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Abstract: UAV communications have seen a rapid rise in the last few years. The drone class of UAV
has particularly become more widespread around the world, and illicit behavior using drones has
become a problem. Therefore, localization, tracking, and even taking control of drones have also
gained interest. Knowing the frequency of a target signal, its position can be determined (as the angle
of arrival with respect to a fixed receiver point) using radio frequency-based localization techniques.
One such technique is represented by the subspace-based algorithms that offer highly accurate results.
This paper presents the implementation of the MUSIC algorithm on an SDR-based system using a
uniform circular antenna array and its experimental evaluation in relevant outdoor environments for
drone localization. The results show the capability of the system to indicate the AoA of the target
signal. The results are compared with the actual direction computed from the log files of the drone
application and validated with a professional direction-finding solution (i.e., Narda SignalShark
equipped with the automatic direction-finding antenna).

Keywords: SDR; localization; angle of arrival; UAV communications; MUSIC algorithm; signal
processing; direction-finding; uniform circular array

1. Introduction

Knowing the position of a target has always been a subject of interest with applica-
tions in the military, space, industrial, and civil domains. Target localization is used in
enemy aircraft and spaceship localization and tracking, space surveillance and tracking,
commercial flight tracking, or interference localization. Localization is also used in mobile
communications, sonar systems, rescue operations in emergency scenarios in remote spaces,
and so on.

The main methods used for localization are based on optical measurements/video,
audio, sonar, and radio frequency (RF) communications. The most common RF localiza-
tion systems use radar, interferometry, angle-of-arrival (AoA), ultra-wideband (UWB), or
Wi-Fi positioning.

Unmanned aerial vehicle (UAV) communications have seen a rapid rise in the last
few years. Commercial drones have become more widespread due to their ease of use,
agility, and non-prohibitive prices. Applications vary from own-use photography and
entertainment to crop monitoring for agriculture, mapping, delivery services, disaster relief,
search and rescue, mining, or simply drone surveying. The exceptional maneuverability
capabilities and the possibility to access remote places make drones a target for illicit
behavior. Drug or contraband substance or gun smuggling, striking fire, reckless utilization,
or simply unauthorized operations with drones need to be countered. Ongoing research
tries to come up with solutions to address this problem.

Therefore, given the importance of target localization and the necessity to counteract
the unlawful operation of commercial drones, this paper presents a software-defined radio
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(SDR)-based system that can perform RF localization of drones. The proposed system uses
a five-element uniform circular array (UCA) antenna and the multiple signal classification
(MUSIC) subspace-based algorithm to identify the AoA of a commercial drone that operates
in a known frequency band. While most literature works present the capabilities of this
algorithm and its improvements using simulation, our work goes one step further and
presents the experimental evaluation in relevant outdoor environments as well, showing
the ability of the system to indicate the AoA of a target up to 2.5 km away.

The rest of this paper is structured as follows: Section 2 presents the current state of
the research in the field of drone localization. Section 3 describes the system model and the
mathematical apparatus of the MUSIC algorithm for linear and circular array configurations.
Section 4 discusses the algorithm simulation results and Section 5 addresses the algorithm
implementation and the experimental testbed. Section 6 presents the measurement results
compared against the real drone direction and the results of a professional direction-finding
(DF) solution (i.e., Narda SignalShark equipped with the automatic direction-finding
antenna, Narda ADFA, (Pfullingen, Germany)) for validation. Finally, Section 7 offers
future perspectives and concludes the paper.

2. State of the Art in Drone Localization

In [1], the authors present a novel localization and activity classification method for
UAVs based on mmWave frequency-modulated continuous-wave (FMCW) radar. These
radars can detect targets located from 0.2 m up to 300–400 m away. Some advantages are
the small antenna size, the durability, and the possibility of operation in adverse weather
conditions. The radar system presented in the paper consists of a Texas Instruments
mmWave FMCW radar with three transmitters and four receivers in a fixed position. Due
to the small cross-section of the target (a drone of size 322 × 242 × 84 mm), it can be detected
up to approximately 10 m range. The root mean square error (RMSE) in the estimation of
the height of the drone and the distance from the radar is approximately 50 cm and 20 cm,
respectively. The authors conclude that their method is useful in small-scale aerial vehicle
traffic management ground stations.

Research in [2] presents an overview of the techniques for modulation classification
and signal strength-based localization of amateur drones (ADrs) using surveillance drones
(SDrs) that have passive RF sensing ability. A key aspect of this solution is to fly the SDrs at
higher altitudes than the ADrs. The better propagation (due to higher signal-to-noise ratio,
line of sight, LOS) at high altitudes yields high accuracy in the detection and localization of
ADrs. The approximate location of an identified target drone is obtained by multilateration
based on the received signal strength (RSS) at the SDrs. The simulation assumes three SDrs
positioned as the vertices of an equilateral triangle. The authors show that the localization
error is minimal when the SDr altitude is 800 m and the coverage radius is 1000 m. The
distance between the SDrs also affects the localization accuracy. The authors conclude that
they have obtained a 10-fold increase in the coverage radius and a 25 dB reduction of the
minimum detectable power by flying the SDrs at the optimal altitude. Four times better
localization accuracy is also obtained by the optimum altitude of the SDrs.

Paper [3] also proposes the deployment of monitoring drones (MDrs) for surveillance,
localization, hunting, and jamming of ADrs. A flying ad hoc network (FANET) of MDrs
can locate the position of the ADrs more accurately than a single MDr.

In [4], the authors present a sparse denoising autoencoder (SDAE)-based deep neural
network (DNN) for direction finding of small UAVs. The system comprises a four-element
directional antenna array and a single-channel receiver. The received signal power is
measured at each antenna using an RF switching mechanism, and the SDAE-based DNN
classifies/determines the direction of the drone signal. The proposed method was validated
experimentally in an open area. The drone downlink signals are 10 MHz bandwidth OFDM
signals that occupy the bandwidth from 2.401 GHz to 2.481 GHz. The space around the
antenna system is divided into eight sectors, and the direction of the drone is indicated by
the corresponding octant.
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In [5], the authors present the development of an anti-drone system that combines
audio, video, and RF surveillance to realize drone detection, localization, and RF jamming.
The experimental results show that the system can detect and localize an intruding drone
in a campus environment. The authors also discuss the challenges of such systems.

The paper in [6] presents a comprehensive overview of counter-drone systems, used to
detect, localize, track, and neutralize UAVs. The strengths and limitations of sensors such
as acoustic, RF, radar, electro-optical /infrared (EO/IR), and Light Detection and Ranging
(LiDAR) are thoroughly described. Ground and sky platforms are compared, being suitable
choices depending on the specific requirements of the applications.

The article in [7] provides another overview of the techniques used for detecting,
localizing, and tracking unauthorized UAS and jammers, focusing on mmWave radar-,
UWB radar-, and NLOS radar-based approaches. The authors also propose to use multiple
UAS to localize and track another UAS.

The approach in [8] is to detect and localize ultralight aircraft and drones using a
WiFi-based passive radar for short-range surveillance applications. The advantages of
passive radar compared with active radar are highlighted. The obtained results show
that this approach can correctly detect and localize in 3D small flying objects along their
trajectory, for short distances (approx. 100 m).

In [9], the authors demonstrate that W-band can be used to detect and localize small
drones in 3D, using a FMCW radar.

In [10], the authors present a novel algorithm for indoor localization of UAVs based
on RSSI, with Wi-Fi access points and a priori known locations.

The authors of [11] present the results of the detection and localization of drones
using mmWave automotive radar sensor at 76–81 GHz. Given the limitations of the radar
hardware in terms of transmitted power and the limitations in azimuth and elevation
coverages by the 3-dB beamwidth, the range of detection and localization is up to 40 m.

The paper in [12] presents a comprehensive overview of wireless target localization,
such as time difference of arrival (TDOA), time of arrival (TOA), RSS, and AoA, showing
their advantages and disadvantages. This review shows that the wireless target localization
solutions available in the literature range between a few and hundreds of meters, depending
on the approach and costs.

In [13], the authors propose and experimentally validate an RF-based location-finding
system for drones and their controllers. The system comprises SDRs and rotating antennas
that combine RF-based drone detection with AoA triangulation. The drone used in the
test flies 20 m above the ground and 30–150 m away from the system. The drone and its
controller operate at a predefined 2.4 GHz Wi-Fi frequency channel. When monitoring the
drone, the average error is 12.2◦ for direction finding and 12.71 m for localization, while for
the controller, the average error is 9.9◦ for direction finding and 11.36 m for localization.

In [14], the authors present a 3D drone location estimation method using a 4-by-4 rect-
angular array and MUSIC algorithm. After the estimation of the AoA, an extended Kalman
filter (EKF) is applied to improve the accuracy and to track the drone. The experiment
takes place in an area of 10.4 × 20 m2, with the receiving system placed at the origin. The
drone follows a 20 m flight trajectory in this area and continuously sends signals with an
omnidirectional antenna. The obtained results are compared with the GPS coordinates.
The mean error is 1.8 m, 2.6 m, and 0.9 m in the x, y, and z directions, respectively.

The paper in [15] presents an evaluation and assessment of four AoA algorithms
in UAV communication networks using multiple-input multiple-output (MIMO) base
stations. The study shows that accurate AoA estimation can be achieved with as few as
320 samples. The number of antennas and their configurations impact the AoA estimations.
The experiment is as follows: The base station is placed 34 m above the ground, in the
stands of a stadium. A drone is placed at five positions, at angles of −9.64◦, 10.20◦, 21.54◦,
32.49◦, and 44.26◦, at a height of 20 m, covering the pitch. The drone is kept in place
for 17.92 s at each position, transmitting pilot signals with a 3.6 GHz center frequency,
5 MHz bandwidth, and 5 MHz sample rate. The base station collects 2.240.000 samples
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for every measurement point. Data are collected using eight planar array elements with
a spacing of 3.94 cm. A comprehensive comparative analysis of five AoA algorithms is
performed. Root-MUSIC offers the best results, with an inaccuracy from 3.54◦ to −5.88◦,
with a median of −1.63◦. The paper shows that an increase in the number of antennas
improves the accuracy of the results. It is also found that the effect of multipath propagation
is more pronounced if the number of antennas is reduced. Moreover, it shows that uniform
rectangular array (URA) configurations are better than uniform linear arrays (ULAs). By
using multiple rows for their spatial components, the range of estimations can be reduced,
and better overall accuracy can be obtained. Finally, the study shows that the 2D Bartlett
spatial spectrum estimator offers better accuracy for both azimuth and elevation results
than the 1D method, by aggregating all the antennas to locate the peaks in the spectrum.

In [16], a frequency-hopping spread spectrum (FHSS) signal from a drone controller is
detected and localized. After the controller is detected, two variants of the MUSIC algorithm
are implemented to detect the AoA. The system comprises a four-channel receiver with
quasi-Yagi antennas placed in a ULA configuration. The experiment is performed for five
locations of the drone controller: 4.43◦, 6.41◦, 8.55◦, 10.33◦, and 2.1◦ for 115.24 m, 164.74 m,
214.74 m, 264.62 m, and 512 m, respectively. The results indicate an average error of 1.39◦.

In [17], the authors present a 24 GHz ISM band FMCW radar system for drone
localization designed to operate up to 150 m.

Another state-of-the-art solution is the use of MIMO radars employing electromagnetic
vector sensors (EVS) [18–20] for 2D and 3D UAV localization. The work in [20] proposes the
implementation of a monostatic EVS MIMO radar, while [19] models a bistatic configuration.
In each case, an EVS is a collocated, complete polarized sensor system of three electric
dipoles and three magnetic loops. The numerical simulation results show that a bistatic
configuration is more reliable. Moreover, these approaches are insensitive to the geometry
of the TX/RX array.

The current state of the art reveals different approaches, architectures, and platforms
used for drone localization using RF methods. Advantages and disadvantages correspond-
ing to various scenarios or applications can be drawn: The radar implementations can
detect targets up to a few hundred meters away, can be used mainly for short-range surveil-
lance applications, have the advantage of small antenna sizes and durability, and can
operate in adverse weather conditions. However, a large radar cross-section of the target
is desired, which can be a problem for localizing small drones. Also, interferences from
other small objects may affect the results, and line-of-sight operation is highly desired.
RSS-based localization methods have an accuracy of tens of meters and can be considered
cost-effective as most receivers can measure the RSS. The limitations are due to the noise
and multipath and due to the requirement to know the target transmitted power. On the
other hand, AoA-based localization can provide more accurate results but at the cost of
more complex hardware, the necessity of synchronizing the receivers, and complex signal
processing. Also, the signal frequency of the target must be known a priori. Moreover, in
long-range scenarios, the SNR is lower than in close-range scenarios, which impacts the
accuracy of the results.

Extensive work is conducted to develop more complex mathematical models to better
simulate the environment/behavior of the system and to propose new methods to improve
AoA performance, such as signal sparse recovery (SSR), L1—singular value decomposi-
tion (SVD), nuclear norm optimization and sparse Bayesian learning (SBL), and optimal
weighted subspace fitting (WSF) [21]. In [22], the authors model a complex practical envi-
ronment, including nonuniform noise and off-grid errors, and propose an assistant vehicle
localization method based on SBL-based robust DoA estimation and three collaborative
base stations with MIMO arrays. Extensive simulations show that the proposed method
provides superior localization results. Another complex model is presented in [21]. Here, a
multi-UAV cooperative localization system for marine targets is proposed. As each UAV
is equipped with a monostatic MIMO radar, the model considers the unknown mutual
coupling effect and provides a robust weighted block sparse reconstruction DOA estima-
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tion method based on optimal WSF. In [23], the authors consider the mutual coupling and
the reduced computational power of IoT sensors and propose a framework composed of
distributed mobile-edge computing and IoT to realize auxiliary vehicle position analysis
and develop a suitable block SBL algorithm for DF.

While simulations provide valuable insights and initial assessments, it is crucial
to acknowledge the inherent gap between simulation and reality when assessing and
optimizing DF solutions.

To this extent, we propose a practical solution based on the MUSIC AoA algorithm
implemented on an SDR-based platform, which has several advantages: durability, small
antenna size, possibility of operation in adverse weather conditions, high detection range,
and high accuracy. However, similar to other AoA approaches, the performance is suscepti-
ble to non-LOS conditions and interferences, and we assume that the target frequency is
known. The novelty of our work consists in the particular practical implementation and
the validation of the proposed solution. As such, the main contributions of this study are
as follows:

• Implementation of the MUSIC algorithm on an SDR-based system using a five-element
UCA: MUSIC is a super-resolution algorithm and can achieve localization accuracy
of up to a sub-degree. The use of a UCA with an odd number of elements ensures a
non-ambiguous target localization in a full 360◦ range.

• Evaluation of the proposed solution capability to perform full azimuth (360-degree) RF
signal localization: This is achieved in a close-range setup, in a controlled environment,
using a dummy target signal.

• Performance evaluation in a relevant outdoor environment, in a long-range setup, for
ranges up to 2.5 km using a drone as a target.

• Validation of the results by comparison with a professional DF solution (i.e., Narda
ADFA) and by cross-referencing with the actual target AoA determined from the drone
GPS coordinates.

3. The Mathematical Model of the MUSIC Algorithm

The MUSIC algorithm was proposed by R. Schmidt in 1979 [24]. MUSIC is a subspace-
based algorithm that uses eigenvalue decomposition of the covariance matrix of the received
signal at an antenna array to find the AoA of the signal [24–26].

Assume that there are D uncorrelated narrowband source signals, with the same
central frequency, fc. These signals are impinging on an array of M elements that are
linearly spaced with equal inter-element spacing d, equal to half wavelength.

A data snapshot is the data received at all elements of the array at a single time t. Then,
the received signal is given by x(t), as follows in (1):

x(t) = As(t) + n(t), (1)

where x(t) is an M × 1 vector of received data consisting of signals and noise, s(t) is a D × 1
vector of source signal values from D sources, and n(t) is an M × 1 vector of noise at the
array elements. Relation (2) shows the M × D matrix containing the steering vectors or
arrival vectors for a ULA array configuration where the AoA is measured only for azimuth:

A = [a(θ1)/a(θ2)/. . ./a(θD)], (2)

A steering vector consists of the relative phase shift at the array elements of the plane
wave from one source. Every column of matrix A is the steering vector from one of the
sources and depends on the direction of arrival, a(θD). The steering vector depends on the
array configuration. For instance, considering a ULA array and taking the first element in
the array as the reference element, the steering vector for direction (θk) is given in (3) where
symbol T stands for the transpose operation:

a(θk) = [1 e(−j2πd/λ)sin(θk ) . . . e(−j(M−1)2πd/λ)sin(θk )] T (3)
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In the case of a UCA array, the AoA is measured for both azimuth and elevation. The
M × D matrix containing the steering vectors or arrival vectors [27] is shown in (4):

A = [a(φ1,θ1)/a(φ2,θ2)/. . ./a(φD,θD)], (4)

where φi ∈ [0, π/2] is the elevation angle and θi ∈ [0, 2π] is the azimuth angle. The steering
vector for direction φj,θk is given in (5):

a(φj,θk) = [e(j2πr/λ)sinφj cos(θk−γ1 ) e(j2πr/λ)sinφj cos(θk−γ2 ). . .e(j2πr/λ)sinφj cos(θk−γM−1 )]T (5)

Here, r is the radius of the circle described by the UCA array elements and γM = 2πm/M.
As the algorithm takes uncorrelated noise into account, the covariance matrix is

diagonal. It is found that the signal and noise subspaces are orthogonal to each other.
When the signals are uncorrelated with the noise, the covariance matrix of the received

signal has two components: the signal covariance matrix and the noise covariance matrix.
Then, as shown in (6) where the symbol H represents the Hermitian operator and E is the
expectation operator, we obtain:

Rx = E{xxH} = ARsAH + σn
2I, (6)

where Rs is the source covariance matrix, and Rs = E{ssH}. Rs is a positive-definite Hermitian
matrix and has full rank D, equal to the number of sources (for uncorrelated sources or
partially correlated sources).

The signal covariance matrix, ARsAH has M × M dimension, with rank D < M.
The noise power is considered to be equal at all sensors and uncorrelated between sen-

sors. Therefore, the noise covariance matrix is an M × M diagonal matrix with equal values
along the diagonal. Since the signal covariance matrix ARsAH has rank D, it means that it
has D positive real eigenvalues. The eigenvectors corresponding to these D eigenvalues
span the signal subspace, given in (7):

Us = [v1,. . .,vd]. (7)

The M-D eigenvalues correspond to the noise subspace, and their eigenvectors span
the null subspace, given in (8):

Un = [ud+1,. . .,um]. (8)

The MUSIC algorithm exploits the orthogonality relationship between the signal and
noise subspace. Then, as shown in (9), it results in:

AHui = 0. (9)

Therefore, the arrival vectors are orthogonal to the noise subspace.
The MUSIC algorithm searches for all arrival vectors that are orthogonal to the noise

subspace by computing the so-called MUSIC pseudospectrum using Relation (10):

PMUSIC (φ) = 1/aH(φ)UnUn
Ha(φ) (10)

The above equation results in high peaks (theoretically infinite) that correspond to
the desired directions of arrival. The pseudospectrum can have more peaks than there are
sources, so the number of sources must be specified as a parameter, i.e., P. The algorithm
will return the P largest peaks. The number of sources must be smaller than the number
of array elements. The estimation efficiency of the MUSIC algorithm depends on the
spacing between the array elements and the number of elements. The maximum efficiency
is obtained for an inter-element spacing of half-wavelength of the operating frequency.
Increasing the number of elements in the array also gives better results (sharper peaks in
the MUSIC pseudospectrum).
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4. MUSIC Algorithm Simulation

Matlab simulations prove the capabilities of the MUSIC algorithm to identify the
AoA of incident signals impinging on an array of antennas. The most common array
is the ULA array. As mentioned in the previous section, the best results are obtained
for an inter-element spacing of half lambda of the operating frequency. Increasing the
number of antennas not only yields sharper peaks in the pseudospectrum but also allows
for more signals to be located as the number of sources must be smaller than the number
of array elements. Two signals impinging on a ULA array of five elements spaced at half
lambda are simulated: The first signal is from −57◦, and the second signal is from 37◦. The
signal-to-noise ratio (SNR) is 5 dB.

Figure 1 shows the MUSIC pseudospectrum of the received signals at the array elements.
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The results in Figure 1 clearly show the ability of the MUSIC algorithm to correctly
identify the AoA of the two signals. However, the ULA array configuration has some
drawbacks in detecting the AoA of incident signals. First, in a ULA setup, the orientation
determines the reference direction; therefore, it cannot distinguish between signals arriving
from the front and those arriving from the back of the array (front-to-back ambiguity).
Second, the ULA configuration may exhibit inaccuracies in the end-fire region, when the
target is in line with the elements of the array, leading to insufficient angular diversity
(end-fire ambiguity). As a result, the algorithm may produce erroneous results or fail
to provide reliable direction estimates. Third, a ULA array can only evaluate the AoA
in azimuth.

To overcome the limitations of ULA, a UCA configuration can be used. The circular
geometry offers multiple advantages. First, the UCA can cover the entire azimuthal plane
(full 360◦ range), ensuring that targets can be localized regardless of their angle of arrival
relative to the array. Second, the UCA does not suffer from front-to-back and end-fire
region ambiguity, providing unambiguous direction estimation. Third, UCA can be used to
estimate both azimuth and elevation at the same time by careful consideration of the array
design and signal processing.

Two signals impinging on a five-element UCA with inter-element spacing of half
lambda are simulated. The first signal comes from [−57◦ azimuth; 50◦ elevation] and the
second signal [37◦ azimuth; 20◦ elevation]. The SNR is 5 dB.

Figure 2 illustrates the results of the MUSIC algorithm.
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Figure 2 shows the ability of the UCA configuration to identify the AoA, in terms of
both azimuth and elevation, of two incident signals.

Following the simulation results, in the next section, the MUSIC algorithm implemen-
tation and the experimental setup are presented.

5. System Architecture and Algorithm Implementation

The system comprises the following elements:

(1) Three National Instruments Universal Software Radio Peripheral 2954R (NI USRP)
SDRs (Austin, TX, USA);

(2) One OctoClock CDA-2990 clock distribution device (National Instruments, Austin,
TX, USA);

(3) One CPS-8910 switch (National Instruments, Austin, TX, USA);
(4) One NI PXIe-8880 host computer (National Instruments, Austin, TX, USA);
(5) One Hameg HM 8135 signal generator (now Rohde & Schwarz, Munich, Germany);
(6) Five L-com omnidirectional antennas (L-Com, North Andover, MA, USA).

The NI USRP 2954R SDR [28] is a reconfigurable SDR device equipped with a Xilinx
Kintex-7 FPGA. The frequency range is from 10 MHz to 6 GHz with a maximum instanta-
neous real-time bandwidth of 160 MHz and a maximum I/Q sample rate of 200 MS/s. The
resolution of the analog-to-digital (ADC) converter is 14 bits.

The three SDRs receive the target signals, which are then processed by the host
computer. The SDRs are controlled by the host computer via the CPS-8910 switch. The
connection between the SDRs and the switch, and the switch and the host computer, are
made with PCIe x4 cables and a PCIe ×8 cable, respectively.

The NI PXIe-8880 host computer has an 8-core Intel Xeon CPU E5-2618L v3@2.3 GHz
processor and 24 GB RAM. In addition to controlling the SDRs, the computer also runs the
software for storing and processing the received data, which are streamed from the SDRs.
First, LabVIEW Communications 2.0 (product of NI) is used to store the received samples
on the computer. Then, these samples are processed (offline) in Matlab R2020a (Natick,
MA, USA) where the MUSIC algorithm is implemented.

The OctoClock CDA-2990 [29] and the Hameg HM 8135 [30] are used to synchronize
the receiving channels of the proposed solution for coherent operation as DF applications
require time, frequency, and phase synchronization. The OctoClock is a high-accuracy
time and frequency reference distribution device and provides 1PPs and 10 MHz reference
signals for time and frequency synchronization. For most receivers, the digital down
converter (DDC) chain uses a coordinate rotation digital computer (CORDIC). The CORDIC



Sensors 2024, 24, 2789 9 of 20

has a random start-up position on power-up that creates a random phase each time the
channels of the receiver are initialized but remains constant through operation [4,31]. This
means that a calibration procedure is necessary to find and compensate for the random
phase shift that appears on every RF channel. In our system, the Hameg signal generator
is used to transmit the calibration signal for each of the five RF channels to achieve phase
alignment.

The L-com omnidirectional antennas [32] are connected to the RF input ports of
the three USRPs (one USRP has 2 TX/RX RF ports). The antennas are placed in a UCA
array configuration. The distance between consecutive elements of the array is half of the
wavelength corresponding to 2.46 GHz.

Figure 3 illustrates the conceptual architecture of the system.
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Figure 4 presents the implementation of the conceptual architecture using NI hard-
ware components.

The parameters for all five receiving channels are set in the LabVIEW environment as
follows: central frequency, sampling frequency, number of samples, and gain.

The implemented AoA method has 4 steps: (1) calibration samples acquisition, (2) DF
samples acquisition, (3) calibration, and (4) AoA computation.

(1) Calibration samples acquisition—The signal generator is set to prepare the cali-
bration tone (a sine tone on the central frequency of the receivers). The output port of the
signal generator is connected to an antenna placed in the center of the circle described by
the five antennas of the UCA array. Thus, the signal arrives at the antennas at the same
time. The phase differences obtained between the array elements are due to the random
phase shift that occurs at retune commands and is constant during operation. Then, the
receivers and the signal generator are set to run. The SDRs stream the received calibration
samples to the host computer. A LabVIEW application stores these samples in binary files.
After that, the signal generator is removed.

(2) DF samples acquisition—The SDRs stream the received DF samples to the computer.
These samples are also stored in binary files for offline processing.
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(3) Calibration—In a Matlab application, the calibration procedure is performed based
on the calibration samples and DF sample files. The phase differences obtained from the
calibration files are then used in the DF samples to achieve the necessary coherent operation
of the five channels.

(4) Finally, the MUSIC algorithm can be applied to obtain the AoA of the desired
signals. This is achieved using the Matlab phased array system toolbox.
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6. Measurement Results

The performance of the system is evaluated in two scenarios:

• Scenario 1—Close-range experiments: A signal generator transmits a continuous sine
wave as the target signal. The target is placed in 36 close-range (three-meter) positions
to test full azimuth signal localization.

• Scenario 2—Long-range experiments: A drone is used as a target. The drone is flown
up to 2.5 km from the receiving system.

6.1. Scenario 1—Close-Range Experiments

In this scenario, the target is a continuous sine wave from a signal generator. The
target is placed in 36 positions that describe a circle of a 3 m radius. The positions are at
the angles from 0 to 360◦ with respect to the reference of the receiving system, as shown in
Figure 5. The height of the target is approximately the same as the height of the UCA array,
1 m above the ground.
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Figure 6. Experimental setup for Scenario 1.

The frequency of the signal is 2.46 GHz. The I/Q rate of the receivers is 1MSample/s.
A snapshot contains 5000 complex I/Q samples, and a file contains 250 snapshots. In this
scenario, for every position of the target, 250 AoA values are computed using the MUSIC
algorithm (only azimuth). Histogram representation is used to display the results. Figure 7
illustrates the MUSIC pseudospectrum of one snapshot of the target signal at 30◦.



Sensors 2024, 24, 2789 12 of 20
Sensors 2024, 24, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 7. MUSIC pseudospectrum of one snapshot. 

Unlike the simulated pseudospectrum, which exhibited high, narrow peaks only for 
the target sources, the MUSIC pseudospectrum obtained during the measurement cam-
paigns is slightly different. Although there is only one source that is accounted for (our 
target signal), the pseudospectrum shows several peaks of various amplitudes. A five-
element array can indicate up to four target AoAs (number of array elements—1). Here, 
the highest peak corresponds to the dummy target (AoA of 38°) while the other peaks 
indicate interfering sources or reflections. These differences occur because numerical sim-
ulations consider idealized conditions while real-world experiments are affected by the 
inherent complexities and uncertainties of the environment. Noise, variability of the prop-
agation environment, and unknown interference sources can significantly impact the re-
sults. Figure 8 shows the histogram based on the 250 AoA measurements for the target at 
45°.  

 
Figure 8. Histogram for one position of the target. 

The histogram representation in Figure 8 shows the AoA mode (i.e., the value that 
appears most frequently) with its frequency. The AoA value 45° appears 105 times from 

Figure 7. MUSIC pseudospectrum of one snapshot.

Unlike the simulated pseudospectrum, which exhibited high, narrow peaks only
for the target sources, the MUSIC pseudospectrum obtained during the measurement
campaigns is slightly different. Although there is only one source that is accounted for
(our target signal), the pseudospectrum shows several peaks of various amplitudes. A
five-element array can indicate up to four target AoAs (number of array elements—1).
Here, the highest peak corresponds to the dummy target (AoA of 38◦) while the other
peaks indicate interfering sources or reflections. These differences occur because numerical
simulations consider idealized conditions while real-world experiments are affected by
the inherent complexities and uncertainties of the environment. Noise, variability of the
propagation environment, and unknown interference sources can significantly impact the
results. Figure 8 shows the histogram based on the 250 AoA measurements for the target
at 45◦.
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The histogram representation in Figure 8 shows the AoA mode (i.e., the value that
appears most frequently) with its frequency. The AoA value 45◦ appears 105 times from
the total 250 results. The low standard deviation of the 250 measured values can also be
seen, showing the consistency of the AoA determinations.

The results for Scenario 1 are presented in Table 1. For each position of the target
signal, the following statistical data are shown: the AoA value that appears most frequently
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in the histogram and its count, the mean value, the standard deviation, and the error from
the actual position of the target. These data are computed after eliminating the outliers.
The percentage of outliers is also indicated in the table.

Table 1. System performance in Scenario 1.

Target Position
(◦)

AoA Mode
(◦) Mode Count AoA Mean

Value (◦)
AoA Standard
Deviation (◦)

Mean Error
(◦)

Outliers
(%)

0 3 65 2.7309 1.5909 2.7309 10.44

10 18 102 17.8354 1.3848 −7.8354 4.82

20 25 64 24.5413 1.4562 −4.5413 12.45

30 35 105 35.0679 0.9342 −5.0679 11.24

40 43 105 42.6912 0.8775 −2.6912 12.85

50 53 84 53.2762 1.3624 −3.2762 4.02

60 62 69 61.1224 1.4826 −1.1224 1.61

70 67 90 67.4256 1.2707 2.5744 2.81

80 79 57 78.8824 1.6493 1.1176 4.42

90 86 84 86.4653 1.1925 3.5347 1.61

100 95 96 95.5533 1.0469 4.4467 2.01

110 104 128 104.3936 0.8506 5.6064 0

120 116 112 116.4603 0.7597 3.5397 4.02

130 128 114 127.8050 0.8799 2.1950 3.21

140 138 98 138.2254 0.8280 1.7746 2.01

150 147 123 147.3836 0.6061 2.6164 6.83

160 158 135 158.0522 0.7193 1.9478 0

170 166 142 166.2129 0.6772 3.7871 0

180 175 103 174.5582 0.9406 5.4418 0

190 185 87 185.1739 1.0131 4.8261 7.63

200 197 81 197.045 1.2359 2.9550 10.84

210 208 72 208.0073 1.4303 1.9927 6.43

220 216 101 216.1116 1.0236 3.8884 6.43

230 226 60 225.605 1.4853 4.3950 4.42

240 237 84 236.6157 1.0956 3.3843 2.81

250 248 91 248.3293 1.2026 1.6707 1.20

260 259 81 258.8735 1.2757 1.1265 1.61

270 272 81 271.951 1.1188 −1.9510 1.61

280 281 127 280.7269 0.8265 −0.7269 0

290 290 96 289.8327 1.0084 0.1673 1.61

300 304 87 304.1885 0.9281 −4.1885 2.01

310 315 109 315.5336 0.7554 −5.5336 4.42

320 323 129 322.9799 0.8865 −2.9799 0

330 332 107 332.4798 0.7790 −2.4798 0.40

340 346 133 346.3293 1.2652 −6.3293 0

350 353 113 352.9628 1.2233 −2.9628 2.81

360 363 115 363.6337 1.2033 −3.6337 2.41
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As per theoretical expectations, the AoA results for the 36 positions show that the
proposed system, using MUSIC and the five-element UCA configuration, can be used for
360◦ AoA localization of a target. Due to the UCA geometry and odd number of array
elements, the results show no front-to-back and end-fire region ambiguities. It should also
be noted that the resolution of the scan angles is one degree, meaning that the resolution
of the AoA determination is also one degree. As such, the system can clearly distinguish
between the 36 target positions. The overall average error (with respect to the position of
the target) is 3.2713◦. In particular, the highest error is 7.8354◦ (target position at 10◦). The
lowest error is 0.1673◦ (target position at 290◦). A possible source of error is the inaccuracy
of the physical placement of the target.

The overall average percentage of outliers is 3.81%. The highest number of outliers
for a given position of the target is 32, or 12.8% (target at 40◦). For several positions, the
results show no outliers. The low number of outliers can mean that there were few or no
interfering signals in the received and processed samples.

The overall average standard deviation is 1.0883◦. This value indicates the consistency
of the obtained results along all measurements. Figures 9–12 show the histograms for the
target positions from 0◦ to 90◦, 90◦ to 180◦, 180◦ to 270◦, and 270◦ to 360◦, respectively. µ
represents the AoA mean value and σ is the standard deviation.
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6.2. Scenario 2—Long-Range Experiments

In the second scenario, a DJI Mavic 3T-Basic Enterprise drone (DJI, Shenzhen, China) [33]
is used as a target. This drone is a popular commercial drone and is a suitable choice for
our experiments for several reasons. It has a maximum flight time of up to 45 min and a
maximum transmission range of up to 15 km (FCC) in LOS, which allows us to perform a
high number of measurements at various points across a large area in a single flight. The
drone uses the 2.4 GHz and the 5.8 GHz ISM frequency bands with user-configurable DL
frequency and bandwidth, which allows us to set the target frequency and match it with
the phase calibration signal. Moreover, the drone provides log files with GPS flight data,
which allows us to compute the actual AoA of the drone and use it as a reference when
evaluating the system’s performance.

In Scenario 2, the downlink signal is an OFDM signal with a bandwidth of 20 MHz,
centered on 2.46 GHz. The drone is flown from 125 m to 2.5 km away from the receiving
system in LOS, at an altitude of 300 m, hovering in 14 distinct positions. AoA measurements
(azimuth) are made for the 14 positions of the drone using two different solutions: (1) the
proposed system and (2) a professional DF solution (i.e., Narda ADFA) [34]. These positions
are marked with the dark red points on the map presented in Figure 13.
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Figure 15 shows the receiving system.
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GPS Data Narda 
ADFA 

AoA System Performance 

Distance 
(m) 

Direc-
tion (°) 

Narda DF 
(°) 

AoA 
Mode 

(°) 

Mode 
Count 

AoA Mean 
Value (°) 

AoA Standard 
Deviation (°) 

Mean Error (°) 
Outliers % vs. GPS 

data  
vs. Narda 

DF  
126.46 94.74 108.7 121 96 120.6571 0.8665 25.9171 −11.9571 1.61 
128.43 123.62 137.9 142 133 142.5663 0.6695 18.9463 −4.6663 0.00 
308.02 71.71 87.8 95 84 94.8988 1.3532 23.1888 −7.0988 0.80 
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The receiver parameters are the same as in the first scenario: the I/Q rate is 1MSam-
ple/s, a snapshot contains 5000 complex I/Q samples, and a file contains 250 snapshots.
For every position of the target 250 AoA values are computed using the MUSIC algorithm.

The results for Scenario 2 are presented in Table 2. For each position of the target
signal, the following statistical data are shown: the AoA value that appears most frequently
in the histogram and its count, the mean value, the standard deviation, and the error from
the actual position of the target. These data are computed after eliminating the outliers.
The percentage of outliers is also indicated in Table 2.

Table 2. System performance in Scenario 2.

GPS Data Narda
ADFA AoA System Performance

Distance
(m)

Direction
(◦)

Narda DF
(◦)

AoA
Mode (◦)

Mode
Count

AoA
Mean

Value (◦)

AoA
Standard

Deviation (◦)

Mean Error (◦)
Outliers %

vs. GPS Data vs. Narda DF

126.46 94.74 108.7 121 96 120.6571 0.8665 25.9171 −11.9571 1.61

128.43 123.62 137.9 142 133 142.5663 0.6695 18.9463 −4.6663 0.00

308.02 71.71 87.8 95 84 94.8988 1.3532 23.1888 −7.0988 0.80

320.11 101.8 120 118 72 118.2915 1.3867 16.4915 1.7085 0.80

314.13 45.15 58.8 63 64 63.1347 1.6920 17.9847 −4.3347 1.61

620.01 73.38 91.2 98 101 97.9878 0.8829 24.6078 −6.7878 1.20

618.57 97.45 113.2 115 82 114.3074 1.1758 16.8574 −1.1074 2.01

1021.92 97.59 115.6 116 110 115.1165 0.9538 17.5265 0.4835 0.00

1028.6 128.32 143.3 140 120 140.4800 0.6949 12.16 2.82 9.64

1107.01 113.09 132.8 126 105 125.5943 0.9704 12.5043 7.2057 2.01

1483.27 113.27 133.7 131 84 130.8115 0.9883 17.5415 2.8885 2.01

1985.69 116.05 132 129 176 129.2731 0.4812 13.2231 2.7269 0.40

2014.13 96.86 115.7 117 162 116.7028 0.5536 19.8428 −1.0028 0.00

2499.45 96.99 116.3 121 94 121.3292 1.1610 24.3392 −5.0292 2.41

Figure 16 presents a comparison between the obtained results. The X-axis shows the
14 positions while the Y-axis displays the corresponding AoA value (measured by the
Narda ADFA, the proposed system, and calculated based on the GPS positions).
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These results show that the proposed system can indicate the AoA of a target that is up
to 2.5 km away. Compared with the short-range scenario, the long-range scenario had more
erroneous results, proving the theoretical construct that a low SNR decreases the accuracy
of the AoA estimation. In the short-range scenario, the SNR is almost constant, being
controlled as the target signal is a continuous wave of constant amplitude and the distance
is constant (3 m). However, in the long-range scenario, the SNR varied uncontrollably
because of the changing distance (125–2500 m) and the drone’s adaptive power feature.

The average error with respect to the AoA computed based on the drone log files
is 18.65◦. The minimum error is 12.16◦, while the maximum error is 25.92◦. For all
14 positions, the MUSIC implementation gives higher values than the GPS-based data. This
can be caused by slightly different origins of the two systems and slightly different North
references. The average error with respect to the Narda ADFA professional solution is 4.27◦.
The minimum error is 0.4835◦, and the maximum error is −11.96◦. The two receivers do
not have the same origin (as can be seen in Figure 14), hence a deviation between the results
of the measurements is understandable. The over-the-air calibration can also contribute to
a constant error. Ideally, the calibration signal should be fed to the receiving channels via
cables of the same length to estimate the phase shifts as reliably as possible.

The overall average percentage of outliers is 1.75%. The highest number of outliers for
a given position is 24 (drone at 1 km, 128.32◦). There are several positions where there are
no outliers. The low percentage of outliers can mean that there are no interferences in the
received, collected, and processed samples. The average AoA standard deviation is 0.9878.
This low deviation indicates the high precision of the results throughout the experiments.

The measurement results from both scenarios show that the proposed system can
evaluate the AoA of incoming signals impinging on the UCA array. In both cases, the
results show a low percentage of outliers in the AoA values, which can be linked to little or
no interferences. In the first scenario, since the target signal is a continuous tone and it is in
close range to the receiver, it is unlikely that interferences override the target signal. In the
second scenario, however, the target is the downlink signal from a drone. This signal is
not continuous as it has a gap of a few milliseconds between packets, like WLAN signals.
Thus, if the received snapshots correspond to the gaps between the packets, the resulting
AoA value is not relevant.

7. Conclusions

The rise of UAV communications leads to a corresponding rise in safety measures
associated with it. Drone localization is, therefore, a hot topic and can be performed in a
variety of methods depending on the available resources. An SDR-based UAV localization
system is presented in this paper. The proposed system implements the super-resolution
MUSIC algorithm using a five-element UCA array. The received samples are recorded
and stored in files using LabVIEW. These files are then processed offline in Matlab. The
performance of the system is evaluated in two outdoor scenarios. The first scenario tests the
ability to perform 360◦ localization in close range using a continuous signal as the target.
The second scenario tests the long-range ability to localize the AoA of a drone with a known
operating frequency that is flown to 2.5 km from the receiving system. The results show
the capability of the proposed solution to localize the AoA of RF targets up to 2.5 km. To
validate the proposed solution, a professional direction-finding system (i.e., Narda ADFA)
is also used in the second scenario, yielding similar results. The low standard deviations
for both scenarios indicate the high precision of the obtained AoA results when there is
no interference.

In case of interference, several major sets of concentrated values appear on the his-
togram representation, one of them corresponding to the target. This means that even
though there is interference, the target signal is still located, but, by analyzing these results,
it cannot be said which is which. Moreover, including such results in a statistical analysis
would yield high errors, high standard deviations, and various mean values, and would
make it difficult to extract conclusive remarks. To overcome this in a real-time implemen-
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tation, a heatmap of the obtained results is a suitable method for estimating and keeping
track of the AoA of the target signal.

Having a precise North reference of the array is important for obtaining accurate
results. In our implementation, the 0◦ angle points toward the geographical North. As
in many DF systems, this aligns with the concept of azimuth where angles are measured
clockwise from the North direction in a horizontal plane. To achieve this, a compass can
be used to properly align the UCA, but magnetic declination should be accounted for to
obtain accurate results. A GPS receiver can also be used to determine the position and
the orientation of the UCA. Moreover, once the UCA is properly aligned, the antennas
should be anchored for proper operation in windy conditions. In future work, this aspect
will be more rigorously addressed to remove the positioning errors and offsets caused by
array misalignment.

To further improve the solution, the authors aim to (1) implement real-time system
operation by integrating all signal processing in a single application and (2) reduce the
size of the system by implementing the AoA algorithm on an FPGA board with multiple
coherent channels.
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