genes (21.1%) based on
whole blood tissue. As many as 52.6%, 63.2%, and 82.5% of genes were supported by
biological process, cellular component, and molecular function data, respectively, following
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integrated analysis using the KEGG and DAVID database. Thus, each gene earned a score
based on the number of criteria fulfilled (score ranging from 0 to 6 for each gene). The
detailed results can be found in Figure 1. As shown in Figure 1A, the top five biological ALL
risk genes include ARID5B, SP4, ZNF222, ZNF223, and ORMDL3. As shown in Figure 1B,
4 genes scored 0, 11 genes scored 1, and 42 genes with total scores ≥ 2. The 42 genes with
a score ≥ 2 were defined as “biological ALL risk genes”. Most of the biological ALL risk
genes were scored three (19 genes). ARID5B is the most plausible gene due to its high score
(score = five).

Table 1. ALL risk genes that were identified from the GWAS Catalog.

Gene No. of SNPs No. of Hits in GWAS Catalog

IKZF1 3 13
ARID5B 4 12
GATA3 1 11

SLC7A8, CEBPE 2 7
CDKN2A 3 4

LHPP 3 4
PIP4K2A 3 4
CCDC26 3 3

ELK3 1 3
GPATCH2L 1 3

OR5AL1, OR5AL2P 1 3
PDE4B 3 3

RNU6-366P, CPSF2 1 3
TP63 1 3

CSGALNACT1, INTS10 1 2
DDC, FIGNL1 1 2

ERG 1 2
AGBL1 1 2
PTPRJ 1 2

RN7SL361P, BCL11A 1 2
RNU6-1091P, IKZF1 2 2

RPL6P5 1 2
Other genes with 1 hit 33 33

Not known genes 2 3

TOTAL 74 128Pharmaceuticals 2022, 15, x FOR PEER REVIEW 4 of 13 
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Figure 1. (A) List of genes with the score following application of functional annotations criteria.
(B) The number of genes for each score following application of functional annotations criteria.
(C) The number of genes overlapped with each functional annotations criterion. Most of the genes
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2.3. Drug Target Gene to Be Overlapped with a Drug Database

Forty-two biological ALL-risk genes were expanded by using the STRING database.
Fifty interactions were selected to perform the calculation and expand the number of
genes. After expansion using the STRING database, we generated 92 genes as drug target
genes that we regarded as the final list of candidate genes for further analysis. Next, we
mapped 92 drug target genes into the DrugBank database with several parameters, such as
drugs with pharmacological activity, human efficacy, and annotations of approved, clinical
trials or experimental drugs. It is important to note that not all drug target genes can be
druggable. Only 15 drug target genes were found to bind to 37 drugs (Figure 2).
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genes” (Figure 2). The data visualization in this figure was produced using RAWGraphs visualization
(https://app.rawgraphs.io/ accessed on 12 July 2022).

2.4. Candidate Drug for ALL Undergoing Clinical Trial

We further analyzed the drugs listed in Figure 3 to identify the most potential drugs
for ALL using CMap analysis. If the two selected drugs (the candidate drugs and dasatinib
as a comparator) have a strong positive correlation, the candidate drugs potentially have
similar effects in patients with ALL. Intriguingly, we successfully prioritized the list into
16 drugs with 9 candidate drug target genes (Figure 3). We further reviewed the list of drugs
using ClinicalTrials.gov (https://clinicaltrials.gov accessed on 13 July 2022) to identify if
any clinical research is conducted on the drugs, especially for ALL. Interestingly, we found
that three drugs, namely palbociclib, tacrolimus and sirolimus are under clinical trial for
ALL. Palbociclib is known as an emerging option for patients with HR+/HER2− advanced
or metastatic breast cancer, while tacrolimus and sirolimus are already extensively studied
in ALL patients receiving stem cell transplantation.

https://app.rawgraphs.io/
https://clinicaltrials.gov
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Figure 3. The candidate drugs for acute lymphoblastic leukemia (ALL) are based on CMap analysis.

2.5. Candidate Drug for ALL according to CMap Analysis

We further ranked the CMap score of the listed drugs. Chlorprothixene, sirolimus,
dihydroergocristine, papaverine, and tamoxifen are the top five drug repositioning candi-
dates when using dasatinib as the comparator with respective CMap scores of 88.76, 87.80,
84.11, 83.98, and 80.92 (Table 2). We found that those drugs also target potential genes that
played a role in the development of ALL, such as HTR1B, FKBP1A, HTR1B, PDE4B, PRKC,
and PCRKCI. The results suggested an opportunity to repurpose a nonantineoplastic drug
as a component for ALL treatments with new target genes.

Table 2. The top five drug repositioning candidates for acute lymphoblastic leukemia (ALL) were
prioritized based on the CMap comparison to dasatinib.

Drugs Original Indications Mode of Actions Drug Target Genes CMap (Score)

Chlorprothixene Schizophrenia inhibitor HTR1B 88.76
Sirolimus Immunosuppressant inhibitor FKBP1A 87.80

Dihydroergocristine Cerebrovascular Diseases antagonist HTR1B 84.11
Papaverine Vascular spasm Inhibitor PDE4B 83.98
Tamoxifen Breast cancer inhibitor PRKC, PRKCI 80.92

3. Discussion

In this study, we reported potential genes as new drug targets and proposed several
drugs potentially to be repositioned for ALL through integrated genomic network analysis.
We successfully mined 57 genes that were associated with the increased risk of childhood
ALL through the utilization of the GWAS Catalog and expansion of these genes using
HaploReg v4.1. To further prioritize the genes which might become potential new drug
targets, we scored the genes by applying six functional annotations. Forty-two genes were
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considered biological ALL risk genes. In line with several metanalyses, we found that
ARID5B was the most plausible gene [14–16].

Noteworthy, ARID5B, a member of the AT-rich interactive domain (ARID) protein
family, is associated with the incidence and prognosis of ALL, as shown in previous stud-
ies [17]. ARID5B act as epigenetic regulators by binding with specific or unspecific AT-rich
sequences of genomic DNA, and interacting with their partners to modulate chromatin
structures. ARID proteins also play an important part in the regulation of development
and/or tissue-specific gene expression, especially B-lymphocyte progenitors whose in-
appropriate expression may enhance tumorigenesis [18–20]. Latest study also reported
that expression of ARID5B varied significantly across ALL subtypes [21]. Variations in
this gene also contributed to ethnical disparities in ALL with Hispanic and local native
Americans were highly associated [22,23]. A study also showed that compared to healthy
bone marrow controls, ARID5B is considerably down-regulated in ALL. Low expression
of ARID5B or ARID5B and PHD finger protein 2 (PHF2) is correlated with the markers of
cell proliferation and poor prognosis in ALL patients. Interestingly, Ikaros, the product
of IKZF which is essential transcription factor for lymphocyte development and a key
suppressor in leukemogenesis, directly regulates ARID5B expression in ALL [24]. A study
also showed that forced expression of ARID5B in immature thymocytes causes thymus
retention, differentiation arrest, radioresistance, and tumor development in zebrafish. This
is because ARID5B is necessary for the survival and expansion of T-ALL cells [25]. Besides
its association with the pathogenesis of the disease, ARID5B also played a role in ALL prog-
nosis. ARID5B knockdown on cell models led to resistance specific to antimetabolites such
as 6-mercaptopurine and methotrexate in part through p21-mediated cell-cycle arrest [21].
Additionally, genetic variations in ARID5B were associated with serum methotrexate and
its metabolite (7-OH-MTX) [26]. It is hypothesized that inherited genetic variations of
ARID5B SNPs lead to the down-regulation of ARID5B expression which further contributes
to reduced ARID5B expression, blockade of normal lymphocyte development, and finally
triggering leukemic clonal expansion [17]. Further studies could be directed to reveal the
therapeutic significance of ARID5B for the development of ALL treatments.

Following the integration of the STRING dan DrugBank database, we identified
37 drugs that overlapped with 15 candidate drug target genes. Three drugs were already in
clinical trials for ALL based on the clinicaltrials.gov database: palbociclib, sirolimus, and
tacrolimus. Palbociclib, originally indicated for breast cancer, underwent several phase-I
trials on relapse and refractory ALL (NCT03472573, NCT04996160, and NCT03132454) due
to its activity on CDK6. Since expression of cell cycle regulatory kinase CDK6 is required for
the proliferation and survival of Ph-positive ALL cells, palbociclib could potentially stop
the proliferation and accelerate the apoptosis of ALL cells [27]. Sirolimus and tacrolimus
which target FKBP1A are also studied especially for ALL patients treated with human stem
cell transplant (HSCT) [28,29].

Based on CMap database analysis, we listed the top-five drugs potentially to be repur-
posed for ALL: chlorprothixene, sirolimus, dihydroergocristine, papaverine, and tamoxifen.
Surprisingly, only one drug with cancer as the original indication appears on the list. Pre-
vious research has reported the potential therapeutic effect of tamoxifen in combination
with other therapeutics to enhance the antineoplastic effect of the main drugs. The earliest
in vitro study reported that tamoxifen showed cytotoxicity to ALL [30]. Tamoxifen also ef-
fectively enhanced the growth-inhibiting actions of various differentiation-inducing agents
such as all-trans retinoic acid (ATRA) in acute promyelocytic leukemia cells [31] while the
latest research reported that tamoxifen acting on cyclophilin D (CypD) sensitizes T-ALL
to mitocans by altering the mitochondrial Ca2+ homeostasis [32]. As triphenylethylene
antiestrogen, adjuvant tamoxifen with ceramide-centric therapies could increase the thera-
peutic potential in acute myelogenous leukemia [33]. Additionally, tamoxifen-sensitized
Jurkat cells to dexamethasone treatment, which may be related to its capacity to cause
autophagy indicating its potential benefit in T-ALL patients [34]. Finally, a phase-I trial
of high-dose tamoxifen in combination with daunorubicin in patients with relapsed or
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refractory acute leukemia suggests that concentrations of tamoxifen high enough to reverse
the multidrug-resistant phenotype and that such combination has acceptable toxicity [35].
Our study suggests that tamoxifen targets PRKCI that encodes a member of the protein
kinase C (PKC) family of serine/threonine protein kinases and is found to be necessary for
BCR-ABL-mediated resistance to drug-induced apoptosis and therefore protects leukemia
cells against drug-induced apoptosis [36].

Our study also proposed the potential therapeutic benefit of chlorprothixene, a
dopamine receptor antagonist, and dihydroergocristine (DHECS), an ergot alkaloid for
ALL targeting HTR1B. An in silico analysis followed by an in vitro study suggested that
chlorprothixene potentially inhibits the growth of acute myeloid leukemia (AML) cells
from different subtypes through RNA-seq analysis [37]. Chlorprothixene induced cell cycle,
apoptosis, and autophagy in AML cells and inhibited tumor growth, and induced in situ
leukemic cell apoptosis in the murine xenograft model [37]. Furthermore, chlorprothixene
reduced the level of oncofusion proteins PML-RARα and AML1-ETO led to the elevation
of expression of apoptosis-related genes [37]. An in vitro study also reported that DHECS
was effective in inducing cell cycle arrest and apoptosis in chemoresistant human prostate
cancer cells [38]. Looking at the target gene, the presence of serotonin receptor 1B (HTR1B)
is needed for AML to progress [39]. Treatment with HTR1B antagonists reduced chronic
myeloid clonal neoplasms cell viability and showed a synergistic cytotoxic effect with
currently approved hypomethylating agents in AML cells [40]. Another study showed
that papaverine which in our analysis targeted PDE4B, induces ROS generation, promotes
apoptosis, and inhibits Bcr-Abl downstream signaling, thus acting synergistically with the
drug imatinib [41]. Phosphodiesterase 4B (PDE4B), the main hydrolyzer of cyclic AMP
(cAMP) in B cells, was shown to be involved in cell survival and drug resistance in diffuse
large B cell lymphomas (DLBCL) [42]. The aforementioned in vitro studies highlighted the
potential anticancer properties of non-antineoplastic drugs. Therefore, future functional
studies to investigate the mechanisms of how the drugs affect ALL and in vivo studies to
strengthen the evidence are needed.

Our study possesses strengths as well as limitations. By using genetic and molecular
data on the drugs that are already available in the databases, drug repurposing through
such integrated genomic network analysis is a comprehensive resource and a time-efficient
process for narrowing down the candidate drugs. Unfortunately, not all the candidates of
the drug target genes were druggable. We also noted that the CMap database has not yet
included specific transcriptome data from ALL cell lines. Moreover, a study evaluating the
performance of CMap reported limited reproducibility in drug repositioning [43]. Thus,
standard steps to limit false positives are needed. Finally, the candidate drugs found in this
pipeline have not been validated. Nevertheless, further research is required to verify the
findings, such as molecular docking, in vivo or in vitro study.

4. Materials and Methods
4.1. Design

Initially, we conducted the identification of the genomic variant associated with ALL,
which was retrieved from the GWAS Catalog. We further applied a genomic-driven drug
repurposing approach based on the predetermined criteria to prioritize crucial biological
ALL-related genes which were called “biological ALL risk genes”. Such predetermined
criteria were needed to filter the candidate genes according to their potential involvement
in the trait, as mentioned in the previous publications [44,45]. These genes were suggested
to be potential targets for therapeutics in ALL. Lastly, we identified the potential drugs in
which the mechanisms overlapped with the therapeutic targets.

4.2. Genetic Variants Associated with ALL

We identified single nucleotide polymorphisms (SNPs) associated with a higher risk
of ALL through multiple GWAS which were curated in one of the largest resources pub-
licly available online (https://www.ebi.ac.uk/gwas/home; accessed on 8 April 2022) [46].

https://www.ebi.ac.uk/gwas/home
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Keywords “acute lymphoblastic leukemia”, “B-cell acute lymphoblastic leukemia”, “child-
hood acute lymphoblastic leukemia”, and “B-cell acute lymphoblastic leukemia with
t(1;19)(q23;p13.3); E2A-PBX1 (TCF3-PBX1) were used to define the traits. The ALL-
associated SNPs with p-value ≤ 10−5 and odds ratio (OR) > 1 were selected. We ascertained
that the variants we found are unique SNPs through the removal of duplicate variants. To
identify other potential pathways, we expanded our variant search through HaploReg v4.1
(Broad Institute, Cambridge, MA, USA) [47] based on the criterion of linkage disequilibrium
(LD) > 0.8. Variants with high LD were then integrated into the 1000 Genome database [48].
It is important to note that the more variants we identified, the more the biological risk
gene for ALL we obtained. Again, we removed all SNPs duplicates following the search
expansion. Steps on utilizing ALL risk genetic variants to identify biological ALL risk genes
and ALL drug target genes were depicted in Figure 4.
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4.3. ALL Risk Genes

Following search expansion through HaploReg v4.1, SNPs encoded genes were further
analyzed to identify the biological risk genes of ALL. We filtered the biological risk genes
with strict annotations to determine genes with higher possibility and stronger evidence.
In total, six criteria were used in this study to prioritize the biological ALL-risk genes.
The genes that fulfilled each criterion will be given one point (maximum six points per
gene). The higher the score of a gene, the greater potential of that biological risk gene. We
applied the following criteria to filter the biological ALL risk genes: (1) missense mutation,
(2) local expression quantitative trait loci (cis-eQTL), (3) biological process, (4) cellular
component, (5) molecular function, and (6) the availability of the variants in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [49]. All those criteria were performed by
R programming language. Missense mutation encoded the genes were prioritized with
the knowledge that functional rules of variants affect protein expression. The missense
mutation was integrated using HaploReg v4.1, while the cis-eQTL was integrated using
the Genotype-Tissue Expression (GTEx) database [50]. GTEx database is used to study
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human gene expression and regulation and its relationship to genetic variation. Cis-eQTL
represents genomic loci near the gene of origin (a gene that generates the transcript or
protein) that contribute to variation in transcript expression levels based on gene expression
in whole blood tissue. Gene ontologies include biological processes, cellular components,
and molecular functions as criteria 3 to 5 consecutive. To construct gene ontologies, the
Database for Annotation, Visualization, and Integrated Discovery (DAVID) online tool
version 6.8 was used (https://david-d.ncifcrf.gov/tools.jsp accessed on 10 May 2022).
Constructing these gene ontologies aimed to understand the relationship between diseases
and biological protein networks. KEGG was integrated with the DAVID database [51]
to conduct molecular enrichment analysis, including biological process and molecular
function analysis.

4.4. Prioritizing the Biological ALL-Risk Genes

Biological ALL-risk genes were prioritized using the scoring system from the six
criteria. Genes scored more than equal to 2 were considered biological ALL-risk genes. The
more biological ALL-risk genes, the more candidate drug target genes we identified. We
proposed the biological ALL-risk genes as candidate drug target genes. Unfortunately, a
very limited number of drug target genes are druggable. Therefore, we further expand
the biological ALL-risk genes to find more candidate drug target genes using the STRING
database [52]. STRING is a database of known and predicted protein–protein interactions,
including direct (physical) and indirect (functional) associations. Lastly, we queried the
candidate of drug target genes for ALL using the expanded biological ALL-risk genes list.

4.5. Drug Identification

To identify the candidate drugs to be repurposed for ALL, we utilized the DrugBank
database (www.drugbank.ca (accessed on 12 May 2022). The drug target genes which
overlap with the drugs from the DrugBank database will be further proposed for drug
repurposing. DrugBank is one of the drug databases and freely accessible databases
containing comprehensive molecular information about drugs, their mechanisms, their
interactions, and their targets [53].

4.6. Connectivity Map (CMap) Analyses

CMap database (https://clue.io/ accessed on 14 May 2022) was utilized to rank the
drugs according to a connectivity score ranging from −100 to 100. CMap is a comprehensive
catalog of transcriptome data from cultured cells exposed with various chemicals, including
drugs. Following a search of intended chemicals, CMap provides a list of small molecules
scored to predict their probability to mimic or reverse gene expression profiles of the
physiological condition (e.g., diseases). In this study, candidate drugs were compared with
dasatinib since tyrosine kinase inhibitor (TKI) is standard therapy for Ph+ ALL patient
group (pediatric, adolescent and young adult, and in adults) [2,8]. If the two selected drugs
(the candidate drugs and dasatinib as a comparator) have a strong positive correlation
(connectivity score > +80), the candidate drugs potentially have similar effects in patients
with ALL.

4.7. Statistical and Integrated Genomic Analysis

All in-house statistical and genomic database scripts for drug repurposing analysis
were written in R programming language (https://www.r-project.org/ accessed on 12 July
2022) using the R Studio 4.0.3 program (RStudio, 250 Northern Ave, Boston, MA, USA).
Drug visualization, which integrates the drug target genes and candidate of a new drug to
be repurposed for ALL was generated using the RAWGraphs visualization program [54].
While the candidate for drug repurposing based on CMap Analysis was visualized by a
chord diagram built using R with the circlize package [55].

https://david-d.ncifcrf.gov/tools.jsp
www.drugbank.ca
https://clue.io/
https://www.r-project.org/
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5. Conclusions

Through integrated genomic network analysis, 42 genes were considered biological
ALL-risk genes with ARID5B topping the list. Based on potentially druggable genes,
palbociclib, sirolimus, and tacrolimus were under clinical trial for ALL. Additionally,
chlorprothixene, sirolimus, dihydroergocristine, papaverine, and tamoxifen are the top five
drug repositioning candidates. In conclusion, this study determines the practicability and
the potential of integrated genomic network analysis in driving drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15121562/s1, Table S1: ALL risk-associated SNPs generated
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