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Abstract: The association between cancer and a hypercoagulatory environment is well described.
Thrombotic complications serve not only as a major mortality risk but the underlying molecular
structure and function play significant roles in enhancing tumour progression, which is defined as
the tumour’s capacity to survive, invade and metastasise, amongst other hallmarks of the disease.
The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects,
but the consequences on tumour progression require interrogation. Therefore, this review considered
developments in the management of platelet activation pathways (thromboxane, ADP and thrombin),
focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour
progression. Published data suggested a cautionary tale in ensuring we adequately investigate not
only drug–drug interactions but also those unforeseen reciprocal interactions between drugs and
their targets within the tumour microenvironment that may act as selective pressures, enhancing
tumour survival and progression.
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1. Introduction

The earliest documented association between cancer and the vascular system was by
the surgeon Sushruta, circa 1000 BC [1,2], in which tumour entry into the blood vessels
was described as resulting in vessel compression and constriction [3]. Much later, in his
1865 lecture, Armand Trousseau proposed a relationship between thrombophlebitis and the
underlying presentation of gastric cancer. These findings were echoed by Osler and McCrae
in 1900 and Sproul in 1938 [3], setting the stage for decades of research investigating the
relationship between thrombotic events and tumour progression. Cancer incidence is rising,
particularly in sub-Saharan Africa [4]. Breast cancer, the most commonly diagnosed cancer
in women worldwide, with an estimated 2.3 million new cases in 2020, is the fifth leading
cause of cancer-related mortality [4,5]. In 2020, breast cancer accounted for 11.7% of new
cases, followed closely by cancers of the lung (11.4%), prostate (7.3%), skin (6.2%), colon
(6%) and stomach (5.6%) [4]. In males, lung cancer remains the most commonly diagnosed
and leading cause of cancer-related mortality [4]. It is estimated that the incidence of breast
cancer will remain high in females, whereas prostate cancer will become a leading cause of
death in males [6].

Cancer is a heterogeneous disease. Differences observed within a single tumour,
termed intratumoral heterogeneity [7,8], determine the risk for tumour survival and pro-
gression parameters, such as angiogenesis, invasion and metastasis [9]. These differences
are driven by evolutionary principles described by cancer stem cell theory and clonal
evolution theory [10], which are yet to be completely unravelled given the complexity
of the tumour microenvironment (TME) and selective pressures exerted by non-tumour
cells. The difference between tumours, termed intertumoral heterogeneity, may be classi-
fied according to histopathological presentation [8,9,11]. Tumour heterogeneity describes
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vast differences within and between tumours that are reflected by molecular subtypes
and unique genetic, epigenetic and immune landscapes. Thus, the genomic properties of
each tumour provide a deeper description of the characteristics underwritten by tumour
processes and ultimately inform treatment strategies [12–14]. Cancer-associated thrombosis
is a notable cause of morbidity and mortality. Patients presenting with cancer are six times
more likely to develop venous thromboembolism (VTE), including pulmonary emboli and
deep vein thrombosis, while arterial events could include stroke and myocardial infarc-
tion [2]. Thromboprophylaxis was suggested as a mechanism to reduce thromboembolic
events; however, there remains limited uptake in the clinical setting [1,2].

In understanding the biology that underwrites the relationship between vascular
events and cancer, it is becoming increasingly evident that dysregulation of vascular home-
ostasis facilitates tumour progression [15]. In this review, we discuss the underlying
pathophysiology of cancer-associated thrombosis by defining reciprocal interactions be-
tween tumour cells and platelets within the TME. We explore the molecular mechanisms of
selected anticoagulant/antiplatelet drugs specifically on platelet activation pathways and
the implications for tumour progression that can be described as a tumour’s capacity for
survival and metastasis.

2. Pathophysiology of Thrombotic Events: The Role of Platelets
2.1. Thromboembolic Events

In cancer patients, the thrombotic state is characterised by reciprocal interactions
between endothelial dysfunction, blood flow stasis and hypercoagulation, which is known
as Virchow’s Triad (Figure 1) [2]. Thrombosis commonly represents the earliest clinical
symptom of cancer and may be further promoted by the effects of surgery, chemotherapy,
radiotherapy, long-term bed rest or trauma [16]. Thrombosis is associated with poor
prognosis, thus reducing short-term and long-term survival in cancer patients [17,18].

Arterial thrombosis typically leads to myocardial infarction and stroke, whereas
venous thrombosis is associated with venous thromboembolism (VTE) and pulmonary
embolism (PE) [17,19]. Phenotypically, arterial thromboses consist of more platelets and
occur at a site of injury where there is a high shear flow [18]. In contrast, venous throm-
boses, in addition to platelet involvement, consist of fibrin networks in low shear flow
regions that may occur independently of vessel injury [17,19]. Cancer patients are inher-
ently pre-disposed to the development of VTE, with approximately 15–32% of patients
affected, contrasting with an approximately 2.5% incidence in non-cancer patients [20,21].
Moreover, VTE is more aggressive in cancer patients and does not respond well to ther-
apy against it; therefore, it recurs [20,21]. VTE risk differs according to the tumour type;
breast cancer is associated with a lower risk for VTE compared with other cancer types,
such as pancreatic, colorectal and prostate cancers [2,18,20]. Despite this relatively low
risk, hypercoagulation is increasingly being associated with tumour progression, failure of
treatment and recurrence in breast cancer [2,18,20]. Clinically, VTE risk can be described
using circulating D-dimer, thrombin–antithrombin, tissue factor (TF) and fibrinogen, as
well as pro-thrombin time and activated partial thromboplastin time [22], many of which
are predicated on molecular events that are a result of platelet activation, which is a critical
step in facilitating hypercoagulation and associated events.
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Figure 1. Virchow’s triad showing the main parameters of thrombosis. Regarding hypercoagulation,
note the effects of the secreted platelet agonist tissue factor, ADP, thrombin and thromboxane A2 on
the pathways inducing platelet activation and fibrin formation. Tumour cells are able to secrete these
platelet agonists, which, following induction of platelet activation, cause the release of microparticles
and a host of factors that can facilitate tumour progression and thrombotic complications. The
direct and indirect interactions between platelet receptors/ligands and cognate ligands/receptors on
tumour cells are shown. The inhibition of PAR1 and PAR4 receptors, the P2Y12 and P2Y1 receptors,
and the production of thromboxane A2 (TXA2) are indicated as mechanisms that prevent platelet
activation and downstream effects.

2.2. Platelets in Hypercoagulation

Platelets are key mediators in vascular homeostasis; furthermore, they play major
roles in immunity and inflammation. Their role in vascular injury is via the processes of ac-
tivation, adhesion and aggregation, thereby forming a clot to prevent bleeding and promote
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healing [3]. These small (~2 µm diameter), anucleate cytoplasmic fragments are primarily
released from megakaryocytes in the bone marrow. An estimated production of 100 billion
platelets is required daily to maintain a normal range [23]. In pathophysiological conditions,
such as cancer, these normal processes are dysregulated, resulting in a hypercoagulable en-
vironment that instead facilitates tumour progression and concurrently creates thrombotic
risk. Tumour-bearing patients often present with elevated levels of circulating platelets.
Thrombocytosis defines an increase in the number of platelets, although the risk thereof
differs with each cancer type. Thrombocytosis is associated with poorer outcomes, but the
clinical utility of this parameter as a biomarker remains unclear, although it was noted that
thrombocytosis can substantially precede the clinical detection of tumours [24–26]. Such
secondary thrombocytosis in clinically detectable tumours and the presence of D-dimer
is associated with VTE risk [22]. The number of thrombocytosis cases was shown to be
high in patients with tumours of the kidney, oesophagus–gastric tube, breast, bladder and
pancreas [25]. Thrombocytosis is associated with worse prognosis in a range of tumours,
including lung, colorectal, gastric, kidney, brain, pancreatic, gynaecologic tumours and
breast cancer [25]. The exact biological factors that account for these differences have not
yet been defined but are suggested to be associated with the process of tumorigenesis in
each site [25], with more research required into the precise role of platelets in mitigating or
enhancing tumour processes.

Platelets present with a range of integrins and glycoproteins that mediate adhesion,
as well as coagulation factors that drive a positive feedback loop that enhances platelet
activation and the coagulation cascade to stabilise the developing thrombus [3]. Adenosine
diphosphate (ADP), TXA2 and thrombin are agonists that drive platelet activation, leading
to the expression of surface glycoproteins that facilitate adhesion [27]. These glycoproteins
include GPVI and GPIbα, which bind to subendothelial extracellular matrix (ECM) proteins,
collagen and von Willebrand factor (vWF), respectively, with GPIIb/IIIa also being essential
for platelet activation and aggregation [28]. Coupled with agonist activity, ligation of these
receptors results in dynamic morphological changes that increase the platelet surface
area for adhesion and permit the secretion of granular contents, including growth factors,
cytokines and chemokines [27].

There are three main types of granules in platelets, namely, α-granules, dense granules
and lysosomes, which vary in terms of their formation, cargo and secretory kinetics [27,29].
α-Granules are specific to platelets and are the most abundant (50–80) [27,29]. The diverse
repertoire of proteins contained within these granules includes coagulation factors (e.g.,
factors V, XI and XII), adhesion molecules (e.g., fibrinogen and vWF), molecules involved in
immunoregulation (e.g., immunoglobulins and complement), cytokines (e.g., chemokines
platelet factor IV and β-thromboglobulin) and growth factors (e.g., TGF-β, IGF, FGF and
VEGF) [30].

Not all proteins are synthesized and packaged within megakaryocytes prior to bud-
ding off the proplatelet and subsequent maturation. Some proteins are endocytosed from
plasma either via receptor-mediated or receptor-independent pathways [30]. As such,
proteins of non-platelet origin can be taken up into platelets and released upon tumour-
induced platelet activation [31]. In addition, platelets contain cytosolic mRNA derived from
megakaryocytes and are thus able to synthesize new proteins. Platelets further contain
miRNAs that can also alter protein translation [15,32]. Some authors put forward the
complexity of platelet α-granules as heterogeneous with functionally distinct subtypes,
while other authors suggest they are homogeneous but subject to variation in their response
to agonists and their secretory dynamics [33–36]. This concept becomes important in the
TME, where an understanding of tumour-secreted coagulation factors that activate platelets
to later allow a platelet-facilitated epithelial–mesenchymal transition (EMT) and metastasis
is needed.

Tumour-secreted thrombin activates platelets via PAR1 and PAR4 receptors, promoting
the release of intracellular Ca2+ stores to enhance platelet activation and granule exocytosis.
Notably, under thrombin stimulation, α-granules rapidly release their contents, with dense
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granules secreting their contents afterwards. Dense granules are the second most common
granule within platelets and contain calcium, ADP, ATP and serotonin that enhance platelet
activation and aggregation [30]. While granule secretion is dependent on the release of
Ca2+ stores, the small GTPase known as Ral was implicated in regulating dense granule
exocytosis, even in sub-maximally activated platelets [37]. That there is a range of platelet
activation has become increasingly evident, with studies indicating that agonist concen-
tration and type, for example, collagen-mediated ligation of GPVI, can induce granular
secretion independent of major structural alterations [38]. Traditional coagulation studies,
such as platelet aggregometry [39], are not able to detect the nuances involved with such
shifts in secretory phenotype. Flow cytometry is suggested as a tool for assessing multiple
platelet parameters to aid in understanding the process of platelet activation [40] and to
show the gradation of platelet activation.

Flow cytometric assessment of, for example, CD62P (p-selectin), which is contained
within α-granules and translocates to the platelet membrane surface during early activation
and degranulation, can be used as a marker of these early events [38,41]. However, there is a
variable response to agonists that may also not necessarily be concentration-dependent. For
example, intermediate doses of thrombin (0.5 nM) compared with higher doses (5 nM) were
shown to induce higher levels of CD62P expression [38]. In taking Leytin’s index of platelet
activation [42] further, our group similarly determined that CD41a+ platelets upregulate
CD62P expression maximally at 0.1 U/mL, whereas at a higher concentration (0.25 U/mL),
CD62P expression is rapidly lost [43]. This is indicative of platelet degranulation, which
can be visualised using scanning electron microscopy, as membrane pores that extend
into the open canalicular system can thus be regarded as a later period in the activation
process [43].

Platelet shape changes were also identified to occur despite a significant reduction in
degranulation in platelets deficient in the G-protein α subunit Gαq in response to thrombin,
TXA2 and collagen [44]. Deficiency of the G-protein α subunits Gαi and Gα13 reduces
the degranulation induced by ADP and thrombin, respectively [44]. This highlights the
importance of unravelling intracellular signalling pathways in the penultimate responses
to agonists and platelet–tumour cell-based interactions that may not result in standard
behavioural prescripts. For example, tumour-induced platelet activation may induce the re-
lease of microparticles or microvesicles without causing platelet aggregation [45–47]. These
microparticles not only express functional proteins but also contain bioactive molecules
and miRNAs that can be transferred to neighbouring cells, including tumour cells [32,48].
Platelet activation can thus also stimulate the translation of multiple proteins and result in
shed microparticles that act as a delivery system to regulate cell responses [32,49].

CD63 is a marker that is linked to a period of later platelet activation [50], whereby
its expression on the platelet surface is predicated on its release from dense granules and
lysosomes. It associates with the integrin αIIbβ3-CD9 complex and the actin cytoskeleton
and is thus implicated in membrane spreading [51]. Our research group showed that even
low levels of CD63 expression correlate with CD62P in healthy, whole blood [47]. Flow
cytometry results are thus able to explain the distribution of platelet activation markers in
response to agonists, highlighting a heterogeneous response to stimulants and that some
platelets may indeed be unresponsive [38,47,52,53].

A refractory response to agonists was also suggested to reflect platelet exhaustion,
whereby platelets that are in a higher state of activation and are unable to upregulate CD62P
or CD63 expression and aggregate are nevertheless prone to increase the risk of thrombosis,
as identified in cases of traumatic brain injury and viral haemorrhagic diseases [36,43,54].
Moreover, in cancer, the induction of a platelet secretory phenotype also increases the risks
associated with tumour growth and spread. Localised inflammation mediated by the release
of cytokines and chemokines is also associated with hypercoagulation through the release
of coagulation factors from recruited monocytes and macrophages [55]. Modulating platelet
capacity to respond to coagulation agonists was thus postulated to limit the reciprocal
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interactions that drive tumour progression and, consequently, thrombosis and may be a
potential target for the development of novel therapeutic targets.

3. Platelets in the Tumour Microenvironment

The TME acts as a double-edged sword by facilitating tumour progression and hy-
percoagulation. In the TME, platelets interact with tumour cells within the tumour bed
and the vasculature. Fibrin or platelet plugs in and around many types of tumours were
observed by histological analyses, implying local activation of the coagulation process [56].
Extravasation of platelets into the tumour bed is dependent on proteins involved in adhe-
sion, including CD62P and platelet focal adhesion kinase (FAK), and is permitted through
dysfunctional tumour-associated vasculature [46]. These reciprocal interactions between
tumour cells and platelets are postulated to enhance tumour survival and progression, with
secondary consequences of inducing a hypercoagulatory environment.

Extravasated CD42b+ platelets were found in primary breast tumours, with definitive
co-localisation with tumour cells at the invasive front and in the perivascular tissue [57].
These tumour cells showed positivity for markers of EMT, including loss of E-cadherin
expression and heightened vimentin expression, with a loss of apicobasal polarity and
detachment at the invasive front that is reflective of a more aggressive phenotype [57].
Similarly, CD42b+ platelets were identified at the invasive front of pancreatic ductal ade-
nocarcinoma, with a significant correlation found with markers of EMT, increased Snail1
expression and decreased E-cadherin expression [58]. In gastric cancer, intratumoral
platelets have been associated with poor prognosis [59] and chemoresistance [60]. In breast
tumours, there were similar findings, but caution needs to be made regarding determin-
ing whether intratumoral platelet aggregation has a significant relationship with survival
outcomes given the variance of pathological complete responses in the different breast
tumour subtypes [57]. Chemotherapy is also able to enhance D-dimer presentation, which
is a degradation product of fibrin and is thus used as a proxy of fibrin concentration [22].
Fibrinogen distribution in platelet α-granules is heterogeneous [61], as its release during
platelet activation and the structural fibrin produced is dependent on the agonist and con-
centration thereof, with thrombin having a major role [62]. Fibrin network structure affects
fibrinolysis, which when dysregulated, enhances the risk of VTE [63]. Platelet α-granules
also contain the inhibitors of the coagulation cascade for homeostasis [61]. These inhibitors
include anti-thrombin, protein C and protein S, and are markedly reduced in the plasma of
cancer patients, thereby creating favourable conditions for hypercoagulation [56,64].

Platelet aggregation in the tumour bed has been associated not only with inducing and
maintaining key EMT genes in tumour cells [65] but with a poor response to chemother-
apy [57] and poor survival outcomes [66]. Preventing local platelet activation and the
associated release of growth factors and cytokines may thus mitigate the induction of pro-
tumorigenic processes and anti-apoptotic mechanisms that facilitate metastasis. Notably,
platelet depletion studies in tumour-bearing murine models highlighted their fundamental
role in the secretion of pro-angiogenic factors, including VEGF and TGF, and the develop-
ment of tumour-associated vasculature [67–69]. These factors are additionally associated
with the recruitment of myeloid-derived suppressor cells (MSDCs), which are also impli-
cated in maintaining an immunosuppressive, tumour-permissive microenvironment [59].

CD97, which is a G-protein coupled receptor, involved in adhesion is upregulated on
several solid tumours, whereby it facilitates trans-endothelial migration of tumour cells
by inducing the release of platelet-derived lysophosphatidic acid that enhances tumour
cell invasiveness and ATP that enhances vascular permeability [70]. Such bi-directional
signalling underpins the relationship between tumour progression and the development
of thrombosis. Tumour cells typically travel through the vascular system during invasion
and metastasis and platelets form a shield or cloak around circulating tumour cells using
molecules typically involved in adhesion, including GPIIb/IIIa, P-selectin, GPIb/V/IX
and platelet-endothelial cell adhesion molecule-1 (PECAM1) [71]. This platelet cloak not
only protects tumour cells from the high shear forces within the vasculature but also from
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immunosurveillance, for example, from NK cells [71]. Platelet-derived TGF-β1 induces the
downregulation of NKG2D receptors, while the expression of glucocorticoid TNF-related
ligand (GITRL) and the receptor of NF-κB ligand (RANKL) on the platelet membrane
reduce NK cell cytolytic function [72–74]. Additionally, platelets and platelet-derived
ectosomes can transfer MHC I molecules to tumour cells, leading to the inhibition of NK
cell function [75,76]. Moreover, platelet–tumour cell conjugates, via the secretion of a host of
cytokines, including the chemokines CXCL5, CXCL7 and RANTES, can recruit granulocytes
and monocytes to prepare the pre-metastatic niche, enhance vascular permeability and
facilitate the establishment of secondary sites [71].

Thrombin was also shown to not only be involved in the coagulation cascade but
also promote tumour survival through PAR-1 and fibrinogen-mediated pathways [76].
Fibroblasts and macrophages within the TME secrete pro-tumorigenic agents, including
monocyte chemotactic protein (MCP-1), following stimulation by thrombin [76]. Throm-
bin mediates angiogenesis by promoting the proliferation and differentiation of murine
vascular progenitor cells [77] and the mitogenic effects of VEGF on endothelial cells to
form leaky tumour-associated vessels adapted for transendothelial migration of tumour
cells [76]. GPIIaIIIb expressed on both platelets and tumour cells has a bi-directional role
in that it facilitates platelet adhesion and interactions with extracellular proteins and fur-
ther facilitates the release of proangiogenic factors VEGF and bFGF in breast cancer and
melanoma [76].

Potent angiogenic factors, including VEGF, PDGF, bFGF and EGF, and antiangiogenic
factors (such as endostatin, angiostatin, PF4 and thrombospondin) are primarily stored in
platelet alpha granule stores [76]. Tumour-associated endothelial cells have a high affinity
for platelets through increased TF expression, which promotes thrombin production and
the associated growth factor release [76]. Platelet microparticles were shown to increase the
expression of VEGF in lung cancer [78]. CD154 (also known as CD40 ligand) expressed by
platelets also promotes angiogenesis. Furthermore, angiogenesis is also achieved through
the platelet-mediated recruitment of bone-marrow-derived progenitor cells to tumour
tissue or hypoxic areas [76]. There are thus various pathways in which platelets promote
angiogenesis within the TME to promote tumour cell survival.

Bi-directional signalling between breast tumour cells and platelets was also investi-
gated in vitro, revealing that breast cancer cell lines, including MCF-7, MDA-MB-231 and
T47D, are able to induce platelet activation and aggregation and that platelets, in turn,
are able to induce more aggressive tumour phenotypes, promoting EMT and metasta-
sis [45,47,79–81]. Clinically, treatment for hormone-dependent breast cancer, including
hormone therapy, chemotherapy and surgery, have all been implicated in enhancing
thromboembolic events [16]. While investigating this phenomenon in vitro, some studies
identified that the selective oestrogen receptor modulator Tamoxifen is able to prevent
platelet activation [82,83]; furthermore, our own in vitro assessments of Tamoxifen and the
aromatase inhibitor Anastrozole rather echoed clinical studies that showed heightening of
platelet reactivity and thrombotic propensity [45,52,84,85]. Such contradictions require fur-
ther investigations to unravel variances in methodologies; however, the overall data point
to the use of anti-platelet strategies as a mechanism to not only prevent thromboembolic
complications but also to prevent platelet-mediated tumour progression.

4. Anti-Platelet Therapy in Thromboembolic Disease and Cancer
4.1. Platelet Activation—The Impact of Tumour Cells

Platelet activation is a precursor for thrombosis and can be mediated through various
mechanisms in the vasculature and within the tumour microenvironment. Various platelet
ligands, including TXA2, ADP and thrombin, bind to P2Y1 and P2Y12 receptors on platelets
(Figure 1), and thus, activate them [86]. Platelets are also activated through tyrosine binding
to immunoreceptors on their surface, including c-type lectin-like receptor-2 (CLEC-2),
glycoprotein VI (GPVI) and FcRγIIA receptor [76,87]. Tumour cells release microparticles
that contain ligands for P-selectin on platelets, including TF and P-selectin glycoprotein
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ligand-1 (PSGL-1) [87]. Such reciprocal interactions can also be mediated by structural
components of the coagulation cascade, whereby activated platelets bind to fibrinogen on
tumour cells through GPIIbIIIa. This enhances platelet activation through the RapIb-GTP
and phospholipase C pathways [87]. Tumour cells release high-mobility group box 1, which
binds to toll-like receptor 4 (TLR4) on platelets and leads to their activation [76]. These
direct interactions and others between tumour cells and platelets are termed tumour-cell-
induced platelet activation (TCIPA) and typically occur upon the entry of tumour cells into
circulation, whereby platelets bind to them, forming a protective shield [87].

TCIPA is characterised by the following types of aggregations: platelet–platelet,
platelet–tumour and tumour–platelet–leukocytes [87]. In vitro studies that mimicked
TCIPA were variable and impacted, for example, by centrifugation speed, the use of ad-
herent tumour cells or those in suspension, and wash steps [43,79,84]. Additionally, the
fact that the processes of platelet activation and aggregation while incorporating similar
molecular events are fundamentally different makes it difficult to adequately recapitulate
in vivo events in vitro. Nevertheless, research must strive to untangle these important inter-
actions. In vivo, TCIPA provides protection from high shear stress and facilitates immune
evasion within the bloodstream [87]. TCIPA is determined by the metastatic potential of the
tumour, and thus, would vary across different tumour types [87]. Metastatic potential and
invasive capacity are regulated to a large degree by the TGF-β/Smad and NF-kβ signalling
pathways. These pathways can be activated by platelet-derived TGF-β and direct contact
with integrin α2β1 [87]. The release of platelet-derived TGF-β can also be induced by
interactions between CLEC-2 and podoplanin on tumour cells [87]. Tumour cells were
shown to directly and indirectly affect the transcriptome profile of platelets, thus leading to
tumour-educated platelets (TEP) through the transfer of RNA or regulating platelet mRNA,
miRNA, circRNA, IncRNA and mitRNA through the PMP transfer of regulatory mRNA
into other cell types within the TME [87]. TEP are novel biomarkers for cancer and could
be potential therapeutic targets.

The role of antiplatelet therapies on the incidence of cancer is reviewed here by present-
ing three major pathways that are involved in platelet activation during thrombosis, namely,
cyclooxygenase (COX) function in TXA2 synthesis, engagement of the P2Y12 receptors by
ADP and engagement of the protease-activated receptor (PAR1) by thrombin [88,89]. While
this is not an exhaustive list, targeting these pathways has shown considerable efficacy in
reducing thrombotic events related to cardiovascular disease; however, there remains much
research that is required on the impact of such drugs on cancer incidence and progression.

4.2. Inhibition of Cyclooxygenase (COX) Enzymes with Aspirin

Aspirin (acetylsalicylic acid), along with other classical non-steroidal anti-inflammatory
drugs (NSAIDs), competes with arachidonic acid to bind irreversibly to COX enzymes [90,91],
thereby blocking the biosynthesis of cyclic prostanoids, including TXA2 and other
prostaglandins [92–94]. There are two isoforms of the COX enzyme, namely, COX-1
(classical) and COX-2 (inducible), with the former primarily associated with platelets and
the epithelium of the gastric mucosa. COX-2 has low to no expression in platelets [95], but
is overexpressed in tumours of the pancreas, lung and breast [96]. Under physiological
conditions, TXA2 binds to TP receptors, causing platelet activation and aggregation and
facilitating thrombosis [88,97]. Even low-dose Aspirin is able to prevent these intrinsic
platelet processes despite Aspirin’s short half-life (20 min) [96]. Similarly, prostaglandins,
which are local mediators of normal cellular reactions, have a short lifespan, although they
increase during inflammation and in tumours [98]. Prostaglandin H2 (PgH2), the precursor
of all prostaglandins, is induced in response to elevated COX expression in breast tissue,
stimulating the activity of the aromatase enzyme CYP19, and thus, increasing oestrogen
synthesis [99]. High levels of COX-2, PgH2 and prostaglandin E2 (PGE2) are associated
with metastatic potential and reduced patient survival, reflecting oestrogen-mediated
downstream cellular functions, including growth, proliferation and migration [99–101].
COX-2 has thus been positioned as a key factor in enhancing oestrogen production and
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treatment failure in hormone-dependent breast tumours [102]. Studies thus suggested
that Aspirin could be useful as an alternative treatment or to enhance known therapies
for hormone-dependent breast cancer, which is indirectly linked to the suppression of
aromatase activity, and thus, a reduction in oestrogen production [102–104].

In a murine model, the effect of Aspirin on cancer was shown to be dose-dependent,
with anti-metastatic effects induced by low-to-medium dosages of Aspirin inhibiting TXA2
production; however, the inhibition of COX2/PGE2 was not associated with anti-metastatic
effects [105]. TXA2 generated through the COX-1-dependant pathway is associated with
metastasis, hence Aspirin usage is shown to reduce metastasis. TXA2 signalling was also
shown to activate the endothelium, promoting tumour cell survival by mediating the
recruitment of pro-metastatic monocytes in proximity to tumour cells through the release
of the chemotactic factors CCL2/MCP-1 and CCL5 [105]. Overall, COX-1 and TXA2 have
a great impact on the development of the intravascular metastatic niche. While Aspirin
effectively reduces these effects, it adversely affects the gastrointestinal tract with prolonged
usage. As such, other selective TXA2 inhibitors, such as Picotamide, may be used as an
alternative treatment, as it preserves the production of gastroprotective PGI2 [105].

Several studies pointed to an association between low-dose Aspirin use and reduced
breast cancer risk and breast-cancer-related mortality; however, the results are inconsistent,
with some studies indicating no association [106–108]. Yet other studies indicated that
Aspirin use after diagnosis, rather than prophylactic use, is associated with improved
survival outcomes of breast cancer patients [109]. A recent meta-analysis highlighted that
while Aspirin use was linked with improved survival outcomes and reduced recurrence
and metastasis, the dose and duration of Aspirin treatment were possible influencing
factors that could account for the variation in numerous studies [110]. In contrast, the
Aspirin Reduces Risk of Initial Vascular Events (ARRIVE) trial showed that cancer incidence
increased with the routine use of Aspirin [87]. The Aspirin in Reducing Events in the Elderly
(ASPREE) trial showed increased rates of gastrointestinal bleeding with prolonged use of
low-dose Aspirin in healthy elderly adults and no reduction of tumorigenesis was observed;
however, the findings of this study were limited by the short follow-up period (less than 5
years) and the advanced age of participants, which pre-disposed them to tumours [111].
The pharmacodynamics of aspirin may thus hold the key to understanding its role in
tumour progression.

To achieve the inhibition of COX signalling in nucleated tumour cells, which, unlike
platelets, have the capacity to synthesise de novo COX-1/2 enzymes, much higher and more
frequent doses of Aspirin need to be administered [23,96]. However, caution is indicated
since the inhibition of COX-1 may cause gastrointestinal toxicity, while the inhibition
of COX-2 has been associated with an increased risk of cardiovascular and thrombotic
events [112]. While Aspirin preferentially inhibits COX-1 to a larger degree than COX-
2, pre-clinical models highlight that Aspirin inhibition of TXA2 synthesis, which is also
produced directly by tumour cells [41,112], may underlie its key role in inhibiting breast
tumour progression. The knockdown of TBXAS1 (the rate-limiting enzyme involved in
TXA2 biosynthesis) and TBXA2R (TXA2 receptor) both of which are overexpressed in breast
tumours, reduced the colony formation and proliferation of hormone-dependent breast
tumour cell lines [112]. While aspirin acts to suppress TXA2-dependent platelet activation
and aggregation, platelets may still retain their responsiveness to other agonists in healthy
individuals [113]. For this reason, that Aspirin is likely unable to inhibit TCIPA [79,114].
In vitro assays have also determined that inhibiting platelet activation using Aspirin can
prevent IL-8-driven invasion via engagement of the Akt pathway [115], highlighting other
indirect avenues by which Aspirin may mediate tumour progression.

4.3. Blocking of ADP Receptors: Clopidogrel

Thienopyridines are a family of antiplatelet agents that bind irreversibly to platelet
purinergic receptors and consist of three clinically approved drugs, namely, Ticlopidine,
Clopidogrel and Prasugel [116,117], and nonthienopyridines, including Elinogrel, Tica-
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grelor and Cangrelor [118]. ADP is an agonist of platelet activation and elicits its ac-
tion by binding to P2Y12 receptors, and thus, inhibiting the formation of cyclic adeno-
sine monophosphate (cAMP) [119,120]. Various adenine nucleotides and nucleosides,
i.e., adenosine triphosphate (ATP) and ADP, play a role in platelet aggregation and ac-
tivation [121]. ATP is catalysed by ecto-nucleoside triphosphate diphospho-hydrolase
(CD39) and ecto-5′-nucleotidase (CD73) into ADP, which is then converted into adenosine
monophosphate (AMP); ultimately, AMP is converted into adenosine [121]. Tumour-
derived ADP activates platelets via binding to P2Y12 receptors on the surface of platelets.
Upon ADP binding, platelet aggregation is induced through the phospholipase-C- and
phosphatidlyinositol-signalling pathways [119]. In vitro, ADP was highlighted as a sec-
ondary agonist that is essential to TCIPA, with a critical role for the P2Y12 receptor [79].
The efficacy of Clopidogrel against cardiovascular disorders is well established; however,
novel agents, such as Prasugrel and Ticagrelor, were shown to be more potent and display
a quicker onset of action than Clopidogrel [118].

Clopidogrel is a prodrug that is metabolised in the liver and converted to its ac-
tive metabolite whereby it blocks the ADP P2Y12 platelet receptor in an irreversible
manner [122,123]. Cytochrome P450 enzymes are involved in the metabolism of Clopi-
dogrel, converting Clopidogrel into 2-oxo-Clopidogrel and subsequently into its active
metabolite, as shown by in vitro studies [124,125]. CYP2C19 is the major enzyme involved
in both oxidation steps in the conversion of Clopidogrel, whereas other enzymes, such as
CYP34A, are only involved in one step. The active metabolite of Clopidogrel binds to a free
cysteine on the P2Y12 receptor via its thiol group (only expressed in its active state). This
binding irreversibly blocks the binding of ADP and subsequent activation of the purinergic
receptor [124,125].

Clopidogrel is the most commonly used P2Y12 antagonist and is an effective agent
against cardiovascular disorders, including peripheral artery cerebrovascular and coronary
artery diseases [126]. While beneficial, its prolonged use is associated with an increased
risk for bleeding and it was also shown to increase the mortality rate in patients with car-
diovascular disease [127]. The dual administration of antiplatelet therapy with Aspirin and
Clopidogrel is often recommended in certain conditions, such as coronary syndromes and
myocardial infarction [128–130], because their efficacy is better when used as a cocktail than
individually [88,117]. Studies showed that such dual treatment is beneficial in preventing
the reoccurrence of atherothrombosis [128–130]; however, the effect on cancer is not well
known. The Prevention of Cardiovascular Events in Patients with Prior Heart Attack Using
Ticagrelor Compared to Placebo on a Background of Aspirin–Thrombolysis in Myocardial
Infarction 54 (PEGASUS-TIMI 54) trial reported that prolonged use of Clopidogrel and Tica-
grelor increased cancer-related deaths [131]. In the Clopidogrel versus Aspirin in Patients
at Risk of Ischaemic Events (CAPRIE) study, combined Aspirin and Clopidogrel reduced
the risk of myocardial infarction, stroke and vascular death [117]. The Clopidogrel for
The Reduction of Events During Observation (CREDO) and Clopidogrel and Metoprolol
Myocardial Infarction Trial (COMMIT) clinical trials showed that cardiovascular deaths
were reduced with the use of Clopidogrel [117]. The efficacy of Clopidogrel was also shown
in the Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial (CURE) and Dual
Antiplatelet Therapy (DAPT) clinical trials, whereby prolonged use decreased the incidence
of myocardial infarction (MI) [127,132,133]. The Atrial Fibrillation Clopidogrel Trial with
Irbesartan for Prevention of Vascular Events (ACTIVE-A) clinical trial showed a reduced
incidence of stroke [127,132,133].

Breast tumours have the capacity to metabolise Clopidogrel into its active compo-
nents via the expression of CYP450 family members. In vitro, breast cancer cells were
shown to modulate the expression of purinergic receptors, suggesting a possible protective
effect of this receptor against cancer [119]. Studies showed various outcomes regarding
the use of Clopidogrel with or without Aspirin and cancer risk. The Clopidogrel for
High Atherothrombotic Risk and Ischemic Stabilization, Management and Avoidance
(CHARISMA) clinical trial showed that patients treated with a combination of Aspirin
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and Clopidogrel demonstrated a 54% decreased cancer incidence compared with Aspirin
use alone, which reduced cancer incidence by 46% [134]. The reduction in cancer inci-
dence with combined Aspirin and Clopidogrel was maintained for a prolonged period in
solid tumours; however, no reduction was observed in hematologic tumours [134]. Other
clinical trials, such as the Secondary Prevention of Small Subcortical Stroke (SPS3) and
DAPT trials, showed that prolonged use of Clopidogrel was associated with an increased
risk of cancer-related death [127,135]. The Trial to Assess Improvement in Therapeutic
Outcomes by Optimizing Platelet Inhibition with Prasugrel Thrombolysis in Myocardial
Infarction 38 (TRITON-TIMI 38) clinical trial showed that Prasugrel led to a higher risk for
breast, colorectal and prostate cancer in patients with an acute coronary syndrome than
Clopidogrel [136]. Clinical data is thus suggestive of adverse effects, the mechanisms of
which need to be investigated further, starting at a pre-clinical level.

Mouse models have highlighted that an Aspirin and Clopidogrel cocktail induced
pro-tumorigenic alterations in primary tumours, increased angiogenesis through vascu-
lar mimicry and was associated with high mortality rates [137]. Similarly, Clopidogrel
combined with Tamoxifen and chemotherapy agents (Cisplatin, Doxorubicin) increased
metastasis to the murine lung [120]. In vitro assessments showed that an Aspirin and Clopi-
dogrel cocktail failed to reduce the hypercoagulatory effects induced by Anastrozole in
breast cancer cell lines; moreover, there was evidence for a tumour cell EMT characterised
by the upregulation of N-cadherin and production of the cytokines IL-6, PDGF-BB and TGF-
β3 [47]. Notably, T47D cells, which are from a more aggressive luminal-A breast cancer cell
line, assumed a more invasive phenotype under an Anastrozole, Aspirin and Clopidogrel
cocktail, with morphological features related to enhanced survival and motility [138].

4.4. Targeting the Thrombin Pathway with Atopaxar

Thrombin is the main extracellular serine protease responsible for activating PAR1,
PAR3 and PAR4 receptors [139,140]. PAR1 is the main receptor for thrombin binding in
platelets, and PAR receptors (predominately PAR1 and PAR2) are widely expressed in
tumour cells and were shown to mediate pro-survival processes, such as tumour growth,
cell proliferation, migration, invasion, inflammation and angiogenesis [140]. PAR3 and
PAR4 receptors were discovered as novel thrombin receptors when PAR1 was knocked
out in a murine model [141]. PAR4 is activated by higher levels of thrombin than PAR1
due to a lack of a hirudin-like domain. PAR1 and PAR3 both contain the hirudin-binding
site, which offers high-affinity binding for thrombin [141]. In contrast, PAR2 has a very low
affinity for thrombin; however, at higher thrombin concentrations (100–500 nM), it may be
susceptible to thrombin activation [142].

Thrombin is a potent agonist for platelet activation and is an essential component
of the coagulation cascade. Thrombin activates PAR1 receptors in two stages: first by
binding to the cleavage site on either side of the PAR1 receptors, then cleaving the
PAR1 receptor between Arg and Ser, exposing the N-terminal tethered ligand domain
SFLLRN [143–145]. The tethered ligand domain interacts with domains in extracellular
loop2, which was suggested to alter the conformation of the receptors to allow for the
coupling of G-proteins [143,145]. Other proteases that cleave PAR receptors include antico-
agulant protease-activated protein C (aPC), which co-localises with the endothelial protein
C receptor (EPCR) to activate PAR1 and also acts on PAR3 in humans [146]. Coagulation
factor Xa also activates PAR1, PAR2 and PAR3 when bound to EPCR. Coagulation factor
VIIa bound to TF indirectly activates PAR2 through the cleavage of matriptase [146].

Cancer patients often present with elevated levels of thrombin, and this is associated
with a poor prognosis [147]. In the Vienna Cancer and Thrombosis Study (CATS), which in-
cluded 1033 cancer patients, thrombin levels were assessed using the calibrated automated
thrombogram (CAT) method and increased levels of thrombin were associated with VTE
occurrence in 77 patients (~7%) after 2 years [148]. The TME is a hotspot for thrombin pro-
duction, with breast cancer cells capable of directly producing thrombin to initiate platelet
activation and aggregation [45,79,147]. Moreover, thrombin also facilitates fibrin formation
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that supports platelet aggregation via GPIIbIIIa [79] and subsequent inside-out signalling.
Notably, in vitro, tumour-induced fibrin network formation is also variable and may hint
at impaired fibrinolytic mechanisms. While there have been some assertions that in vitro
TCIPA may not be as dependent on tumour phenotype [79], other in vitro studies indicated
that not only does the tumour sub-phenotype matter but different sub-phenotypes in the
case of breast cancers also respond differentially to hormone therapy, which, in turn, affects
their capacity to induce hypercoagulation [52,84,138]. This may also be reflected clinically
by the range of thrombotic risk associated with various types of tumours [2,16,17,149].

PAR-1 receptor expression in various cancer types, including breast, lung and ovarian
cancer, is associated with a poor prognosis [150]. PAR1 inhibitors, including Atopaxar,
Vorapaxar and PZ-128, which have reciprocal effects in reducing platelet aggregation and
through direct interaction with PAR1 receptors on tumour cells, were shown to reduce
metastasis [151]. The downstream effects of PAR1 inhibition were shown to be dependent
on the tumour type. The inhibition of PAR1 through gene silencing in a breast cancer
xenograft model caused reduced metastasis to the lung; however, this was possibly a
limitation of using an immunocompromised animal model, which could not account for
possible immune influence on tumour progression [151]. However, the treatment of breast
cancer cell lines with Vorapaxar inhibited migration and invasion in vitro [151], while in
pancreatic cancer, PAR1 signalling was shown to mediate hypercoagulation and immune
escape [152]; therefore, PAR-1 inhibitors could play an important therapeutic role in this
tumour by mediating different aspects of tumour progression.

Atopaxar and Vorapaxar are small non-peptide molecules that interact with PARs
through ECL2, and thus, inhibit receptor binding [141]. There are few targets that have
been identified and developed as potential therapeutic targets against PAR-mediated ac-
tivities, despite the role of PARs in mediating the cellular processes that underlie disease
processes [141]. Vorapaxar and Atopaxar were the first thrombin receptor antagonists de-
veloped that selectively block the platelet PAR1 receptor subtypes [143,145,153]. Vorapaxar
was approved by the FDA for clinical use in cardiovascular patients despite its adverse
effect of increased bleeding incidence [154,155]. Most other PAR antagonists are still in the
early stages of clinical development for their efficacy against cardiovascular diseases [155].
The Lessons for Antagonizing the Cellular Effect of Thrombin-Acute Coronary Syndrome
(LANCELOT-CAS) clinical trial showed Atopaxar’s efficacy in reducing ischemic events
and platelet aggregation; unlike most antiplatelet agents (such as Aspirin, Clopidogrel and
Vorapaxar), it did not adversely increase the bleeding time [156]. Furthermore, Atopaxar
was shown to inhibit thrombin receptor activating peptide (TRAP) [154]; however, to-
gether with The Japanese Lessons from Antagonizing the Cellular Effects of Thrombin
(J-LANCELOT) clinical trial, Atopaxar was found to adversely affect liver function, and
thus, phase III clinical studies were not conducted [157]. The role of PAR receptor antag-
onists on direct tumour outcome has not been well established, and given the impact of
PAR-receptor mediated signalling in promoting tumour survival [23,158], the role of PAR
receptor antagonists, such as Atopaxar, in preventing PAR signalling presents a potential
adjuvant therapy that warrants further investigation.

Atopaxar is metabolised by the cytochrome P450 enzyme CYP3A4 [128]. Breast tu-
mour cell lines express targets for Atopaxar and metabolizing enzymes [159], with higher
PAR-1 expression associated with heightened invasiveness and induction of EMT [160].
Tumour cell production of thrombin in vivo and in vitro facilitates PAR signalling and
downstream effects with the TME [79,138]. A recent in vitro study showed that Atopaxar
is an antagonist to the JAK-STAT signalling pathway, which promotes cell division and
neoplastic transformation in cells, thus suggesting a role for Atopaxar in reducing tumour
formation [161]. In our lab, in vitro tests showed that Atopaxar failed to prevent hypercoag-
ulation induced by breast cancer cell lines, with platelets showing evidence of heightened
activation and aggregation. This was coupled with the induction of a partial EMT, particu-
larly in MCF7 cells, that was underwritten by IL-6, TGF-α and TGF-β3 secretion [47,138].
These findings show that Atopaxar failed to mitigate tumour-induced hypercoagulation
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or to reduce features that mediate tumour survival in vitro; however, further studies are
required in order to elucidate its role in tumour-promoting or -inhibiting processes given
such conflicting findings.

5. Conclusions

Bi-directional signalling between platelets and tumour cells creates favourable cir-
cumstances for tumour progression, with thrombotic complications being necessary side
effects by virtue of the associations between the cell types. While more is known about the
role of Aspirin in preventing metastasis, less is known regarding the prevention of early
tumour processes and what effects drugs targeting other activation pathways, including
Clopidogrel and Atopaxar, may have. What is becoming clearer is the complexity of platelet
activation and the plethora of growth factors, cytokines and coagulation agonists that may
be released in response to indirect or direct tumour signals. That these factors impact
tumour progression is increasingly evident, with the need to prevent platelet activation, if
not aggregation, also evident. However, the drugs used, as well as their combination with
standard cancer therapeutics, may not yield the desired beneficial effects against throm-
boembolic disease but may act as a selective pressure for tumour survival. It is increasingly
evident that further research to recapitulate the clinical tumour microenvironment more
faithfully in vitro and in in vivo animal models is necessary to provide systems in which to
unpack these complex interactions.
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