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Abstract: This paper proposes an improved initial alignment method for a strap-down inertial
navigation system/global navigation satellite system (SINS/GNSS) integrated navigation system
with large misalignment angles. Its methodology is based on the three-dimensional special Euclidean
group and extended Kalman filter (SE»(3)/EKF) and aims to overcome the challenges of achieving
fast alignment under large misalignment angles using traditional methods. To accurately characterize
the state errors of attitude, velocity, and position, these elements are constructed as elements of a
Lie group. The nonlinear error on the Lie group can then be well quantified. Additionally, a group
vector mixed error model is developed, taking into account the zero bias errors of gyroscopes and
accelerometers. Using this new error definition, a GNSS-assisted SINS dynamic initial alignment
algorithm is derived, which is based on the invariance of velocity and position measurements.
Simulation experiments demonstrate that the alignment method based on SE;(3)/EKF can achieve a
higher accuracy in various scenarios with large misalignment angles, while the attitude error can be
rapidly reduced to a lower level.

Keywords: large misalignment angles; initial alignment; strap-down inertial navigation system
(SINS); global navigation satellite system (GNSS); three-dimension special Euclidean group and
extended Kalman filter (SE;(3)/EKF); Lie group; SINS/GNSS integrated navigation system

1. Introduction

The initial alignment is a crucial component of the strap-down inertial navigation
system (SINS) and is assessed based on its speed and accuracy [1]. Currently, there are two
main categories of traditional alignment methods based on misalignment angles—small
misalignment angles linear alignment and large misalignment angles nonlinear align-
ment [2]. Linear alignment models and linear filtering algorithms for small misalignment
angles are well established, while research on the alignment problems for large misalign-
ment angles has mainly focused on nonlinear models and nonlinear filtering algorithms [3].
However, these approaches can lead to errors in model linearization, increased compu-
tational complexity, and reduced filtering accuracy for large misalignment angles. In the
21st century, modern warfare has demonstrated the significance of high-tech conditions,
where precision is a key consideration, alongside speed. Consequently, it is essential to
find ways to achieve fast and highly accurate initial alignment under large misalignment
angles, for applications like weapon launchers and guided weapons that require emergency
mobile transfer. Addressing this urgent problem is crucial from both a system performance
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perspective in modern warfare and from practical alignment environments, data utilization,
and engineering software development [4-6]. Hence, studying the linearized uniform
initial alignment algorithm without coarse alignment at any misalignment angles is of
paramount importance and offers significant theoretical and engineering benefits.

The current most popular mode of navigation is the SINS/Global navigation satellite
system (GNSS) integrated navigation model [7,8]. Satellite navigation offers both high
accuracy and low cost. In the SINS/GNSS integrated navigation system, GNSS not only im-
proves navigation accuracy by correcting inertial navigation information, but also provides
initial position and velocity information for SINS [9]. However, the GNSS cannot directly
provide attitude information. In recent years, nonlinear system state estimation has gained
attention in the field of inertial navigation for combined navigation and initial alignment.
This includes methods such as the extended Kalman filter (EKF) [10], unscented Kalman
filter (UKF) [11,12], particle filter (PF) [13], cubature Kalman filter (CKF) [14], unscented
particle filter (UPF) [15], distributed Kalman filter (DKF) [16], or a combination of multiple
nonlinear filters [17,18]. Among these, the traditional EKF has two drawbacks. Firstly, it
requires high accuracy in the initial value of the system state. If the initial value is based
on the actual situation, the filter may struggle to converge. Secondly, the EKF can lead
to inconsistency. When a new observation is received, the EKF calculates the covariance
matrix of the current state based on the linearization of the previous state. However, the
actual value of the covariance matrix may not align with this calculated value. Compared
to the EKF, the UKF is more practical. However, both the traditional UKF and EKF require
prior statistics on known system noise and measurement noise. In practical applications,
the accuracy of the filter is inevitably affected by environmental limitations and algorithm
problems, leading to a decrease in accuracy or even divergence.

In the traditional EKF framework used for the GNSS/SINS integrated navigation
system, state errors such as position and velocity are defined only by considering differences
in size, completely ignoring differences in direction. This oversight can lead to inconsistent
definitions of state error coordinate systems. In recent years, a new filter has been developed
based on Lie groups and manifold theory. Its core idea is to define the states and errors such
as attitude, velocity, and position in the group space, rather than in the traditional Euclidean
space. According to the multiplicative closure property of Lie groups and the affine property
between Lie algebras, a more compact dynamic equation of position and coordinate state
errors, considering attitude errors, has been redesigned to meet the requirement that the
error transfer matrix or measurement matrix remain unchanged or slowly change and
to achieve the independence of F or H matrix and state estimation. Therefore, it can
be unchanged, also known as invariant EKFE. The error definition corresponding to the
invariant EKF has good self-consistency, which effectively overcomes the defect that the
traditional EKF is too dependent on the initial value, and has better convergence and
consistency of filtering [19]. It is more rigorous, in theory, and has been well applied in
inertial navigation fields such as robot attitude estimation, simultaneous localization and
mapping (SLAM), and visual odometers (VOs) [20]. To address this issue, this paper adopts
the invariant EKF concept. It defines states and errors, such as attitude, velocity, and
position, in group space. Based on this approach, new inertial navigation error equations
and measurement update methods are deduced. The main contributions of this paper can be
summarized as follows: (1) Constructing the attitude, velocity, and position states as three-
dimensional special Euclidean group (SE»(3))/EKF elements, which takes into account the
zero bias errors of gyroscopes and accelerometers. This facilitates the formation of a mixed
group vector error. The alignment method based on SE,(3)/EKEF filtering has demonstrated
faster convergence speed, higher accuracy, and greater computational efficiency than the
traditional EKF. (2) Attaining the accurate position of the vehicle during the alignment
process is crucial for improving the alignment accuracy of the system. Moreover, the
position alignment aids in directly transitioning the vehicle to the autonomous navigation
stage after the GNSS-aided alignment. Consequently, it enhances the vehicle’s applicability,
by eliminating the need to obtain the vehicle’s position again at the end of the alignment.
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Accurate and real-time position alignment can improve the attitude alignment accuracy of
the system.

The paper follows this outline—Section 2 establishes the inertial navigation error
equation under the Lie group framework. Section 3 presents the filtering model for the
SINS/GNSS integrated navigation system based on SE;(3)/EKF. The simulation experiment
was conducted in Section 4. Finally, Section 5 concludes.

2. Inertial Navigation Error Equation under the Lie Group Framework

SE»(3)/EKF does not simply use the difference between the estimated state and the
real state as the error, but more carefully considers the consistency of the coordinate frame
of the state definition and provides a more rigorous and compact mathematical form by
redefining the error in Lie group space. In order to describe the state error, a lie group state
error model including attitude, velocity, and position is designed and the gyro bias error
and accelerometer bias error are still defined in the traditional vector space.

The related Cartesian reference coordinate frames used in this study are defined as
follows [21]:

(1) b-frame: Body coordinate system, with its three axes pointing to the right-front-up
(R-F-U) of the carrier, respectively, denoted as x}1;2p;

(2) n-frame: It indicates the navigation frame and it is the frame used by the SINS
to calculate the navigation parameters, denoted as Eastward-Northward-Upward
(E-N-U);

(3) e-frame: Earth coordinate system, with its origin at the geocenter. The x-axis is the
intersection of the geocenter pointing to the prime meridian and the equator, the
z-axis is the geocenter pointing to the north pole, and the y-axis forms a right-handed
coordinate system with the x-axis and z-axis, denoted as x,Vy,z.;

(4) i-frame: Inertial coordinate system. It is a non-rotating coordinate system in inertial
space, denoted as x;v;z;.

The schematic diagram of the coordinate system mentioned above is shown in Figure 1.
wij, is the angular velocity of the Earth’s rotation and L is the latitude of the SINS.

Figure 1. Schematic diagram of the coordinate system.

2.1. SINS Navigation Differential and Error Equations

Selecting the E-N-U geographic coordinate system as the navigation reference co-
ordinate system for the SINS, the attitude differential equation using the n-frame as the
reference frame is as follows [22]:

- n
Cp = Cy(wiyx) — (@} + i) ¥]C ©)
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where Cj denotes the attitude matrix of the b-frame relative to the n-frame, wf.’b is the
angular velocity of the b-frame relative to the i-frame, wj, is the rotational angular velocity

of the Earth, w = [0 wj,cosL  wj,sinL] L wy, is the angular velocity generated by the

T
relative motion of the n-frame to the e-frame, w},, = [— R;NJrh R:,]ih R;]i—h tan L} ,and

h is the geographical altitude. R is the principal radius of curvature along the meridional
section, Ry is the principal radius of curvature along the prime-vertical normal section,
v" is the velocity in the n-frame, and v" = [UE UN vu} T vg, UN, and vy are the eastern,
northern, and upward velocity, respectively. x denotes the conversion of vectors into
oblique symmetric matrices.

The differential equation for attitude error can be derived as follows [22]:

9 = 9" x wf, + 8w, — Cla, @

where ¢ is attitude error, w! = w}, + wy,, dw} is the calculation error, dw! = dw!, + dwy,
T 0 00

dw! = [0 —wjpsinL 8L wjcosL-8L]" = Midp", M = |—wisinL 0 0, and

wicosL. 0 0
6wf.’b is the measurement error of the gyroscope.

—duy uNOh
Ru+h T (Ry+h)?
n 61)]5 _ ZJE(Sh n n
dwy, = RN+~ (Ryth)? = M;pdv" + Mydp 3
tan L-dvg + vpsec? L-5L __ vgtanL-0h
RN+h RN+h (RN+h)2
N
0 —gly 0 D0 T )
where M,, = ﬁ 0 0|, M, = 0 0 T Ruth) Pt =1L A k],
tan L 0 0 vg sec? L __ ovgtanl
Rn+h Rn+h (Ry+h)?

A is the longitude, 6p" = [6L oA 6h} T is the position error, and 8L, 0A, and b/ are the
latitude error, longitude error, and height errors, respectively. v" is the velocity error in

the n-frame, 50" = [505 OUN 5011] T, and dvg, duy, and dvy; are the eastern, northern,
and upward velocity errors, respectively.
The velocity differential equation defined under the local navigation system is as
follows [18]:
" = Cf — 2wl + W) x 0" + ¢ 4)

where f? is the specific force measured using the accelerometer, 2w}, x v" is the Coriolis
acceleration caused by the motion of the carrier and the rotation of the Earth, w}, x v" is
the centripetal acceleration caused by the movement of the carrier towards the ground,
g" is gravitational acceleration, and — (2w}, + w},) X v" + g" is collectively referred to as
harmful acceleration.

The corresponding differential equation for velocity error is as follows [23]:
50" =1 x ¢" + 0" x (28w + swl,) — (2wl + wlh,) x 80" + Crof + 6g" (5)

where f" is the projection of the specific force vector in the n-frame, 5f” is the measurement
error of the accelerometer, and 8g” is the gravitational acceleration error.

The position differential equation defined under the local navigation system is as
follows [23]:

0 s 0
n .. T L Ryi+h
=i d i) = e 0 oo =My ®

0 0 1
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1
0 = O
where My, = RSZCJth 0 0].
0 0 1

The corresponding differential equation for positional error is as follows [23]:

n

) R
6" =[ 6L oA o

1 __TUN
° L Kol 0 . LtanL ’ (RM+h)L2 (7)
secC n VE secC an —UE seC n
e R B el
0 0 1 0 0 0

= My 00" + M), dp"
The error model for gyroscopes and accelerometers is as follows:

N

_ b b
wjp, =w,; +& +w
b § ®)
f :’fi]+vb+Wu

Ab b
where w;;, and f are actual measured values of gyroscopes and accelerometers, respectively.
€’ is the random constant drift of the gyroscopes, V? is the random constant bias of the

.b : . . .
accelerometers, and & = 0, V. = 0. wg, and w, are the Gaussian white noises of the
accelerometers and gyroscopes, respectively.

2.2. Left Invariant Error Equation of Inertial Navigation in the Lie Group Framework

In the Lie group framework, the n-frame is chosen as the projection coordinate system
for the SINS/GNSS integrated system. The attitude, velocity, and position of the n-frame
are defined as a group, x, [24] as follows:

c, o p"
X=10ix3 1 0 9)
01x3 O 1

where Cj € SO(3), SO(3) is a three-dimensional special orthogonal group, 0; 3 is a zero
matrix with one row and three columns, and x € SE(3) is a more concise group that
includes elements of attitude, velocity, and position.

By using the properties of Lie groups [25], we can obtain the following:

x =103 1 0 (10)

where x ! denotes the inverse matrix of x and, similarly, x = € SE(3).

If x represents the true state and x represents the nominal state, the error of the
attitude, velocity, and position states is defined as # € SE(3). The error in Lie group space

A

can be classified into two types—left invariance, # = )% X, and right invariance, # = xx
Research has shown that left invariance can achieve the invariance or gradual change of the
measurement matrix, while the observations of GNSS theoretically belong to the category
of left invariant observations [25]; therefore, this paper focuses on the left invariant error
for processing.

Based on Equations (1) and (2), the specific expression for the left invariant error is
given by:
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ab ab Ab n N Ab Ab Ab AD
-1 c, —o —p||G& v P C,C! Co'—v Cp'—p
_ =" 0 1 o=t " " (11)
1T=X X~ |05 1 0 1x3 | Oix3 1 0
0,3 0 1 |L0xa 0 1 0123 0 1

~
~

~
~

~
~

The errors corresponding to the attitude, velocity, and position under the defined Lie
group are as follows:

N
C,Cj} = Exp(¢") = exp(¢"x) (12)
b b Ab Ab o b

Job=C"—v =Co"—Co = —C,00" (13)
Ab b oAb Ab Ab

Joh=Cip" —p =Cup" —Cop = —C,0p" (14)

where ¢? is the attitude error angles, Exp(-) represents the mapping between Lie algebras
and Lie groups, and exp(-) represents exponentiation. exp(¢?x) = I3 + 08 (¢0x) +

1’57359(4)1’ x)2 and 6 = |¢|. ] is the Jacobian matrix of the Rodriguez formula and J =
o
EO ﬁ (pPx) =13 + 1?%9(4)” x) + %((])b X )2. Jpb is the new definition of velocity
error and ]pl;] is the new definition of positional error.

From the error form defined in Equation (11), we can observe that the velocity and
position errors defined in the Lie group framework include attitude terms. This takes into
account the differences in numerical magnitude and direction between true values and
estimates. Therefore, the error definition is more reasonable and concise compared to the
traditional vector space method of differencing, which solves the problem of inconsistent
benchmarks for defining velocity error states.

According to the characteristics of Lie groups and Lie algebras, the left invariant error
satisfies the following [26,27]:

exp(¢"x) Jpb Jpb
0

n=1 013 1 (15)
01x3 0 1
The new attitude error equation is derived as follows:
PN
c,C, +C,C,
N b oAb b
[cnwm x) = (@i x)Cy | Cp + €y | G (@l x) = (i x)C}
AV Ab o AD ab Al (16)

Cn(winx)cg - (wihX)CnCZ + Cncz(wibbx) - Cn(wlnnx)crbl

AbE o i

o o — ol x| € = [(@l + 2t ] [1a 5 (0] + [1a 4 ()]l )
dw]l X {13 + ((pbx)} + (% x wh) x —bwh x

sw! x +(¢ x wh) x —swh, x

ab
where C,C} ~ I3 + (¢"x), dw}, = &, — wll,
small quantities (Jw!, x)(¢"x) and ((Swf-’b x)(¢? x) are neglected in the process of formula
derivation.

The new velocity error equation is derived as follows:

5wlbb = (Dibh — wl’-’b, and the second-order
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-b

A /\b
% (]pzbz) = —C,v" — Cn‘si)n
Ab N b Ab
= Lcn(win x) = (wpx)C, | 60" (17)
Gyl % 0 X (250l 4 Bawly) — (2w + wly) x 50" + Clef + 5]
ab
~ = (wpx)Iph = of + 9" x f — Ciag" + (Chewf,) x Jph — Cu (0" x) (dw], + b} )
Ab AN Al
where o’ = f —f, dwl, = w;, —wj,,and 0g" =g —g".
The new position error equation is derived as follows:
2! ab
4(Jh) = —Cuop" — Cutp"
N b b Ab
= — [Cn<win X) — (wihX)Cn 5’7” — Cn (Mpvév” +Mpp5pn) (18)

b ab Ab N N
= (wih;;)cnfspn - Cn(winx>(spn - CnMpvévn - CnMppépn

—(wipx)Jpb +Jpb — Ch(p" x)dwlh, + (Chawlt) x Jpb

Q

By substituting Equations (13) and (14) into dw}, and w7}, , we can obtain the follow-
ing equations:

AN
Swjt, = Mysp" = =M1 CyJp), (19)
Al Al
Sw, = (Mg + Mp)op" + Mapdv" = —(My + M3)CyJph, — MaCyJp} (20)

Finally, the error equations of SINS can be written as follows:

b n n
d A A A
yn (cncg> = —C,(My + M,)CyJpl, — CoMauCyJph — why x ¢° — (" +wg)  (21)

4(105) = Ch"x)(2My +Ma)Cplph + | Ch(v" %)M G — (wh, %) — (Cheol) x| T )
¢~ Chog' — (V" )

d
(7o) = |Chip" > )MaCy — (] ) + (Chaw) < [Toh + I + € (p" <)My | Toh (23)

3. Filtering Model Based on SE;,(3)/EKF
3.1. State Equation Based on SE»(3)

If the state vector is X and the system noise vector is W, then the state equation based
on SE»(3) is as follows [28]:
X=FX+GW (24)

where Fis the state transition matrix, G is the system noise allocation matrix, and E[WW'] = Q.

T

r (v | (25)

T

x=[ " )" o) (&)
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B Ab ab AN Ab ]
—wipX  —CMapC C, (M + M,) —I; 03
A Ab All AN N ab AN AN ab ANl
Fo | X Go XIMewCy —wpy X —Colwiex)Cp —Cy(v x)(2M1+Mz) 03 —Is (26)
03 _Mpvcb Mpv 03 03
03 03 03 03 03
L 03 03 03 03 03 |
—I3 03
03 I3
G=|0 03 27)
0; 03
0; 03
W= [wg} (28)
Wy

where I3 is a 3 X 3 unit vector and 05 is a 3 X 3 zero matrix.

3.2. Measurement Equation Based on SE;(3)

The GNSS can provide position and velocity information in integrated navigation
as measurements for Kalman filtering, to suppress the divergence of inertial navigation
calculation results. Therefore, the measurement equation based on the SE;(3) can be written
as follows [29]:

VG NS — UL
Z= [ SINS ,?NSS} =HX+V (29)
PsiNs ~ PGNss
where v¢;\s and v}, g are the velocity of the SINS and the GNSS in the n-frame, re-
spectively. p¢;yg and pt g are the position of the SINS and the GNSS in the n-frame,
respectively. H is the measurement matrix and V is the white noise for velocity measure-
ment and position measurement of satellite receivers.

N/
H= |7 —I3; 03 03 03 O3 (30)
03 03 0; 03 03 O3
— VU
-t

where V;, and V), are the white noise for satellite receiver velocity measurement and position
measurement, respectively.

3.3. SE»(3)/EKF Algorithm

Assuming the sampling interval of IMU is At and the discretized state transition
matrix is @, then the SE»(3)/EKF algorithm is as follows [30]:

(1) One-step state prediction

Xik—1 = Prp—1Xk—1 (32)
(2) State estimation
Xy = X x—1 + 60X (33)

(3) State estimation error

0Xy = Ki(Zy — Hi X j—1) (34)
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(4) Filter gain
-1
K = Pii_1H{ [H(Pii1H{ + Ry] (35)
(5) One-step prediction mean square error
Pii1 = Py 1P 1], 1 +Qr (36)
(6) Estimating mean square error
T
Py = (I — KiHy) Pej1 (I — KgHy) ' + KeReKy (37)

A

where Xj ;1 is the state one-step prediction matrix, @y ;_ is the one-step transition
A
matrix from time t;_; to time t, and @y x_1 = I + FAt. Xj_ is the state estimation
A

matrix at time f;_1, X is the state estimation error matrix at time f;, Kj is the filtering
gain matrix at time f, Zj is the measurement matrix at time t;, Py y_1 is the one step
prediction mean square error matrix, Ry is the measurement noise variance matrix,
Qy_ is the system noise variance matrix at time t;_1, Q,_; = Gk—l(qk_1At)Gzz_1,
Gy_1 is the discretized system noise allocation matrix at time #;_1, and g is the variance
intensity matrix corresponding to the system noise matrix W. Py is the estimated
mean square error matrix.

4. Simulation Results

This section presents the simulation experiments conducted to verify the validity and
feasibility of the proposed method. The specific parameters of the inertial sensor used
in the simulation experiments are as follows: the constant drift and random walk of the
gyroscopes are represented by values 0.03° /h and 0.001°/ v/h, respectively. The constant
bias and random bias of the accelerometers are represented by values 100 ug and 10 ug,
respectively. The data output frequency is 200 Hz and the calculation period of SINS is 5 ms.
The performance parameters of the GNSS are as follows: the velocity measurement accuracy
is represented by a value of 0.1 m/s, the position measurement accuracy is represented
by a value of 1 m, and the data output frequency is represented by a value of 1 Hz. The
initial position is set as follows: 118.786365° E, 32.057313° N, and the height is 0 m. The

initial velocity is represented by a value of [0 0 O]T m/s. The simulation time is 900 s.
The state and trajectory of the vehicle are illustrated in Figures 2 and 3, respectively.
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Figure 2. The dynamic characteristics of the vehicle during the experiment.
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Figure 3. The trajectory of the vehicle during the experiment.

Starting Point\:|
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To fully demonstrate the performance of the proposed algorithm, contrast experiments
of SE»(3)/EKF and the EKF algorithm, as well as position alignment experiments, will
be designed. These experiments will compare the traditional EKF with the SE;(3)/EKF
algorithm proposed in this paper, using three different initial misalignment angle scenarios.
The performance of various algorithms will be evaluated to verify the advantages of the

SE,(3)/EKEF algorithm.

4.1. Experiment 1

In this experiment, the misalignment angles in the three directions are sequentially

set [1° —1° 40"]T

. The mean and variance of the attitude error and position error are

recorded in Table 1 for the 50 s leading up to the end of alignment. The attitude angle error
are as shown in Figures 4-6, and the position alignment error are as shown in Figures 7-9.

Table 1. Mean and variance of attitude error and position error ([1° —1° 40°] T).

Algorithm Attitude and Position Error Mean Variance

Pitch Error —0.7871" 0.1214

Roll Error 1.2537" 0.0926

SE,(3)/EKF Heading Error 0.0595 0.0087

Latitude Error 0.4381 m 0.0412

Longitude Error —0.2522 m 0.0201

Height Error —0.3418 m 0.0603

Pitch Error 0.9947" 0.1216

Roll Error 1.9856" 0.0945

Heading Error —0.3037' 0.0107

EKE Latitude Error 0.4882 m 0.0415

Longitude Error —0.3065 m 0.0203

Height Error —0.5243 m 0.0616
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Figure 4. Eastward attitude angle error of misalignment angles ([1° —1° 40°]").
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Figure 5. Northward attitude angle error of misalignment angles ([1° —1° 40°] ).
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Figure 6. Upward attitude angle error of misalignment angles ([1° —1° 40°] ).
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Figure 7. Latitude alignment error of misalignment angles ([1° —1° 40°] )
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Figure 8. Longitude alignment error of misalignment angles ([1° —1° 40°] ).
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Figure 9. Height alignment error of misalignment angles ([1° —1° 40°]").

Based on the comprehensive information from the chart, both methods can converge
the attitude angles to a relatively stable range in this scenario. The figure shows that the
time taken to converge the horizontal attitude angles estimated by the two methods is not
significantly different; both methods converge quickly. However, the convergence time
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for the heading angles is longer. The data provided in Table 1 indicate that the attitude
angle accuracy of the two methods after alignment is relatively close. Overall, under the
misalignment angles set in Experiment 1, both methods perform equally. This is because
the initial misalignment angles are small at this time and the nonlinearity of the traditional
EKF model is not severe. Additionally, defining the velocity error as the direct difference
between the true value and the estimated value is considered reasonable, allowing both
alignment methods to converge quickly.

4.2. Experiment 2
In this experiment, the misalignment angles in the three directions are sequentially

set [1° —1° 95°]T. The mean and variance of the attitude error and position error are
recorded in Table 2 for the 50 s leading up to the end of alignment. The attitude angle
error are as shown in Figures 10-12, and the position alignment error are as shown in
Figures 13-15.

T
Table 2. Mean and variance of attitude error and position error ([1° —1° 95°]").
Algorithm Attitude and Position Error Mean Variance
Pitch Error 11.0881" 0.2950
Roll Error —7.7115" 0.1303
Heading Error —1.0848' 0.0259
SE,(3)/EKF
Latitude Error 0.2507 m 0.1201
Longitude Error 0.8113m 0.0552
Height Error 1.6058 m 0.1191
Pitch Error 57.2824" 0.3147
Roll Error —17.7575" 0.1366
Heading Error —2.5052 0.0445
EKF
Latitude Error 0.5569 m 0.1238
Longitude Error 23491 m 0.0612
Height Error 3.1618 m 0.1307
2500 - ——
— 4 (EKF)
2000 — ¢ (SE,(3)/EKF)
1500
—~ 1000 .
“w
S 500
0
-500
-1000 - -
0 100 200 300 400 500 600 700 800 900 1000

time(s)

T
Figure 10. Eastward attitude angle error of misalignment angles ([1° —1° 95°] ).
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Figure 11. Northward attitude angle error of misalignment angles ([1° —1° 95°]T).
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Figure 12. Upward attitude angle error of misalignment angles ([1° —1° 95°]T).
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Figure 13. Latitude alignment error of misalignment angles ([1° —1° 95°] T).
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Figure 14. Longitude alignment error of misalignment angles ([1° —1° 95°] ).
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Figure 15. Height alignment error of misalignment angles ([1° —1° 95°]").

From the figures, it can be observed that, due to further increasing the initial heading
angle error, the nonlinearity of the traditional model is enhanced. At this point, the EKF
method still uses a linear error differential equation error model, disregarding the influence
of high-order system terms. As a result, significant model errors occur, leading to a
slower convergence speed in attitude compared to the SE;(3)/EKF method. According
to Table 2, the convergence accuracy of the EKF method is lower than that of SE;(3)/EKE.
The SE;(3)/EKF method redefines errors more rigorously within the Lie group framework,
resulting in a better performance for larger misalignment angles.

4.3. Experiment 3
In this experiment, the misalignment angles in the three directions are sequentially

set [20°  20° 165°]T. The mean and variance of the attitude error and position error are
recorded in Table 3 for the 50 s leading up to the end of alignment. The attitude angle
error are as shown in Figures 16-18, and the position alignment error are as shown in
Figures 19-21.



Sensors 2024, 24, 2945 16 of 20

Table 3. Mean and variance of attitude error and position error ([20° 20° 165°] T).

Algorithm Attitude and Position Error Mean Variance
Pitch Error 13.641" 0.4387
Roll Error 17.0"” 1.2976
Heading Error 45116/ 0.2122
SE,(3)/EKF
Latitude Error —1.8307 m 0.0204
Longitude Error 22376 m 0.1855
Height Error 4.1076 m 0.1372
Pitch Error 5.4181 x 102" 0.4905
Roll Error —2.5211 x 10%” 2.2026
EKE Heading Error —38.9656 x 10%/ 0.1851
Latitude Error 5.3826 m 0.1123
Longitude Error 22.3550 m 0.6989
Height Error 16.1874 m 0.1525
6000 r T T T ]
— ¢ (EKF)
—¢_(SE_(3)/JEKF
4000 $(SE,(3) )
2000
=
<
o |
-2000
_4000 L L L L |
0 100 200 300 400 500 600 700 800 900 1000

time(s)

Figure 16. Eastward attitude angle error of misalignment angles ([20° 20° 165°] T).
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Figure 17. Northward attitude angle error of misalignment angles ([20°  20° 165°]T).
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Figure 18. Upward attitude angle error of misalignment angles ([20° 20° 165°] ).
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Figure 19. Latitude alignment error of misalignment angles ([20° 20° 165°] ).
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Figure 20. Longitude alignment error of misalignment angles ([20° 20° 165°] ).
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Figure 21. Height alignment error of misalignment angles ([20° 20° 165°]T).

The figure shows that, when the misalignment angles in three directions reach a severe
level, the nonlinearity of the model becomes extremely severe. Additionally, defining the
velocity error as a direct subtraction becomes even more unreasonable. Consequently, the
traditional EKF algorithm is no longer able to converge, while the SE,(3)/EKF method still
converges relatively quickly. According to Table 3, it is evident that, in this scenario, the
attitude angle error calculated by SE;(3)/EKF can still maintain a level close to Experiment
1 and Experiment 2, further demonstrating the stable characteristics of the SE;(3)/EKF
alignment method.

5. Conclusions

This paper proposed a novel initial alignment method for the SINS/GNSS integrated
navigation system with large misalignment angles based on SE;(3)/EKF. The left invariant
SE»(3)/EKF adopts a group-vector mixed error model, which allows the linear state error
based on Lie algebra to effectively capture the nonlinear error on the Lie group. This com-
patibility with the linear assumption of EKEF filtering results in a higher precision dynamic
model, improved measurement update accuracy, and better performance in dynamic initial
alignment, especially when considering attitude error. Simulation experiments demon-
strated that the EKF method can achieve attitude convergence in scenarios with small initial
misalignment angles. On the other hand, the alignment method based on SE;(3)/EKF can
converge to higher accuracy in the different large misalignment angle scenarios simulated
in this paper, quickly reducing attitude errors to a lower level.

In future research, we focus on studying a more reasonable difference resistance
adaptive filtering method within the framework of SE;(3). This will enable us to adapt to
complex GNSS observation environments or high dynamic scenes of carriers, expanding
the application scenario of this algorithm. Additionally, we aim to conduct real-time vehicle
experiments to validate the proposed methodology for practical use.
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Abbreviations

The abbreviations used in this manuscript are as follows:

SINS  Strap-down Inertial Navigation System
GNSS  Global Navigation Satellite System

SE Set Euclidean

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

PF Particle Filter

CKF Cubature Kalman Filter

UPF Unscented Particle Filter
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