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Abstract: Doxorubicin (Dox) is a widely utilized chemotherapeutic; however, it carries side effects,
including drug-induced immune thrombocytopenia (DITP) and increased risk of venous thromboem-
bolism (VTE). Currently, the mechanisms for Dox-associated DITP and VTE are poorly understood, and
an effective inhibitor to relieve these complications remains to be developed. In this study, we found that
Dox significantly induced platelet activation and enhanced platelet phagocytosis by macrophages and
accelerated platelet clearance. Importantly, we determined that salvianolic acid C (SAC), a water-soluble
compound derived from Danshen root traditionally used to treat cardiovascular diseases, inhibited
Dox-induced platelet activation more effectively than current standard-of-care anti-platelet drugs
aspirin and ticagrelor. Mechanism studies with tyrosine kinase inhibitors indicate contributions of
phospholipase C, spleen tyrosine kinase, and protein kinase C signaling pathways in Dox-induced
platelet activation. We further demonstrated that Dox enhanced platelet-cancer cell interaction, which
was ameliorated by SAC. Taken together, these findings suggest SAC may be a promising therapy
to reduce the risk of Dox-induced DITP, VTE, and the repercussions of amplified platelet-cancer
interaction in the tumor microenvironment.

Keywords: doxorubicin; salvianolic acid C; platelet activation; platelet clearance; cancer-platelet
crosstalk; tyrosine phosphorylation

1. Introduction

Platelets are small, anucleate blood cells constitutively generated in the bone marrow
and/or lungs, to enter circulation [1,2]. Physiologically, platelet adhesion at sites of vas-
cular injury, activation, and aggregation is pivotal to forming a hemostatic plug to cease
bleeding [1,3]. Platelet activation is achieved following tethering to exposed extracellular
matrix ligands such as collagen and VWF, and it also occurs via soluble agonists such as
ADP, thrombin, or TxA2 [4]. Upon activation, platelets release intracellular α and dense
granules containing a variety of factors, including P-selectin in the former and ADP, cal-
cium, or TxA2 in the latter. During activation, integrin αIIbβ3, the major adhesion receptor
of platelets, shifts to an active conformation, with greater ligand binding affinity mediating
both Fibrinogen (Fg)-dependent and -independent platelet aggregation [5–8]. In addition to
creating an initial plug at sites of vascular injury (i.e., the first wave of hemostasis), platelets
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further produce a negatively charged phosphatidylserine (PS)-rich surface to augment
cell-based thrombin generation, enhancing blood coagulation (i.e., the second wave of
hemostasis) [9,10].

Though platelet activation and aggregation are necessary events of normal hemostasis,
they can nevertheless swiftly become deleterious such as in pathological conditions where
vessels become occluded, including myocardial infarction, stroke, and venous thromboem-
bolism (VTE), or be exploited such as in cancer-associated thrombosis (CAT) [11–14]. CAT
represents the second leading cause of death for patients suffering from malignant tu-
mors, as tumors are capable of inducing coagulation as well as directly activating platelets,
accentuating the integral reciprocity between cancer and platelets [15–17]. Moreover, an-
other contributing factor to high rates of thrombotic mortality in cancer patients may arise
from chemotherapy drugs with off-target effects inducing platelet activation and aggre-
gation, highlighting the gravity of platelet hyperactivity and aggregation in an already
fragile system, as approximately 20% of chemotherapy patients develop thrombi follow-
ing treatment [18,19]. Beyond hemostasis and thrombosis, platelets are appreciated for
broader pathophysiological roles with implications in tumorigenesis, angiogenesis, and
metastasis [1].

Doxorubicin (Dox) is a standard-of-care anthracycline chemotherapeutic agent that
has been effectively applied to combat multiple types of cancer. Though a potent antineo-
plastic agent, Dox is limited due to side effects including cardiotoxicity and nephrotoxicity,
drug-induced immune thrombocytopenia (DITP), and increased risk of developing venous
thromboembolism (VTE) [20]. The precise effects of Dox on platelet function remain contro-
versial; one study indicated that Dox enhanced low-dose agonist-induced aggregation [21],
whereas another reported that Dox inhibited agonist-induced aggregation [22]. A separate
study found that Dox had no effect on aggregation but promoted the platelet pro-coagulant
state [23], while yet another report suggested that Dox does not induce platelet activation
and impairs function [24]. Nonetheless, Dox is clearly implicated with DITP and VTE and
encourages the use of an effective anti-platelet agent to relieve these burdens imposed by it.

Danshen, the dried root of the Salvia miltiorrhiza herb, is a traditional Chinese medicine
that has been historically used throughout Asia for centuries to treat cardiovascular dis-
ease. Salvianolic acid (SA) compounds, e.g., salvianolic acids A, B, and C (SAA, SAB, and
SAC, respectively), represent the major extracts and active components of Danshen and
have recently been recognized for inhibitory effects on platelet function [25,26]. For exam-
ple, SAA inhibits platelet activation and arterial thrombosis, SAB inhibits ADP-induced
platelet aggregation and adhesion to collagen by interfering with receptor α2β1, and a
combination of SAA and SAC synergistically inhibits ADP- and thrombin-induced platelet
aggregation [25,27,28]. However, whether SA compounds are viable therapies to inhibit
Dox-associated thrombocytopenia and thrombotic risk by interfering with platelet function
has not been determined.

In the present study, we investigated the direct influence of Dox on platelets including
activation, clearance, and intracellular signalling pathways, as well as the ability of SAC to
attenuate these effects. We demonstrated that Dox directly induced platelet activation and
augmented platelet-cancer cell interaction. Notably, SAC suppressed the aforementioned
adverse effects of Dox. Our study supports SAC as a promising therapy in conjunction
with Dox to reduce the associated risk of DITP, VTE, and the repercussions of inducing
pro-cancer platelet pathology in the tumor microenvironment.

2. Results
2.1. Dox Induced Platelet Activation and Degranulation Inhibited by SAC

Several studies indicated a possible involvement of platelets in the increased thrombotic
risk in patients following Dox treatment. However, the reported effects of Dox on platelet
function remain controversial, and the precise mechanism remains unclear [21–24,29,30]. To
assess whether platelets are activated following Dox treatment, the percentage of CD62P
(P-selectin)-positive and Fibrinogen (Fg)-positive platelets were evaluated using flow
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cytometry. We found that Dox dose-dependently increased P-selectin expression and
soluble Fg binding in murine (Figure 1A,B) and human platelets (Figures S1 and S2),
demonstrating Dox-induced α granule release and αIIbβ3 activation.
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Figure 1. Dox-induced Platelet Activation Inhibited by SAC. Diluted mouse PRP was incubated
with Dox for 25 min at 37 ◦C. Platelet activation was determined by flow cytometry using anti-P-
selectin antibody (A) and Alexa 647-conjugated Fibrinogen binding (B). Data are shown as the per-
centage of positive platelets. (C,D) Effects of pretreatment with P2Y12 inhibitor Ticagrelor (0.1 µM),
TxA2 inhibitor Aspirin (6 mM), or SAC (20 µM, 40 µM) on Dox (80 µg/mL)-induced murine
platelet activation measured by P-selectin (C) and Fg binding (D) with flow cytometry. (E) Murine
platelet spreading over immobilized fibrinogen examined by confocal imaging and number of
adherent platelets per field of view quantified using Analyze Particles function in ImageJ/Fiji
software. Scale bars = 64 µm (40×. Representative images of 3 separate experiments displayed.
n ≥ 3 for all experiments. (F) ITC thermogram showing dissociation of (a) 80 µg/mL doxorubicin and
(b) 160 µg/mL doxorubicin in Tyrode buffer. (G) ITC thermogram showing no interaction between
fibrinogen and doxorubicin. For each, the top shows the raw titration data showing the heat resulting
from each injection of ligand into buffer solution. The bottom shows the integrated heat plot after cor-
recting for the heat of dilution. Data displayed as mean ± SD. Statistical significance determined by
one-way ANOVA. (# p < 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, ns = not significant).
PRP = platelet-rich plasma, Fg = fibrinogen, Ctrl = control.
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As predominant anti-platelet drugs, we tested aspirin and ticagrelor against Dox-
induced platelet activation. At the concentration to effectively inhibit ADP-induced activa-
tion (Figures S4 and S5), aspirin could not inhibit Dox-induced activation, and ticagrelor
exhibited a moderate effect as evidenced by platelets binding to Fg (Figure 1C) but no
inhibition of P-selectin expression (Figure 1D). Comparatively, SAC significantly reduced
platelet activation as indicated by the same markers (Figure 1C,D). The partial inhibition by
ticagrelor may be attributed to inhibiting released ADP stored in platelet-dense granules
from further stimulating platelets in an autocrine and paracrine fashion. Moreover, we
observed platelet adhesion over immobilized fibrinogen, which was revealed by FITC-
conjugated phalloidin staining to visually corroborate the effects of Dox and SAC on platelet
activation. The number of platelets adhered to immobilized Fg was approximately two-fold
higher after incubation with Dox compared to basal adhesion levels and was reduced in
the presence of SAC (Figure 1E).

Previous reports have indicated that salt and other solvent conditions can cause Dox to
form aggregates [31–34], which can be monitored by isothermal titration calorimetry (ITC)
and visible absorption spectroscopy methods. To exclude the possibility of Dox aggregates
crosslinking platelets to induce activation, we confirmed that Dox was monomeric at the
concentration and conditions used in these experiments. The ITC titration curve showed
no dissociation heat at 80 µg/mL of Dox, whereas titration of 160 µg/mL of doxorubicin
produced an endothermic profile due to the dissociation of aggregates (Figure 1F). These
results were further confirmed by visible absorption spectroscopy. Molar absorptivity at
497 nm could be discerned from that at 480 nm, indicating the presence of a monomer at
80 µg/mL Dox. Molar absorptivity at 480 nm and 497 were indistinguishable, indicating
dimerization/aggregation at 160 µg/mL Dox (Figure S3).

We also excluded the interaction between Dox and Fg that may contribute to the
observed platelet Fg binding (Figure 1G). Taken together, these data clarify that Dox
induced platelet activation, which was inhibited by SAC.

2.2. SAC Inhibited Cancer-Platelet Interaction Enhanced by Dox

Activated platelets have been shown to interact with cancer cells and promote metas-
tasis [35–38]. We hypothesized that induction of platelet activation by Dox could enhance
platelet-tumor cell interactions. Breast cancer remains one the most prevalent cancer diag-
noses worldwide, for which Dox is a first-line therapy [39], particularly for triple-negative
breast cancer (TNBC) due to its well-documented effectiveness. However, multiple studies
have reported an increased risk of thrombosis for breast cancer patients receiving Dox
treatment [40,41]. With these considerations, we focused on two TNBC models to examine
cancer-platelet interaction.

Untreated or Dox-treated platelets were incubated with breast cancer cell line MDA-
MB-231, then unbound platelets were washed, and cancer cells were analyzed for platelet-
specific marker CD41 to indicate platelet adhesion. Platelet signal on MDA-MB-231 cells
was increased in the groups of 20 µg/mL and 40 µg/mL of Dox (4603 ± 2174 and
5151 ± 2718, respectively) versus control (2300 ± 1867) (Figure 2A). Meanwhile, SAC
pretreatment reduced this binding by approximately 30% (Figure 2B). Additionally, we
used confocal fluorescence imaging to further visualize our observations. Murine platelets
were incubated with breast cancer 4T1 (Figure 2C, upper panel) and MDA-MB-231 cells
(Figure 2C, lower panel). Then, platelets were stained for GPIbβ (red), cancer cells were
stained for Hoechst 33342 (blue), and Dox exhibited autofluorescence (green). By quantify-
ing the area of adhered platelets per area of cell nuclei, we confirmed the enhancement of
cancer-platelet interaction by Dox that could be ameliorated by SAC (Figure 2C). Intrigu-
ingly, the Dox-treated platelets appeared to be microaggregated as opposed to a sparser
distribution in the untreated control groups, suggesting that Dox may aid tumor cell-
induced platelet aggregation (TCIPA). Moreover, the groups of SAC alone also appeared
to have fewer platelets neighboring the cancer cells, suggesting basal inhibition by SAC
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beyond Dox-facilitated interaction, possibly through the inhibition of platelet activation
induced by ADP released by tumor cells.
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Figure 2. Dox Enhances cancer cell-platelet Interaction. (A,B) Platelet adhesion levels to MDA-MB-231
cells stained for platelet marker CD41 and quantified by flow cytometry. (C) Confocal imaging of
breast cancer cell lines (4T1, upper row and MDA-MB-231, lower row) interacting with murine
platelets. Cell nuclei were stained with Hoechst 33342 (blue); platelets were stained with GPIbβ
(red); and Dox exhibited autofluorescence (green). The level of platelet-cancer cell interaction was
shown as GPIbβ fluorescence area per area of Hoechst. Representative images chosen from 3 separate
experiments. Scale bars = 30 µm. The fluorescence area was quantified using the Area Quantification
FL module on HALO® platform. Data are displayed as mean ± SD. n ≥ 3 for all experiments.
Statistical significance was determined by one-way ANOVA (A,C) or paired t-test (B). (* p < 0.05,
** p < 0.01). Ctr = Control, 231 = MDA-MB-231.

2.3. SAC Protected Platelets from Macrophage Phagocytosis

Platelets frequently undergo clearance following normal senescence or activation. One
facet of clearance is platelet phagocytosis, which often occurs following macrophage recog-
nition of exposed platelet P-selectin and PS exposure [42]. To evaluate the extent of platelet
phagocytosis, platelets were fluorescently labelled and treated with Dox before being in-
troduced to differentiated THP-1 cells. Compared to untreated platelets, when platelets
were incubated with Dox, the macrophages exhibited a 1.5-fold increase in the platelet
fluorescence signal, and SAC pretreatment resulted in amelioration of clearance. SAC by
itself did not inhibit basal phagocytosis, indicating that it does not impair macrophage
phagocytic activity (Figure 3A).

To investigate whether platelets exposed to Dox have accelerated clearance in vivo,
we performed platelet survival assays in which 1.5 × 108 WT platelets were transfused into
CD41-deficient syngeneic mice, allowing us to distinguish the surviving percentage of WT
platelets per time point using an anti-CD41 antibody. At 2 h and 24 h from baseline, the
percentage of surviving Dox-treated platelets was 60.59% ± 7.452% and 50.55% ± 12.91%,
respectively, compared to 81.59% ± 4.326% and 34.23% ± 12.68% for untreated platelets
(Figure 3B), indicating that Dox induced faster clearance of circulating platelets.
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Figure 3. SAC Reduces Platelet Phagocytosis by THP-1 Macrophages. (A) Dox increased human
platelet phagocytosis by differentiated THP-1 macrophages. Platelets were stained with CMFDA and
then co-incubated with differentiated THP-1 cells and 40 µg/mL Dox pretreated with or without
SAC (40 µM). THP-1 cells were washed to remove platelets and analyzed for CMFDA signal by
flow cytometry. (B) Effect of Dox in ex vivo platelet transfusion survival assay. Platelets from WT
mice were treated with 40 µg/mL Dox prior to transfusion into CD41−/− mice. Blood samples were
taken from recipient mice at 0, 2, and 24 h after transfusion, and platelets were stained for CD41 to
determine surviving percentage of transfused platelets. Data displayed as mean ± SD. Statistical
significance determined by two-way ANOVA. (* p < 0.05, ** p < 0.01, *** p < 0.001). n ≥ 3 for all
experiments. WT = wild type, Ctr = control.

2.4. SAC Reduced Dox Uptake by Platelets

Next, we analyzed Dox permeation of platelets through a combination of fluorescence
imaging and flow cytometry. Murine platelets labelled with AlexaFluor-647-conjugated anti-
GPIbβ antibody (red) were untreated (Figure 4A, upper row) or incubated with Dox (Figure 4A,
lower row). Treated platelets emitted a distinct Dox autofluorescence signal that was absent in
untreated platelets, suggesting that Dox accumulates in platelets (Figure 4A, bottom).

Dox autofluorescence has previously been characterized in conventional cytometers
using bandpass filters that capture its peak emission ~590nm. In order to further understand
Dox and platelets in our SP6800 spectral cytometer system, we established the spectral
signature of Dox across all channel ranges to create a reference spectrum, allowing us
to capture its complete signal and improve unmixing from other fluorochromes. The
spectra showed a maximum emission in the range of 581–598nm, similar to PE’s spectrum
(Figure 4B). Platelets exhibited a Dox-specific signal following incubation, with the MFI
increasing in a dose-dependent manner (Figure 4C). Meanwhile, platelets treated with
SAC exhibited significantly reduced relative amounts of the Dox signal, with a maximum
reduction of 39.52% for 40 µg/mL Dox (Figure S6) and 34.5% for 80 µg/mL Dox compared
to respective vehicle controls (Figure 4D).
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Figure 4. SAC Reduces Dox Uptake by Platelets. (A) Confocal imaging visually depicts platelet intake
of Dox following incubation. Murine platelets labelled with AlexaFluor-647-conjugated anti-GPIbβ
antibody (red, left column) were untreated (upper row) or incubated with Dox (lower row). Dox
exhibited autofluorescence ~590nm (Green, middle column). Representative images taken from
3 independent experiments, scale bars = 10 µm. (B) Unique Dox spectral signature across all channels
determined from spectral cytometer. (C) Dose-dependent uptake of Dox by platelets quantified by
Dox MFI (right), and representative population shift for platelets exhibiting Dox signal following
incubation with 40 µg/mL Dox (left). (D) SAC dose-dependently reduced Dox permeation of platelets.
Data are displayed as mean ± SD. n ≥ 3 for all experiments. Statistical significance determined by
one-way ANOVA. (** p < 0.01).

2.5. SAC Ameliorated Dox-Induced Increase in Tyrosine Phosphorylation of Platelet Protein

Platelet activation signal transduction pathways involve a wide array of protein phos-
phorylation, of which phosphorylated tyrosine (pY) or phosphorylated serine/threonine
(pS/T) represent the two predominant signal transduction mechanisms to convert extracel-
lular stimuli into a functional response [43–45]. Probing for general S/T phosphorylation
yielded no observable Dox-associated changes in protein phosphorylation (Figure 5A);
however, when exploring overall tyrosine residue phosphorylation, we noted a consistent
and prominent increase in Dox-treated platelets compared to control, especially of a pro-
tein ~75kDa. The density of these bands was reduced in platelets pretreated with SAC,
illustrating that SAC could inhibit the Dox-induced phosphorylation (Figure 5B,D). We
suspected the ~75kDa band to be spleen tyrosine kinase (SYK), a kinase with a reported
molecular weight of 72kDa and heavily associated with the phospholipase C (PLC) and pro-
tein kinase C (PKC) axis that can lead to integrin αIIbβ3 inside-out signalling and platelet
activation [46]. We treated platelets with SYK-selective tyrosine inhibitor piceatannol and
discovered complete abolition of the ~75kDa band in Dox- and piceatannol-treated platelets
(Figure 5C,D). This trend was consistent for all individual platelet donor iterations of this
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experiment, suggesting the involvement of SYK in Dox-induced platelet activation along
this axis.
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Figure 5. SAC Ameliorated Dox-Induced Tyrosine Phosphorylation of Platelet Proteins. Hu-
man gel-filtered platelets were pretreated with SAC (10 µM) or SYK protein inhibitor piceatannol
(10 µg/mL) for 2 min before incubation with Dox (40 µg/mL) for 20 min. Total platelet lysate
for each group was resolved with SDS-PAGE and probed with anti-phosphoserine/threonine
(A) or anti-pY (B,C) antibody. β-tubulin, actin, and vinculin served as loading controls. (D) Quantifi-
cation of band intensity for 75 kDa protein in preceding Western blots. (E) Effects of PLC inhibitor
U-73122 (2 µM), Syk inhibitor piceatannol (20 µg/mL), or PKC inhibitor Go 6983 (10 µM) on Dox-
induced murine platelet Fg binding. (F,G) SAC (40 µM) on PLC agonist m-3M3FBS (400 µM) and
PKC agonist PMA (50 ng/mL) induced human washed platelet aggregation. Aggregation traces
are representative of data from at least three independent experiments. (H) Schematic summary of
novel mechanism for doxorubicin-associated thrombosis and drug-induced thrombocytopenia. Dox
induced integrin αIIbβ3 activation and subsequent fibrinogen binding, possibly through upregulated
intracellular tyrosine phosphorylation. As a result, Dox could amplify cancer-platelet interaction and
facilitate cancer/chemotherapy-induced thrombosis. Dox-treated platelets were also cleared more
rapidly by phagocytosis. Salvianolic acid C inhibited Dox-induced platelet activation/cancer-platelet
interaction/phagocytosis, which are contributing factors for Dox-associated thrombosis and throm-
bocytopenia. Created with BioRender.com. n ≥ 3 for all experiments. Data displayed as mean ± SD.
Statistical significance determined by one-way ANOVA (D,E) or paired t-test (F,G). (*** p < 0.001,
and **** p < 0.0001, ns = not significant). U73 = U-73122, Pice = piceatannol, pY = phosphotyrosine,
M3M = m-3M3FBS.
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We further investigated the mechanism of Dox-induced platelet activation by including
kinase-specific inhibitors or activators along the SYK-PLC-PKC axis and analyzing platelet
activation or aggregation. PLC inhibitor U-73122 at 2 µM, SYK inhibitor piceatannol
at 20 µg/mL, and PKC inhibitor Go 6983 at 10µM inhibited Dox-induced Fg binding
to platelets, implicating the SYK-PLC-PKC axis’ contribution to Dox-induced platelet
activation (Figure 5E). However, SAC was unable to inhibit platelet aggregation induced
by PLC agonist M3M (Figure 5F) and PKC agonist PMA (Figure 5G), suggesting that SAC
acts upstream of PLC and PKC.

3. Discussion

Previous investigations examining Dox and platelet activity have reported inconsistent
findings, with one study showing indirect induction of platelet activation by endothelial cell
or vascular injury [21], while other studies using isolated platelets have claimed that Dox
has no direct effect on platelet activity [24]. To the best of our knowledge, our discoveries
are the first to demonstrate direct Dox-induced platelet αIIbβ3 activation, supported by Fg
binding results. Furthermore, we also demonstrated Dox-induced platelet alpha granule
release by P-selectin expression. However, an eminent factor of the discrepancy in results
may reside with incubation time. An earlier study [24] observed no change in P-selectin
and PAC-1 after 3 hours of incubation with Dox, while we observed an increase as early as
20 min after incubation. As a result of the extended treatment window, αIIbβ3 may have
returned to a resting conformation, as in the case of platelet de-aggregation that has been
widely recognized [47–49], and P-selectin may have re-internalized [50], disallowing PAC-1
or anti-P-selectin recognition.

Dox-induced platelet activation in the tumor microenvironment may lead to an even
more pernicious cancer progression, as platelets have a pivotal role in cancer pathology
underscored by the consequences of cancer-platelet bidirectional interaction. Platelets are
responsible for contributing to tumor angiogenesis and sustaining proliferation and anti-
apoptotic signals and are linked to facilitating cancer stem-cell phenotypes [51]. In addition,
they elevate cancer metastasis by providing epithelial to mesenchymal transition (EMT)
signals while physically shielding the metastatic cells in circulation and simultaneously
dampening the immune recognition response [38]. As such, Dox may undermine its own
efficacy/effectiveness by augmenting cancer-platelet interaction, which also increases the
risk of CAT/VTE and thus has long-term implications for patients during and beyond a
Dox regimen.

Clinically observed side effects, as well as previous findings of Dox-enhanced metas-
tasis and stemness [52–54], are consistent with the involvement of platelets in cancer
pathobiology. Our findings of augmented platelet activation and interaction with cancer
cells by Dox may be the missing link to unite these observations, further highlighting the
sagacity of including an anti-platelet agent in conjunction with Dox treatment.

We also demonstrated that platelets exhibit a Dox signal following incubation with
it. Dox has previously been characterized for its autofluorescence, with a similar signal to
PE and Cy3, at an excitation and emission of ~470/595nm, respectively. Previous studies
investigating the effect of Dox on platelet phenotype have used fluorescent probes that
share similar spectra to Dox for flow cytometry and confocal imaging without taking
autofluorescence into consideration. This may result in an overlap of fluorescent signals
and inaccurate readings. For example, studies using PE-GPIbβ to monitor microparticle
formation, or one using fluo-3 to measure calcium increase, could have reported a false
positive spillover signal from Dox [23]. These studies need to be re-examined with other
fluorophores or properly compensate the signal to account for Dox, and future studies
should also take this phenomenon into account. Interestingly, we further found that the Dox
signal in PBS-EDTA was lower than in PBS (data not shown). EDTA induced dissociation
of the membrane αIIbβ3 complexes [55], suggesting that integrin αIIbβ3 could be involved
in this process.
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Our ex vivo platelet survival assay and in vitro phagocytosis assays suggest a faster
clearance of platelets directly induced by Dox and not only indirectly by endothelial cell
injury as previously suggested [21]. A retrospective platelet trajectory study following
induction of chemotherapy, nonspecific to Dox, found a transient drop in platelet count that
resurged shortly after [56]. Despite distinct clinical evidence associating Dox with DITP,
few, if any, animal models have been sufficiently able to recapitulate this phenomenon
in vivo. These findings indicate that the observation window is crucial to precisely monitor
the effect of Dox on platelets in animal models; platelet count may have already resurged
in studies collecting samples one week following Dox treatment, exceeding the window of
observable effect. Therefore, a harder, more precise look with a more robust time schedule is
necessary to understand exactly when Dox can impinge its effect upon platelets. Specifically,
in vivo time-course studies would be prudent, with careful regard to the short-term and
long-term effects on platelet activation or thrombus formation and investigation of platelet
microaggregates or evidence of transient DITP. Additionally, our THP-1 phagocytosis re-
sults could not experimentally distinguish between ingested platelets and surface-adhered
platelets. Fluorescence microscopy can be performed to validate platelet phagocytosis
by macrophages.

The major receptors that trigger tyrosine kinase pathways in platelets are GPVI, GPIb-
IX-V complex, and CLEC2. They share a number of common downstream signaling
molecules, especially in the activation of SYK, PLC, and PKC [57], which were shown to
be involved in Dox-induced platelet activation in our study. Thus, which, if any, of these
tyrosine kinase-associated receptors Dox directly binds to needs to be further explored.

Due to the prominent impacts of Dox on platelets, other standard-of-care anti-platelet
agents have been proposed, such as aspirin and Clopidigrel. However, these agents are
subject to limitation, as both introduce a greater risk of bleeding and drug resistance over
time. Clopidigrel has even been shown to reduce the anti-cancer effects of Dox [58–61].
On the other hand, SA boasts a lower bleeding risk and is currently undergoing clinical
trials [28,62].

As mentioned, the most abundant compounds in the SA family, SAA, SAB, and SAC,
have demonstrated anti-platelet and anti-thrombotic capabilities, albeit at varying dosages.
SAA at 100 µM [27] and SAB at 140µM [63] significantly inhibited ADP-induced platelet
activation. However, we found that SAC achieved comparable inhibition at a much lower
concentration of 40 µM. Furthermore, we also found that SAC inhibited Dox-induced
platelet activation more efficiently than SAB (data not shown).

Importantly, previous pharmacokinetic studies of SAs indicate that the working con-
centration of SAC is achievable in vivo. For example, SAA in Rhesus monkeys following a
10 mg/kg IV bolus demonstrated a plasma concentration of approximately 113.293 mg/L
(roughly 288.56 µM) [64]. Another study of SAB in rats demonstrated a maximal plasma
concentration of 910 µg/mL (1.8404 mM) following 100 mg/kg IV injection [65].

Moreover, a study on SAA toxicity in beagles reported a no-observed-adverse-effect
dose of 20 mg/kg via IV injection [66]. Taken together, these findings suggest SAC as a
viable candidate for further drug development.

In the present study, we found that SAC alleviated Dox-induced platelet activation
and cancer-platelet interaction and enhanced platelet clearance, suggesting SAC as a
promising agent to be used in conjunction with Dox chemotherapy. Beyond its anti-
platelet function, salvianolic acids have also been shown to provide several protective
effects, including cardio-, nephro-, vascular-, and neuro-protective attributes specific to
Dox-associated toxicity. Furthermore, it has been reported to ameliorate Dox-associated
fibrosis [25,67–69]. SAC has been reported to localize and enhance the anti-cancer capacity
of Dox [70]; thus, SAC is effective not only for protecting against Dox toxicity and as
a thromboprophylaxis tool to reduce the Dox-associated risk of thrombosis but also for
improving overall treatment efficacy (Figure 5H).

In summary, our study improves the current understanding of Dox-induced platelet
activation and offers perspective to explain the previous inconsistencies. We suggest a
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mechanism linking the clinically observed VTE and DITP side effects imposed by Dox.
Simultaneously, our results exhibit potential for SAC as a novel anti-platelet therapy to
protect patients from chemotherapy-associated thrombosis and thrombocytopenia. Taken
together, this study presents insight into developing an anti-platelet combination therapy
to relieve the platelet-involved side effects imposed by Dox.

4. Materials and Methods
4.1. Materials

Doxorubicin hydrochloride was from ThermoFisher Scientific™ (Cat. No: J64000.MA,
Waltham, MA, USA). SAC was from MedChemexpress Co., Ltd. (Cat. No. HY-N0319,
Monmouth Junction, NJ, USA). Piceatannol was from Millipore (Burlington, MA, USA).
Go 6983 and m-3M3FBS were purchased from Selleck Chemicals, LLC (Cat. No. S0982,
Houston, TX, USA). Phorbol 12-myristate 13-acetate (PMA) was from Millipore. Anti-
phosphotyrosine antibody, clone 4G10, was obtained from Millipore (Cat. No. 05-321X).
Phospho-(Ser/Thr) Phe Antibody was obtained from Cell Signaling Technology (Danvers,
MA, USA). All antibodies for flow cytometry were obtained from BioLegend (San Diego, CA,
USA). Alexa Fluor™ 647-conjugated fibrinogen from human plasma was purchased from
Sigma-Aldrich (Cat. No. F35200, St. Louis, MO, USA). Fibrinogen from human plasma
was purchased from Sigma-Aldrich (Cat. No. F3879). Anti-GPIbβ antibodies conjugated
with DyLight 649 were from Emfret Analytics (Eibelstadt, Bayern, Germany). CellTracker™
Green CMFDA Dye was from ThermoFisher Scientific™.

4.2. Mice

The line of αIIb KO (αIIb-/-) mice was obtained from the laboratory of Dr. Jon
Frampton (Birmingham Medical School, Birmingham, UK) [71] and was backcrossed onto
C57BL/6 WT background mice ten times. C57BL/6 wild type (WT) and BALB/c WT mice
were purchased from Charles River Laboratories (Montreal, QC, Canada) at 6 to 10 weeks
of age. The genotype of the mice was confirmed using polymerase chain reaction analysis.
All mice were housed at the Research Vivarium of the Li Ka Shing Knowledge Institute
(St. Michael’s Hospital, Toronto, ON, Canada) and cared for by the staff of the facility. All
experimental protocols were approved by the Animal Care Committee.

4.3. Platelet Aggregation

Aggregation experiments were performed as previously described [47]. Briefly, human
gel-filtered platelets (hGFPs) were incubated with the indicated reagents. Aggregation was
measured in an aggregometer (Model 700 Chrono-Log Corporation, Havertown, PA, USA).

4.4. Preparation of Human and Mouse Platelets

Blood samples were obtained from healthy donors and collected into vacutainers con-
taining 3.8% (w/v) sodium citrate. Platelet-rich plasma (PRP) was prepared by centrifuging
the whole blood at 300× g for 7 min at maximum acceleration and minimum brake. Washed
platelets were prepared by adding PBS-EDTA to PRP, centrifuging at 800× g for 10 min,
and re-suspending in 1× Tyrode buffer (TB) (129 mM NaCl, 0.34 mM Na2HPO4, 2.9 mM
KCl, 12 mM NaHCO3, 20 mM HEPES, 5 mM glucose, and 1 mM MgCl2 to a final pH of
7.4) to an approximate concentration of 3 × 108 platelets/mL. Mouse blood samples were
collected by retro-orbital bleeding, and mouse washed platelets were prepared in the same
manner described.

Human gel-filtered platelets (hGFPs) were prepared by isolating PRP from sodium-
citrated whole blood as previously described [49], which was then layered over a column of
Sepharose 2B (Sigma-Aldrich) and covered with TB. The column was allowed to drain, and
fractions of platelet-containing TB were collected and combined to a final concentration of
2.5 × 108 platelets/mL.
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4.5. Dox/SAC Treatment of Platelets

Prepared platelets were aliquoted to equal amounts per treatment group. SAC and Dox
combination groups were first exposed to SAC at the appropriate working concentration
for 2–5 min prior to incubation with respective Dox concentration(s) for the predetermined
experiment conditions, out of direct light to preserve Dox integrity.

4.6. Measurement of Platelet Adhesion to Cancer Cell by Flow Cytometry

Platelets were pretreated with SAC and Dox before being added to cancer cells
(MDA-MB-231, 4T1 cell lines provided by Dr. George M. Yousef), at a ratio of 100:1 for
20 min of incubation. Then, cells were washed by centrifugation (150× g, 5 min, 9/3 accel-
eration/deceleration) and stained for CD41 for analysis by flow cytometry, wherein singlet
cancer cells were measured for median fluorescence intensity (MFI) of CD41, correlating to
the interaction of platelets bound to cancer cells.

4.7. Measurement of Platelet and Cancer Cell Interaction by Immunofluorescent Staining

Platelets were pretreated with SAC and Dox before being added to cancer cells at a ratio
of 100:1 for 15 min of incubation, followed by centrifugation (150× g, 5 min, 9/3 accelera-
tion/deceleration) to wash off unbound platelets. Cells were then fixed and stained with
Hoechst 33342 and DyLight 649 anti-GPIbβ antibodies and imaged by fluorescence microscopy.

4.8. Determination of Platelet Activation by Flow Cytometry

Measurements of P-selectin expression and fibrinogen binding were performed as we
previously described [72]. We used diluted PRP treated with drugs as described in each
figure legend in the presence of APC anti-human CD62P (P-Selectin) antibody, APC anti-
mouse/rat CD62P (P-selectin), and Alexa Fluor™ 647-conjugated fibrinogen individually.
Platelets were diluted with PBS-EDTA or washed by centrifugation after 20–30 min of incu-
bation in the dark before analyzing on SP6800 Spectral Analyzer (Sony Biotechnology, Inc,
San Jose, CA, USA). Spectral unmixing was ensured to separate individual fluorochrome
indices for optimal signal collection.

4.9. Platelet Spreading on Immobilized Fibrinogen

Platelet adhesion to immobilized fibrinogen was achieved as we described previ-
ously [73–75]. Platelets were stained with fluorescence isothiocyanate (FITC)-labelled
phalloidin (Cat. No. 40735ES75; Yeasen Biotech Co., Ltd., Shanghai, China) and visualized
by Olympus Upright BX50 Microscope. The number of adhered platelets and the platelet
surface area were analyzed using ImageJ software v1.53t (NIH, Bethesda, MD, USA).

4.10. Preparation of Total Platelet Lysate Protein for Western Blot

Washed human platelets were split into equal amounts, and appropriate groups
were pretreated with either SAC or SYK inhibitor piceatannol (10 µg/mL final) for 2 min
preceding incubation with Dox for ~25 min. Platelets were lysed by adding 1× and 1 mM
of the loading buffer and DTT, respectively, and heated at 75 ◦C for 20 min. Platelet lysate
total protein was loaded and resolved by SDS-PAGE and Western blot. The membrane
was probed for total phosphorylated tyrosine protein residues using anti-pY mAb. The
membrane was re-probed for intracellular cytoskeleton protein Vinculin as the internal
loading control.

4.11. Evaluation of Platelet Phagocytosis

The platelet phagocytosis assay was modified from our previous studies [76–78].
Briefly, THP-1 human leukemia cells, purchased from ATCC (TIB-202), were stimulated
with ~200 nM PMA to induce differentiation. A total of 24 hours later, deep red-labelled
hGFP was prepared and treated with SAC and then aliquoted to rinsed THP-1 cells and
covered with RPMI 1640. Dox was added to appropriate wells to the working concentration,
and the cells and platelets were allowed to incubate for 60 min at 37 ◦C. The assay was
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stopped by placing the plate on ice and washed with cold PBS. Cells were fixed with 4%
PFA for 20 min at room temperature and then washed 3 times with cold PBS. Cells were
gently scraped for flow cytometry analysis.

4.12. Platelet Survival Assay

Isolated platelets from WT donor mice were treated with or without Dox (40 µg/mL)
for 30 min at 37 ◦C and then injected into recipient CD41-deficient mice via tail vein.
After transfusion, 10 µL of blood from saphenous bleeding was collected into 240 µL PBS-
EDTA at various time points, followed by centrifuging at 150× g for 2 min. Then, 50 µL
of the supernatant was stained with BV605-CD41, and the percentage of CD41-positive
platelets (transfused platelets) was determined by flow cytometry. Data were normalized
by designating the percentage of CD41-positive platelets at the first time point (immediately
after tail vein injection) as 100% and expressing all other different post-transfusion times as
the percentage of this value.

4.13. Isothermal Titration Calorimetry

ITC experiments were performed using a MicroCal VP-ITC instrument (Malvern Pan-
alytical, Malvern, UK). Samples were degassed before analysis with a MicroCal Thermo
Vac (Malvern Panalytical) unit for 5 min. Titrations were performed with either fibrino-
gen or Tyrode buffer solution in the cell and doxorubicin, as the titrant, in syringe. All
experiments consisted of an initial delay of 60 s, the first injection of 2 µL, and a 300 s delay.
Subsequent 20 injections were 14 µL, spaced every 300 s. The first point was removed
from all data sets due to the different injection volume and delay parameters. The binding
experiments were performed at 25 ◦C using a fibrinogen concentration of 1.5 µg/mL and
a doxorubicin concentration of 40 µg/mL. ITC data were fit to a one-site binding model
using the manufacturer-provided Origin 7 software (Malvern Panalytical). Dissociation
experiments were performed at 25 ◦C using doxorubicin concentrations of 80 µg/mL and
160 µg/mL. ITC data were fit to a dissociation model using the manufacturer-provided
Origin 7 software.

4.14. UV-Vis Measurements

All measurements were obtained on a Carry 100 Bio UV-Vis Spectrophotometer
(Siemens Healthineers, Erlangan, Germany) in Tyrode buffer at 25 ◦C using cells of 1 cm
path length. Doxorubicin (80 µg/mL and 160 µg/mL) was prepared in the Tyrode buffer,
and the disappearance of maxima at 497 nm was observed.

4.15. Statistical Analysis

FlowJoTM v10.8 Software (BD Life Sciences, Franklin Lakes, NJ, USA) and Sony SP6800
were used to analyze the flow cytometry data. GraphPad Prism (version 8, San Diego,
CA, USA) was used for data visualization and analysis. Statistical analysis was performed
using one-way ANOVA, two-way ANOVA, or Student’s t-test. Results are presented as
mean ± standard deviation (SD) with significance defined as * p < 0.05, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001, ns = not significant.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph15121444/s1, Figure S1: Dox-Induced Human Platelet
Fibrinogen Binding Inhibited by SAC; Figure S2: Dox-Induced Human Platelet P-selectin Expression
Inhibited by SAC; Figure S3: Doxorubicin Visible Absorption Spectra; Figure S4: Ticagrelor and
Aspirin Inhibit ADP-Induced Platelet Activation; Figure S5: SAC Inhibits ADP-Induced Platelet
Activation; Figure S6: SAC Reduces Dox Permeation of Platelets.
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