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Abstract: Black soils, which play an important role in agricultural production and food security, are
well known for their relatively high content of soil organic matter (SOM). SOM has a significant
impact on the sustainability of farmland and provides nutrients for plants. Hyperspectral imaging
(HSI) in the visible and near-infrared region has shown the potential to detect soil nutrient levels in
the laboratory. However, using portable spectrometers directly in the field remains challenging due
to variations in soil moisture (SM). The current study used spectral data captured by a handheld
spectrometer outdoors to predict SOM, available nitrogen (AN), available phosphorus (AP) and
available potassium (AK) with different SM levels. Partial least squares regression (PLSR) models
were established to compare the predictive performance of air-dried soil samples with SMs around
20%, 30% and 40%. The results showed that the model established using dry sample data had the best
performance (RMSE = 4.47 g/kg) for the prediction of SOM, followed by AN (RMSE = 20.92 mg/kg)
and AK (RMSE = 22.67 mg/kg). The AP was better predicted by the model based on 30% SM
(RMSE = 8.04 mg/kg). In general, model performance deteriorated with an increase in SM, except for
the case of AP. Feature wavelengths for predicting four kinds of soil properties were recommended
based on variable importance in the projection (VIP), which offered useful guidance for the develop-
ment of portable hyperspectral sensors based on discrete wavebands to reduce cost and save time for
on-site data collection.

Keywords: hyperspectral sensor; black soil; soil moisture; partial least squares regression; feature
wavelength

1. Introduction

Black soils (Mollisols in the USDA soil taxonomy) are one of the most important soil
resources in the northeast of China [1] and play an important role in maintaining food
security [2]. Soil organic matter (SOM) is a central component of the terrestrial carbon
cycle [3], with a significant impact on the sustainability of farmland [4], for example, pro-
viding a primary source of nutrients for plants, helping to aggregate particles and develop
soil structure, increasing water storage capacity and availability for plants, protecting soil
from eroding and providing a habitat for soil biota [5]. In order to manage soil nutrients
in an efficient way and fertilize crops according to their needs, it is necessary to obtain
detailed information about farmland soil properties, for example, SOM, available nitrogen
(AN), available phosphorus (AP) and available potassium (AK) [6].

Soil sampling protocols and conventional laboratory analyses can be used to measure
soil properties. The methods are accurate but time-consuming and labor-intensive because a
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large number of samples is required to capture spatiotemporal variability [5]. Assessment of
soil properties across time and space, as well as a fast and accurate method for quantification
of nutrients, is important for sustainable agricultural and environmental management [7].
However, rapid and reliable assessment of soil characteristics has become one of the great
challenges in soil monitoring.

Hyperspectral imaging (HSI) is a non-destructive method that can provide detailed
and highly resolved reflectance characteristics of target materials on different scales, and
it has the advantage of capturing both spatial and spectral information [8]. Currently,
spectrometry in the laboratory has been widely applied to the quantitative inversion of SOM
based on the organic matter-sensitive bands that exist in the visible range of 550–770 nm
and the near-infrared range of 1300–1500 nm [4,9]. Yu et al. [10] found that the correlation
coefficients of soil organic carbon with the bands in the near-infrared wavelengths of 747 to
1000 nm and 1010 to 1136 nm were significant at the significance level of 0.01. For similar
near-infrared wavelengths, the correlations of total phosphorus, total nitrogen and total
potassium were significant at the significance level of 0.05. Yang, Bao, Li, Liu, Fu and
Mao [9] found that unmanned aerial vehicle (UAV) HSI can be exploited to quantify SOM
and soil total nitrogen in farmland. This technique was therefore successfully applied to
evaluate the spatial variability of SOM and other soil properties within both small profiles
and on a large scale.

Soil moisture (SM) is an important parameter in crop growth and produces a significant
variation in soil spectral reflectance [11,12]. For wet soils, the difference between the
refractive index of soil (nsoil, λ approximately 1.50) and water (nwater, λ approximately
1.33) is smaller than that of dry soils, where the particles are surrounded by air (nair,
λ approximately 1.00). This decrease in refractive index at the soil–water–air surfaces
produces a lower scattering of incident light [13]. Moreover, the SM will influence the
prediction of soil properties due to the inherent correlation between water and spectrally
active soil components, for example, SOM and AN [14]. The related overtones of O-H
stretching and combinations of H-O-H bending and O-H stretching conceal the absorption
of soil N-H in the near-infrared (NIR) spectroscopy, resulting in the spectral curve only
reflecting the changing trend of soil moisture [15,16]. While in the laboratory, soil can
be scanned under standard air-dried conditions, but in the field, it is very difficult to
control the water content. Variation in soil moisture can mask, at varying degrees, the
spectral response of soil properties, causing a decrease in prediction accuracy. Morgan
et al. [17] showed that when using NIR on field samples, the variability of soil moisture in
the field reduced the prediction accuracies of soil organic carbon (SOC) content. However,
additional algorithms could be applied to remove the soil moisture effects from spectra [18].
Wu et al. [19] identified a range of wavelengths where the first derivative of the reflectance
spectra seems independent of the moisture content of the soil samples. They suggested
only using these selected wavelength intervals to obtain moisture-independent estimates
of SOC under field conditions. Minasny et al. [20] suggested that including a wide range of
water contents in the calibration set could take care of the issue of moisture variation.

Multivariate models are commonly used to correlate data extracted from hyperspectral
images to their corresponding chemical concentrations in soil samples [21]. Partial least
squares regression (PLSR) is a useful model to predict dependent variables using a large
number of independent variables. The advantage of PLSR compared with other multivariate
models is the ability to manipulate large and noisy data sets [22,23]. Different soil hyperspec-
tral data pretreatment methods and different modeling methods will affect the prediction
accuracy of the model. Both principal components regression (PCR) and PLSR are linear
chemometric tools used for the analysis of spectroscopic data for different applications. They
are the most common modeling techniques for quantitative spectroscopy analyses in soils
and have been extensively discussed in the literature [24–26]. They both represent techniques
that are based on the decomposition of the spectral data into features that capture most of the
variance that exists in the raw visible and near-infrared spectroscopic (VIS-NIRS) data and the
creation of linear models using the scores of the most correlated features [27].
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Previous studies mainly focused on the quantitative relationship between soil proper-
ties and hyperspectral reflectance in the laboratory, but using a handheld hyperspectral
camera in solar light with different soil moisture levels is rarely reported. The objectives of
this study are, therefore, (1) to evaluate whether the spectral data acquired via a portable
hyperspectral camera outdoors could be used to predict SOM, AN, AP and AK in black
soils; (2) to establish PLSR models between four soil properties and spectral data and
compare the performances at different SM levels; and (3) to propose a series of feature
wavelengths for the prediction of different soil properties.

2. Materials and Methods
2.1. Site Description, Soil Sample Collection and Preparation

The soil samples were collected in 2019 from an experimental site planted with maize
in Harbin (45◦40′ N, 126◦37′ E), Heilongjiang Province of China. The soils involved in
this work belong to black soil (classified as Mollisols in the U.S. taxonomy system). The
samples were collected at depths of 0–20 cm. In total, 78 samples were used for this study.
The soil samples were air-dried and sieved using a 2 mm sieve. Each sieved soil sample
was divided into 4 sub-samples, among which one was air-dried, and the soil moisture was
tested. Others were adjusted to different gravimetric water content levels around 20%, 30%
and 40% before the hyperspectral scan. The water added (Wadd) to adjust the soil moisture
was calculated based on the following equations:

Msoil × Coriginal + Wadd

Msoil + Wadd
= Cadjusted

Wadd =
Msoil × Cadjusted − Msoil × Coriginal(

1 − Cadjusted

)
where Msoil (20 g) is the weight of air-dried soil samples, Coriginal (ranged from 2.2% to
3.5%) is the water content of air-dried soils, Wadd is the weight of water added and Cadjusted
is the aimed soil moisture (20%, 30% or 40%).

The soil moisture was adjusted in the Petri dishes, then covered with lids to prevent
evaporation and kept for more than 18 h to make sure the water diffused well before
scanning. In summary, 312 (78 × 4) sub-samples were used for hyperspectral data collection
and modeling.

2.2. Soil Property Measurement

Laboratory analyses of SOM, AN, AP and AK were carried out by the Testing Center of
Heilongjiang Academy of Black Soil Conservation and Utilization. Soil organic C was mea-
sured using an Elemental analyzer (VarioEL III, Elementar, Langenselbold, Germany). Soil
available nitrogen (AN) was detected using an alkaline hydrolysis diffusion method [28].
Available phosphorus (AP) was measured by the Olsen method [29]. Available potassium
(AK) was quantified using inductively coupled plasma-atomic emission spectrometry
(ICPS-7500, Shimadzu, Kyoto, Japan). The ranges of soil properties are listed in Table 1.

Table 1. Basic information of soil samples.

Soil Depth
cm pH SOM

g/kg
Available N

mg/kg
Available P

mg/kg
Available K

mg/kg

0–20 6.6–7.1 21.42–45.56 114.23–233.23 11.96–45.73 77.25–164.52

2.3. Characteristics of the Hyperspectral Imaging System and Image Acquisition

The hyperspectral images of soil samples were captured by a Specim IQ (Oulu, Finland)
camera system. The measurements were performed based on the line scanner, i.e., push
broom principle, and comprise the wavelength range of 400–1000 nm. Its spatial sampling,
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i.e., the number of pixels per line, is 512, and the spectral resolution is 7 nm, with 204 spectral
bands across the wavelength range [30]. The spectral images were taken outdoors between
10:00 a.m. and 14:00 p.m. on sunny days. All the soil samples were scanned in the Petri
dishes without disturbance, and the lids were removed before scanning. A white panel
was used in each scanning as a reference target (Figure 1a).
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Figure 1. Hyperspectral image capturing outdoors (a) and data checking by Specim IQ Studio
(Version 1.0) (b).

2.4. Spectral Data Extraction and Preprocessing

Hyperspectral data were extracted from the camera system (Figure 1b) and imported
into a Scyven 1.3.0 (Scyllarus team, Canberra, Australia) to trace individual soil samples and
resolve the regions of interest manually. The obtained data were first log transformed, then
centered and scaled to unit variance. Principle component analysis (PCA) was performed on
the processed data first to identify outliers and observe general trends. The PCA and partial
least squares discriminant analysis (PLS-DA) were performed with the MetaboAnalyst web
platform (Version 6.0).

2.5. Model Training and Validation

Partial least squares regression (PLSR) was used to fit the model between soil prop-
erties (SOM, AN, AP and AK) and hyperspectral data. The soil properties were con-
tinuous variable Y, and hyperspectral reflections were used as observable variable X.
Cross-validation (10-fold) was used to determine the optimal number of PLS components.
Multivariate analysis, including model training and validation, was performed with the R
environment (version: 4.3.1) using the packages “pls”, “dplyr” and “MASS”. The assess-
ment statistics used in the cross-validation were the coefficient of determination (R2), the
root mean square error (RMSE) and the predicted variation (Q2):

R2 = 1 − SSE
SSyy

SSE =
n

∑
i=1

(yi − ŷ)2

SSyy =
n

∑
i=1

(yi − y)2

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2

PRESS =
m

∑
i=1

(yi − ŷ)2
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SSY =
m

∑
i=1

(yi − y)2

Q2 = 1 − PRESS
SSY

where ŷi is the predicted value, yi is the observed value and N is the number of data points.
These statistics were used to quantify the accuracy of the soil property predictions.

3. Results and Discussion
3.1. Principal Component Analysis (PCA)

In the current study, hyperspectral spectra were obtained in the wavelength range of
400–1000 nm, and 202 features were aligned for each measurement. Principal component
analysis showed a general separation between the dry group and the other three groups
with different moisture levels (20%, 30% and 40%). In multivariate analysis, PCA was
performed on the processed data first to identify outliers and observe general trends [31].
Herein, PCA was applied to explore the overview of the spectrum profiles among the four
groups. A clear separation between the dry group and the three re-watered groups is shown
in Figure 2. The samples with 20%, 30% and 40% water content could also be distinguished,
but less significantly compared to the dry samples. The results indicate that the soil
samples with different moisture content could be profiled across the wavelength range of
400–1000 nm. This is in line with the findings of Liu et al. [32], who also demonstrated that
VIS-NIR at 400–980 nm can successfully predict soil moisture content.
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3.2. Performance of the PLS-DA Model

The results of PLS-DA (Figure 3) confirmed that the hyperspectral data could be
discriminated between the groups of different SMs with a discriminant power of Q2 = 0.85
(p-value = 2.0 × 10−4 obtained using a 10-fold crossed validation). A value of Q2 = 1
indicates a perfect discrimination. We present the top 15 feature wavelengths with relatively
higher variable importance in projection (VIP) score, covering the wavelengths from 490 nm
to 530 nm (Figure 4). The highest VIP score was 1.1288, which was achieved by the variable
at 508 nm. Using machine learning to predict soil total nitrogen, organic carbon and
moisture content, Morellos et al. [27] found that more wavelengths were highlighted as
providing suitable prediction of SM, including 616, 684 and 823 nm. The effects of soil
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moisture on the prediction of SOC and other soil properties were further discussed in
this study.
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3.3. The Prediction of Soil Organic Matter, Available N, Available P and Available K

PLSR models with one to five components were used to test the best performance
model for predicting SOM, AN, AP and AK. In SOM prediction, the model with one
component showed the best performance (RMSE = 4.47 g/kg, R2 = 0.4131) based on the
dry samples (Figure 5a). The model based on samples of 30% SM, which is close to real
soil moisture levels after irrigation in the field, showed a robust performance with the
smallest RMSEP fluctuation and achieved a suitable performance with three components.
Due to the presence of functional groups such as C-H, -COOH, -OH and N-H in soil
organic compounds corresponding to spectral response at different wavelengths, spectral
characteristics could be explained by different component numbers [9]. Thus, a model
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with more components is expected to describe more SOM features, improving the accuracy.
However, our study achieved a contrary result, and accuracy decreased with the increased
number of components, except for a fluctuation in the model based on dry samples.
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In the prediction of AN, the model based on the air-dried soil samples with
three components achieved the best performance (RMSE = 20.92 mg/kg, R2 = 0.4554),
as shown in Figure 5b. The models with 20%, 30% and 40% SM showed rising RMSEP
with an increasing number of components. Liu et al. [33] found that soil moisture signifi-
cantly interfered with the correlation between reflectance and soil nitrogen content. The
RMSE variations of the models based on different SMs follow a similar trend but could be
distinguished by SM. This suggests that the predictive abilities of models were gradually
improved as the soil moisture decreased.

According to the classification of [34], soil nitrogen and organic matter are primary
properties and show direct spectral responses in the NIR region, whereas soil phosphorus
and potassium are secondary properties that do not possess direct spectral responses for
NIR predictions. They are predictable because of their correlation with certain primary
properties. However, because of the complexity of overtones and combinations in the NIR
region [35], it is difficult to explain what fractions of soil phosphorus and potassium are
correlated with NIR spectra from 400 to 1000 nm [36].

In the prediction of AP and AK, we can see the model accuracies fluctuate and deterio-
rate with increasing components. AP was found to be measurable with different degrees.
The AP model of 30% SM with one component showed the best performance in this study
(RMSE = 8.04 mg/kg, R2 = 0.4360), followed by 40% SM with two components (Figure 6a).
This might partly be attributed to the covariation of moisture content. Maleki et al. [37]
suggested that the indirect correlation between P and soil spectra could be attributed to
the water. P fraction in the water phase of the soil correlates well with the spectral signal,
and more water implies more P. If this is the case, it would explain that P can be better
measured in fresh soil samples, as found by [38].
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Figure 6. The performance of soil samples with different humidities to predict AP (a) and AK
(b) based on partial least squares models with 1 to 5 components.

The model for air-dried samples with one component outperformed others in the
prediction of AK (RMSE = 22.67 mg/kg, R2 = 0.5498) (Figure 6b). The suitable prediction
of AK in this work may be attributed to the correlation with illite, which is the major
component of clay minerals that can be directly predicted by spectra data [36]. Drake [39]
studied the spectral response of evaporite minerals and found that the vast majority of
evaporite minerals had diagnostic spectra due to the vibration of H2O, NH4 and NO3
bonds. Generally, explaining the correlation between spectrally inactive properties and
visible spectra is still difficult; improving the prediction accuracy for P and K should be
further investigated.

3.4. Feature Wavelengths for PLSR Modeling

The variable importance in the projection (VIP) was used to identify the important
wavelengths used in PLSR predictions. If the VIP value for a specific wavelength is greater
than 1, this spectral wavelength is then considered to be important [33,40]. We list the top
15 wavelengths for each soil property prediction in Figure 7a. Bands near 414, 423, 431,
443 and 914–991 nm were identified as significant for SOM predictions. This result agrees
with reports by [23], who used two portable hyperspectral sensor-based instruments to
predict key soil properties in Canadian soils and reserved 911 and 986 nm for predicting
soil organic carbon. In this study, wavebands near 405, 420, 431 and 975–994 nm are most
useful for the prediction of AN (Figure 7b). Yang et al. [9] found that sensitive bands of
soil nitrogen in the VIS range were densely distributed in the region of 400–440 nm, which
was consistent with our findings. Vohland et al. [41] also identified a series of similar key
wavelengths for carbon fractions and nitrogen in the 450–675 nm region.

The wavelengths selected for AK were mainly distributed in the region of 920–997 nm
(Figure 7d), which is similar to the findings of Guo et al. [42]. The reflectance features of
AK and AP rely on indirect inversion of other soil component contents because there are no
direct responses associated with them in the VIS-NIR wavelength range; the element types
are complex and inconsistent [37], and they usually exist at low concentrations [35,36].
As shown in Figure 7c, the most useful wavelengths associated with AP prediction are
572–586 nm, 601–619 nm, 643–678 nm and 905–997 nm. As in the experiments of [38], the
reflectance of the P components was found to be different if measured on dry or wet soils,
which was also supported by the study of Maleki et al. [37]. These results might be useful
in developing feature band fixed spectrometers in different application scenarios.
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3.5. Effects of Water Content on Prediction

The presence of water generally reduces the VIS-NIR reflectance [16]. Wetting induces
a darkening of the soil and smooths the spectra, particularly brightness in the shortwave
VIS region. As shown in Figure 5, the prediction of AN, AK and SOM deteriorated
significantly with increasing soil moisture. However, as the SM decreases, the prediction
accuracy improves gradually. Moisture can mask these peaks due to other OH bands
present; it can also cause spectral differences due to interactions between water and other
components [43]. When soil moisture increases, soil particles adsorb the water, and then
micro- and macropores are filled with water. For VIS wavelengths, this causes a change in
the relative refractivity at the soil particle surface, while there is little effect on reflectance
when water covers micro- and macropores. Longer wavelengths are able to strongly adsorb
water, producing a significant change in reflectance even when the moisture content is at
field capacity [13].

The variation in soil moisture has been reported to cause poorer calibration proper-
ties [20,44]. However, Mouazen et al. [38] demonstrated that phosphorus is better predicted
in wet samples than in dried samples, which is consistent with the current study. The
model for predicting AP at 30% SM with one component showed the best performance
in prediction. This is in contrast with the prediction of all other elements, where the best
prediction was found on dried soil samples [37].
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4. Conclusions

Soil samples with different moisture levels could be discriminated by the PLS-DA
model based on spectral data in the wavelength range of 490–530 nm. SOM, AN and AK
could be well predicted by PLSR models for air-dried samples in this study. AP could be
better predicted by the model for 30% soil moisture. Wavelengths of 414, 423, 431, 988 and
994 nm are important for both SOM and AN prediction. The sensitive wavelengths for AP
were distributed in the regions of 572–678 nm and 905–997 nm and for AK in the regions of
411–443 nm and 911–1000 nm. Considering the imaging time of spectrometers, selected
wavelengths may be more effective than using a full-range spectrum for quantitative
modeling. Spectrometers focused on selected feature bands have the advantage of saving
time. The feature bands proposed in this study could be employed to develop wavelength
fixed portable spectrometers for outdoor use, which will be our next step in the work
related to on-site soil monitoring and modeling.
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