
Citation: Mi, X.; He, H.; Shen, H. A

Multi-Agent RL Algorithm for

Dynamic Task Offloading in

D2D-MEC Network with Energy

Harvesting. Sensors 2024, 24, 2779.

https://doi.org/10.3390/

s24092779

Academic Editor: Nick Harris

Received: 19 March 2024

Revised: 18 April 2024

Accepted: 24 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Multi-Agent RL Algorithm for Dynamic Task Offloading in
D2D-MEC Network with Energy Harvesting †

Xin Mi 1,‡, Huaiwen He 1,*,‡ and Hong Shen 2

1 School of Computer, Zhongshan Institute, University of Electronic Science and Technology of China,
Zhognshan 528400, China; 202021080226@std.uestc.edu.cn

2 Engineering and Technology, Central Queensland University, Brisbane 4000, Australia; hongsh01@gmail.com
* Correspondence: he_huai_wen@aliyun.com
† This paper is an extended version of our paper published in Mi, X.; He, H. Multi-Agent Deep Reinforcement

Learning for D2D-assisted MEC system with Energy Harvesting. In Proceedings of the 2023 25th
International Conference on Advanced Communication Technology (ICACT), Pyeongchang,
Republic of Korea, 19–22 February 2023. https://ieeexplore.ieee.org/document/10079275.

‡ Xin Mi and Huaiwen He are co-first authors and contributed equally to this article.

Abstract: Delay-sensitive task offloading in a device-to-device assisted mobile edge computing
(D2D-MEC) system with energy harvesting devices is a critical challenge due to the dynamic load
level at edge nodes and the variability in harvested energy. In this paper, we propose a joint dynamic
task offloading and CPU frequency control scheme for delay-sensitive tasks in a D2D-MEC system,
taking into account the intricacies of multi-slot tasks, characterized by diverse processing speeds and
data transmission rates. Our methodology involves meticulous modeling of task arrival and service
processes using queuing systems, coupled with the strategic utilization of D2D communication to
alleviate edge server load and prevent network congestion effectively. Central to our solution is the
formulation of average task delay optimization as a challenging nonlinear integer programming
problem, requiring intelligent decision making regarding task offloading for each generated task
at active mobile devices and CPU frequency adjustments at discrete time slots. To navigate the
intricate landscape of the extensive discrete action space, we design an efficient multi-agent DRL
learning algorithm named MAOC, which is based on MAPPO, to minimize the average task delay by
dynamically determining task-offloading decisions and CPU frequencies. MAOC operates within
a centralized training with decentralized execution (CTDE) framework, empowering individual
mobile devices to make decisions autonomously based on their unique system states. Experimen-
tal results demonstrate its swift convergence and operational efficiency, and it outperforms other
baseline algorithms.

Keywords: MEC; D2D communication; multi-agent reinforcement learning; energy harvesting;
dynamic task offloading

1. Introduction

With the rapid development of mobile software services, more and more application
services are becoming computation-intensive and delay-sensitive, such as virtual reality,
augmented reality, and online games. Therefore, the mobile edge computing (MEC) scheme,
which allows mobile devices to offload tasks to an edge server close to the end user and
significantly reduces the service response delay, is considered to be a promising paradigm
and has attracted the attention of researchers [1–3].

However, in a large-scale MEC system with numerous mobile devices, the dynamic
and sometimes bursty nature of edge device loads can overwhelm the server, potentially hin-
dering the processing of offloaded computation tasks within the required delay constraints.
D2D technology emerges as a pivotal solution within the realm of 5G networks [4–7].
By leveraging idle end devices’ computing resources through D2D communication links,

Sensors 2024, 24, 2779. https://doi.org/10.3390/s24092779 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092779
https://doi.org/10.3390/s24092779
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4437-4277
https://ieeexplore.ieee.org/document/10079275
https://doi.org/10.3390/s24092779
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092779?type=check_update&version=3

Sensors 2024, 24, 2779 2 of 19

mobile devices can offload tasks to these available resources [6]. Therefore, effectively
harnessing these idle computing resources via D2D links to minimize task delays and col-
laborate seamlessly with edge servers becomes paramount for optimizing the performance
efficiency of MEC systems.

Numerous studies have focused on reducing computation task delays in MEC
systems [8–12]. However, most of these works assume that tasks are divisible and can
be completed within a single time slot. Tang and Wong [13] introduced a long-term
cost minimization algorithm for an MEC system that accounts for non-divisible, delay-
sensitive tasks and dynamic edge loads spanning multiple time slots. Nevertheless,
their approach did not consider integrating D2D communication or consider the energy
harvesting constraints of mobile devices. Reinforcement learning (RL) has emerged as
a promising approach to tackle the computational complexities associated with MEC
systems [14]. It has been leveraged to develop algorithms for task offloading in dynamic
MEC environments [3,10,15]. Li et al. [16] utilized the deep Q-network (DQN) to jointly
manage computation offloading and resource allocation in multiuser MEC setups to mini-
mize the total cost of delay and energy consumption. Chen et al. [10] combined residual
blocks, long short-term memory, and rank-based prioritized experience replay (rPER)
within the deep deterministic policy gradient (DDPG) algorithm to address the joint op-
timization of computation offloading and resource allocation. In our prior study [5], we
introduced an independent PPO-based task-offloading algorithm for D2D-MEC systems
with energy harvesting, focusing on task-specific latency constraints. Each agent operates
a separate PPO model independently, training on its own state information, lacking infor-
mation sharing and collaboration, resulting in slow convergence. However, in a large-scale
MEC system, RL algorithms relying on a single agent may encounter challenges such as
action-space explosion, leading to slow convergence and suboptimal performance [17].
Distributed multi-agent reinforcement learning techniques, which focus on local infor-
mation and offer easier deployment, align well with the architectural requirements of
MEC systems.

In this paper, we investigate the computation-task-offloading problem in a D2D-MEC
network under harvested energy constraints. The problem aims to minimize the average
task service delay by determining the CPU frequency for each active mobile devices
and making task-offloading decisions for each task during each time slot. We utilize
a queuing system to represent non-divisible tasks and account for computation tasks
that extend over multiple time slots. To address the stochastic nature of task generation,
dynamic channel states, and unpredictable harvested energy, we frame the problem of
minimizing the average task service delay as a sequential decision challenge, involving
a vast multi-dimensional discrete action space. To tackle this complexity, we introduce
a multi-agent RL algorithm based on the MAPPO technique, which enables each agent
to autonomously make decisions, thereby reducing the decision space. Our proposed
algorithm adopts a centralized training approach coupled with decentralized execution,
enhancing its practical applicability in real-world scenarios. Experimental results show
that our proposed algorithm can work efficiently in a distributed manner without requiring
system information prediction.

Our key contributions are summarized as follows:

• We propose a novel scheme that leverages dynamic voltage and frequency scaling
(DVFS) and energy harvesting (EH) to enhance energy efficiency and minimize task
delays in MEC networks operating under energy constraints. This scheme accounts
for stochastic environmental factors such as dynamic harvested energy, fluctuating
communication channel conditions, and random task generation. By employing
a queuing system to model computation tasks spanning multiple time slots with
varying processing speeds and data transmission rates, we accurately assess the edge
load of each mobile device in a D2D-MEC network.

• To address the curse of dimensionality inherent in sequential Markov decision pro-
cesses for solving the nonlinear integer programming (NLP) problem of task offload-

Sensors 2024, 24, 2779 3 of 19

ing, we propose the MAOC algorithm by leveraging the multi-agent proximal policy
optimization (MAPPO) technique. Our algorithm adopts a CTDE framework, enabling
each mobile device to autonomously make decisions based on its system state. This
approach is practical for real-world deployment.

• Through comprehensive simulations, we validate the efficacy of our proposed algo-
rithm. The numerical results demonstrate the algorithm’s rapid convergence and
superior performance compared to baseline algorithms.

The remainder of this paper is organized as follows: Section 2 introduces the re-
lated work. Section 3 presents our system model. Section 4 provides the mathematical
formulation of the problem. Section 5 gives the details of the algorithm design and imple-
mentation for the optimization problem. In Section 6, simulations are conducted to verify
the performance of our proposed algorithm. The conclusions are finally drawn in Section 7.

2. Related Works

MEC stands out as a promising paradigm for 5G heterogeneous networks, attracting
significant attention [10,18,19]. Machine learning algorithms play a pivotal role in enabling
intelligent decision making for task offloading in MEC systems, adapting to the stochastic
and dynamically changing environment. Cao et al. [4] reviewed intelligent offloading in
multi-access edge computing, highlighting various research endeavors employing ML-
based methodologies. Chen et al. [10] proposed a Temporal Attentional Deterministic Policy
Gradient (TADPG) algorithm to minimize the average long-term cost of computational
tasks in MEC systems. However, prior works assumed that tasks could be completed
within a single time slot without impacting subsequent tasks, neglecting scenarios where
tasks span multiple time slots. In contrast, Tang and Wong [13] considered the dynamic
load at edge device, the non-divisible and delay-sensitive computation tasks, they proposed
a learning algorithm integrating LSTM, dueling DQN, and double DQN to minimize task
delay in MEC networks. But none of them accounted for D2D communication intricacies
and energy constraints.

D2D technology, a pivotal 5G communication innovation, empowers users to offload
tasks to neighboring idle devices, thereby enhancing the overall computational efficiency of
the system. Wang et al. [9] delved into the task-offloading conundrum, aiming to minimize
the weighted sum of delay and energy consumption across multiple independent subtasks
within a D2D-assisted MEC framework. Chai et al. [20] formulated the task execution
cost minimization challenge as a mixed-integer nonlinear problem, proposing a heuristic
algorithm grounded in the Kuhn–Munkres algorithm and Lagrangian dual method.

DVFS and energy harvesting are two important technologies for saving energy and
prolonging the lifetimes of batteries in end devices, and they have caught the attention of
researchers in recent years. Liang et al. [21] proposed a joint re-ordering and frequency scal-
ing (JRFS) algorithm to minimize makespan in an MEC network, considering precedence
constraints among tasks and using DVFS technology to scale the frequencies of edge servers.
Xia et al. [22] investigated an EH-enabled MEC offloading system and proposed an on-
line distributed optimization algorithm based on game theory and perturbed Lyapunov
optimization theory. Guo et al. [18] formulated an EH computation-offloading game to
minimize delay in an MDC system with energy harvesting and developed a distributed
EHCOG scheme to solve it. However, the unpredictable amount of harvested energy
in D2D-MEC networks also poses challenges for making collaborative task execution
decisions.

To tackle the stochastic and dynamic environment of MEC systems, deep reinforcement
learning approaches are used to design algorithms for task offloading in MEC networks.
Chen et al. [23] investigated the long-term utility performance maximization problem for
an MEC with an ultra-dense sliced radio access network, and proposed two double-DQN-
based online strategic computation-offloading algorithms. Huang et al. [24] proposed
a DQN-based algorithm for joint task offloading and bandwidth allocation in a multi-user
MEC system. Huang et al. [25] proposed a DQN-learning-based online offloading algo-

Sensors 2024, 24, 2779 4 of 19

rithm, DROO, for binary computation of offloading in wireless-powered MEC networks.
Huang et al. [15] proposed a task-offloading scheme, RRLO, based on DVFS energy con-
sumption reduction, by using the double Q-learning algorithm. But all the above studies
are based on single-agent learning algorithms, which may incur difficulty in convergence
and bad performance [17] when used on large numbers of multiple devices due to the
curse of dimensionality. [26] proposed a novel DRL algorithm based on the latent space to
optimize the trajectory of multiple unmanned aerial vehicles (UAVs), considering the task
priorities and binary offloading mode in a UAV-enabled MEC network.

3. System Model

In this paper, we consider a D2D-MEC system comprising an edge server and
a collection of MDs, as illustrated in Figure 1. We assume that the system operates in discrete
time slots, with the entire period divided into T time slots, represented as T = {1, 2, · · · , T}.
Each time slot has a duration of ∆t, which is sufficiently small to ensure that no more than
one task is generated by each device within a slot.

CPU

Scheduler

W(1,t)

Wireless
Link

Edge Server

CPU

Scheduler

W(2,t)

Wireless
Link

CPU

Scheduler

W(m,t)

Wireless
Link

MEC Link

D2D Link

D2D Link

Idle Device N

Active Device1

Active Device2

Active Device M

Idle Device N

Computation Queue

Battery

Battery

Battery

Battery

Battery

Transmission Queue

Computation Queue

Computation Queue

Computation Queue

Computation Queue

Transmission Queue

Transmission Queue

Computation Queue

a1=0

Energy supply

Energy supply

Energy supply

Energy supply

Energy supply

atm

Figure 1. Architecture of D2D-MEC network.

In the following subsections, we present the details of the device model, computation
model, transmission model, energy model, and delay model employed in the system. The
key notation used in this paper is summarized in Table 1.

Sensors 2024, 24, 2779 5 of 19

Table 1. Notation definitions.

Symbol Definition

D The set of mobile deivces
M The set of active devices
N The set of idle devices
A(t) The joint offloading decision at time slot t
F(t) The joint CPU frequency selection at time slot t
F Optional CPU frequency collection
at

m(t) The offloading decision of the mth active device at time slot t
fm(t) The CPU frequency selection of the mth active device at time slot t
wt

m The task generated by active device m at time slot t
st

m The size of task wt
m

ct
m The CPU cycles required to execute a bit of task wt

m
Qcomp

d The computing queue of mobile device d
Qtran

m The transmission queue of active device m
lcomp
m,d (t) The time slot when task w(m, t) is fully processed at device d

ltran
m (t) The time slot when task w(m, t) transmission is completed at device m

rm(t) The transmission rate of mobile device m at time slot t
pm The transmission power at device m
hd

m(t) The channel gain between active device m and idle device d at slot t
N0 The white noise
Bm(t) The bandwidth of device m at time slot t
L(m, t) The total duration of task w(m, t) from generation to execution completion
RBd(t) Battery energy of device d in time slot t
ec

d(t) Energy consumed by device d in time slot t
eh

d(t) Energy harvested by device d in time slot t
Sm(t) Local observation information of device m on time slot t
S(t) Global state information on time slot t
r(t) Reward in time slot t

3.1. Device Model

In the D2D-MEC system, the device set D is divided into two subsets: the active device
subset M = {M1, M2, . . . , M|M|}, and the idle device subset N = {N0, N1, N2, . . . , N|N |},
as depicted in Figure 1. Here, N0 is the edge server and D = M∪N . We assume that
idle devices can handle offloading tasks independently without forwarding them to edge
servers, thereby alleviating the load on the latter [2,27]. Each MD d ∈ D employs battery
RBd and integrates with the energy-harvesting module to enhance performance. The edge
server, on the other hand, is not subject to energy constraints as it is directly connected to
base stations via wired connections [27–29].

In each time slot t, a computation task is generated exclusively on each active device.
The task has a specific size and computational complexity, a task arriving at m in slot t is
denoted as wt

m = (st
m, ct

m), where st
m represents the task size in 1-bit units, and ct

m represents
the computational complexity measured in CPU cycles required for a 1-bit operation. It
should be noted that we assume that task wt

m is indivisible and may span across multiple
consecutive time slots.

To accurately assess the edge load of each MD, we employ a queuing system to
represent the task execution process. Computation tasks are enqueued and scheduled
for processing in a first-come, first-served (FCFS) manner. As illustrated in Figure 1, the
D2D-MEC system consists of two types of queues: the computation queue Qcomp

d , used for
task execution, where d ∈ D; and the transmission queue Qtran

m , used for task transmission
only on the active mobile devices, where m ∈ M.

When a task is generated on an active MD m, the scheduler determines the loca-
tion for its execution. Generally, there are three choices: local execution, offloading to
an edge server via cellular links, or offloading to idle devices via D2D links. We use

Sensors 2024, 24, 2779 6 of 19

at
m ∈ [−1, 0, 1, . . . , |N |] to denote the decision on how to execute task wt

m. If at
m = −1, the

computation task will enter the local computation queue Qcomp
m ; if at

m = 0, task wt
m will be

offloaded to the edge server; otherwise it is offloaded to the at
mth device in the idle devices

set N .

3.2. Computation Model

Active devices, m ∈ M, leverage DVFS technology to regulate their CPU frequency,
fm ∈ F , aiming to conserve power given their limited battery capacity. Nevertheless,
it is crucial to acknowledge that lowering the CPU frequency can potentially lead to
increased task delays, potentially breaching the user’s service-level agreement (SLA). Here,
we embrace a discrete CPU frequency model, where F = { f 1, f 2, · · · , f K} signifies the
available CPU frequency options for each active device. Notably, we assume that the CPUs
of idle MDs, indexed by n, where n ∈ [1, |N |], maintain a fixed frequency of f idle

n , while the
edge server operates at a substantially higher CPU frequency, as f idle

0 .
Let t̃ represent the time slot when task wt

m is placed in the computation queue. In
the case of local computing, we have t̃ = t. Once task wt

m enters the computation queue
of MD d, d ∈ D, it will be scheduled for processing at the subsequent slot following the
completion of preceding tasks [13]. We define lcomp

m,d (t) as the time slot when task wt
m is

completely processed on the designated device d. The duration that task wt
m spends in

the computation queue can be expressed as the difference between the time of complete
processing and the time of entry into the queue:

ϕ
comp
m,d (t) =

[
max

t′∈{0,1,··· ,̃t−1},d′∈[1,|M|]
lcomp
d′ ,d

(
t′
)
− t̃ + 1

]+
(1)

where the operator [x]+ = max{0, x}, and lcomp
d′ ,d (0) is set as 0 for simplicity of presentation.

The term max
t′∈{0,1,··· ,̃t−1},d′∈[1,|M|]

lcomp
d′ ,d (t′) represents the time slot when all the task placed in

the computation queue before time slot t̃ has been processed. Hence, ϕ
comp
m,d (t) determines

the number of waiting time slots in the computation queue for task wt
m.

Let t̂ = t̃ + ϕ
comp
m,d (t) denote the time slot in which task wt

m starts to be processed at MD
d. Therefore, we can conclude that task wt

m will have been processed completely at time slot
lcomp
m,d (t), as

lcomp
m,d (t) = t̃ + ϕ

comp
m,d (t) + argmin

θ

{ t̂+θ

∑
i=t̂

fd(i)∆T ≥ st
mct

m

}
− 1 (2)

where ⌈· ⌉ is the ceiling function. fd(i) is the CPU frequency of MD d in time i. In particular,

the term argmin
θ

{
∑t̂+θ

i=t̂
fd(i)∆T ≥ st

mct
m

}
calculates the minimum value of θ such that the

total number of time slots required to fully process the task is satisfied.
Here, Equation (2) can be simplified under the following conditions:
(1) For local execution. We have t = t̃, so the complete time slot of task wt

m can be
written as

lcomp
m,m (t) = t + ϕ

comp
m,m (t) + argmin

θ

{ i+θ

∑
i=t

fd(i)∆T ≥ st
mct

m

}
− 1 (3)

(2) For remote execution, considering that the CPU frequency is fixed for idle MDs
throughout the entire time period, we have

lcomp
m,d (t) = t̃ + ϕ

comp
m,d (t) + ⌈ st

mct
m

fd∆T
⌉ − 1, ∀d ∈ N (4)

Sensors 2024, 24, 2779 7 of 19

In scenarios where multiple offloaded task from different sources arrive at the target
device simultaneously, they will be enqueued in the computation queue based on the
following rule: among the offloaded tasks, tasks with lower computing demand, such as
st

mct
m, will be prioritized and placed ahead in the queue.

3.3. Transmission Model

Each active MD m ∈ M maintains a transmission queue Qtran
m to handle task offload-

ing to remote devices. When a task wt
m is selected for remote execution, it will be enqueued

in the transmission queue and will start to transfer at the next time slot when the previous
task has been successfully transferred.

Considering a rapidly varying communication environment, the data transmission
rate of mobile device m can be determined based on Shannon’s theorem as follows:

rm(t) = Bm(t) log(1 +
pmhd

m(t)
N0

) (5)

where Bm represents the bandwidth allocated to MD m and pm denotes transmission power
of MD m, both of which are constants, as in [22,30]. Here, we assume that cellular links and
D2D links operate on different frequency bands and adopt orthogonal frequency-division
multiple access (OFDMA) for access. Therefore, communication between any two devices
does not interfere with the communication between other devices [20]. In practical settings,
the bandwidth available on edge servers significantly exceeds that allocated for D2D
communication with mobile devices. While we have not rigorously distinguished between
the bandwidth assigned for cellular network communication and D2D communication
for simplicity, it is important to note this distinction. However, our algorithm is easily
adaptable to incorporate and optimize for this differentiation. hd

m(t) represents the channel
gain between MD m and target device d at time t, which remains fixed within a time slot
and follows a Rayleigh distribution that varies over time. Additionally, N0 represents the
white noise of the channel. Therefore, similar to the computation model, we can obtain the
number of waiting slots for task wt

m in the transmission queue as follows:

ϕtran
m (t) =

[
max

t′∈{0,1,··· ,t−1}
ltran
m

(
t′
)
− t + 1

]+
(6)

where ϕtran
m (0) is set to be 0 for presentation simplicity. The term max

t′∈{0,1,··· ,t−1}
ltran
m (t′) repre-

sents the time slot when all tasks in the transmission queue before t have been scheduled.
Let ť = t + ϕtran

m (t) represent the time slot for starting to transmit task wt
m. Therefore,

for task wt
m generated in MD m ∈ M, it will be completely transmitted by time slot ltran

m (t),
which can be expressed as

ltran
m (t) = t + ϕtran

m (t) + argmin
θ

{ ť+θ

∑
i=ť

rm(i)∆T ≥ st
m

}
− 1 (7)

where rm(i)∆t denotes the total transfer data size in time slot i, and the term argmin
θ{

∑ ť+θ
i=ť rm(i)∆T ≥ st

m

}
represents the total time slots required to transfer the data of

wt
m successfully.

3.4. Energy Model

Each mobile device employs an EH module to obtain energy such as wind, solar, and
ambient RF. The EH evolves based on i.i.d. and the process is modeled as a random process
across the whole time period.

Let eh
d(t) denote the amount of harvested energy at the MD d at time t, which is

intermittent and hard to predict. The harvested energy is stored in the battery to sup-

Sensors 2024, 24, 2779 8 of 19

port the running of device. Here, we ignore the energy loss caused by battery charging
and discharging for simplicity and focus on energy consumption of local computation
and data transmission [31]. We denote the energy level of the battery in MD d at t as
RBd(t) ∈ [RBmin

d , RBmax
d], where RBmin

d is the minimum energy required to support the
basic functioning of the mobile device system, and RBmax

d is the maximum capacity of the
battery. Therefore, the battery status evolves according to the following equation [28]:

RBd(t + 1) = min
{

max
{

RBd(t)− ec
d(t), RBmin

d

}
+ eh

d(t), RBmax
d

}
(8)

where ec
d(t) denotes the energy consumption in time slot t, which is computed as

ec
d(t) =

1(Qcomp
d ̸=∅)δ fd(t)3∆T + 1(Qtran

d ̸=∅)pd∆T, ∀d ∈ M
1(Qcomp

d ̸=∅)δ f 3
d ∆T, ∀d ∈ N

(9)

where 1(·) is an indicator function that outputs 1 when · is true and 0 otherwise, and δ > 0
is a coefficient related to the CPU chip architecture. If the computation queue Qcomp

d is
empty, there is no energy consumption for computation. The same is true for transmission
queue Qtran

d . Similar to [22], we assume that if there is not enough energy to support task
computation or transmission, the MD system is switched to sleep and blocks the task in
queues until there is enough energy in the battery.

3.5. Delay Model

For task wt
m generated in MD m, if at

m = −1, which means task wt
m will be processed

locally, then based on Equation (3) we obtain that the delay in task wt
m is

(
lcomp
m,m (t)− t + 1

)
,

which can be rewritten as

Lloc
m (t) = ϕ

comp
m,m (t) + argmin

θ

{ i+θ

∑
i=t

fm(i)∆T ≥ st
mct

m

}
(10)

If at
m ̸= −1, the task will be processed remotely, according to Equation (7), we have

the transmission delays Ltran
m (t) = ltran

m (t)− t + 1, that is, t̃ = Ltran
m (t) + t. According to

Equation (4), we have the processing delay Lcomp
m,d (t) = ϕ

comp
m,d (t) + ⌈ st

mct
m

fd∆T ⌉. Hence, we have
the total delay of remote execution task as

Lrem
m (t) = Ltran

m (t) + Lcomp
m (t) (11)

Therefore, the total delay of task wt
m can be derived as follows:

L(m, t) = 1(at
m=−1)L

local
m (t) + 1(at

m ̸=−1)L
rem
m (t) (12)

4. Problem Formulation

In this paper, we aim to minimize the time-averaged task delay under energy con-
straints of mobile devices in a D2D-MEC system. At each time slot t, the MEC system makes
task-offloading decisions A(t) = {a1(t), a2(t), . . . , a|M|(t)} for each generated task and
CPU frequency decisions F(t) = { f1(t), f2(t), . . . , f|M|(t)} at each active device to optimize
the long-term average task delay without knowing the future information. Decisions am(t)
and fm(t) are both discrete variable. Here, we adopt discrete CPU frequencies to represent
the set of CPU speeds of the active devices, which are denoted as F = { f 1, f 2, · · · , f K},
where fm(t) = k means the frequency of device m is set to f k.

Sensors 2024, 24, 2779 9 of 19

For simplicity, we use A, F to represent A(t) and F(t) individually in the following
sections. Thus, the time-averaged task delay minimization problem can be formulated as
problem P1.

P1 : minimize
A,F

1
T

T

∑
t=1

1
M

M

∑
d=1

L(m, t) (13a)

s.t.

(2), (4), (5), (6), (7), (8) (13b)

am(t) ∈ {−1, 0, 1, 2, . . . , |N |}, ∀m ∈ M (13c)

fm(t) ∈ {1, 2, . . . , K}, ∀m ∈ M (13d)

RBmin
d ≤ RBd(t)− ec

d + eh
d ≤ RBmax

d , ∀d ∈ D (13e)

Equations (13c) and (13d) define the domain of decisions am(t) and fm(t), respectively.
Equation (13e) is battery energy constraint for all mobile devices.

Problem P1 is a nonlinear integer programming (NLP) problem, despite having prior
knowledge of all the offline environment information (generated task information, har-
vested energy, and channel state). Generally, P1 is non-convex and NP-hard, which makes
it extremely challenging to solve due to the following reasons: (1) The task generation,
the amount of energy harvested, and the communication channel state are fast-varying
across time slots, making it difficult to predict accurately, which poses significant challenges
in designing an algorithm that can operate online; (2) the varying computing speed and
transfer speed in constraints (1) and (4) create a tight coupling, requiring careful decision
making for task-offloading and frequency decisions across time slots; (3) the combination
decisions A, F grow exponentially with increasing network size, specifically, the whole
action space at slot t is ((N + 2)K)M. Therefore, our objective is seek to design an algorithm
based on a DRL technique that can learn from historical environmental data and make
rapid decisions.

5. Solution with Multi-Agent DRL-Based Algorithm

Proximal policy optimization (PPO) [32] is a policy gradient algorithm based on the
actor–critic (AC) framework [33] that has been shown to achieve state-of-the-art perfor-
mance in a wide range of tasks, and has become a popular choice for many RL applications
due to its simplicity and effectiveness. To improve the stability and sample efficiency of
traditional policy gradient methods, PPO clips the update step of the policy network to
prevent it from changing too much at once. Specifically, PPO uses a surrogate objective func-
tion to measure the difference between the updated policy and the previous policy. Thus,
here we seek to derive an RL algorithm based on the PPO method and an AC framework.

However, single-agent DRL methods like PPO, which rely on a trial-and-error process
to interact with the environment, cannot be directly applied to solve P1. This is because the
action space ((N + 2)K)M of P1 grows exponentially, resulting in the curse of dimension-
ality. Additionally, using single-agent DRL means that the MEC system makes decisions
centrally, which introduces a heavy communication burden. To address the challenges, we
propose a multi-agent DRL-based dynamic offloading algorithm (MADOA) that builds
upon MAPPO, a state-of-the-art multi-agent extension of the PPO method. Our algorithm
employs the CTDE architecture, composed of a central controller in the edge server and
an intelligence agent in each active MD. Each agent interacts independently with the envi-
ronment and makes decision individually. The central controller collects the global system
state to train the shared critic network, which it uses to evaluate the action decision of each
agent. Firstly, we formulate P1 as a cooperative Markov game.

5.1. Markov Decision Process of P1

(1) State space: In each time slot t, agent m ∈ M observes its local system state. This
state includes the generated task information (st

m, ct
m) , the amount of harvested energy eh

m(t)

Sensors 2024, 24, 2779 10 of 19

and the current battery energy level RBm(t), the backlog of computation queue Qcomp
m (t),

the backlog of transmission queue Qtran
m (t), and the network channel state hm(t). Hence,

the local state of agent m can be denoted as

Sm(t) = (st
m, ct

m, hm(t), RBm(t), eh
m(t), Qcomp

m (t), Qtran
m (t), ID(t)) (14)

where hm(t) = {h1
m(t), ..., h|N |

m (t)}, Qcomp
m (t) = max

t′∈0,1,··· ,t−1
lcomp
m (t′) represents the maximum

waiting time in the computation queue Qcomp
m (e.g., the backlog of queue at

time t), and Qtran
m (t) = max

t′∈0,1,··· ,t−1
ltran
m (t′) represents the backlog of the transmission queue

at t. Specially, the matrix ID(t) = 3 × |N | represents the energy level, the harvested
energy, and the backlog of the computation queue of idle devices set N . The state infor-
mation of the idle device n in ID(t) is denoted as {RBn(t), eh

n(t), Qcomp
n (t), n ∈ N}, where

Qcomp
n (t) = max

t′∈{0,1,··· ,t−1},d′∈[1,|M|]
ltran
d′ ,d (t

′) is the backlog of the computation queue in device

n. Note that there is no limit to the energy level and energy harvested in the edge server, so
we set them to be −1. We assume that the edge server will collect the state information of
idle MDs and broadcast them to active MDs at the end of each time slot.

The global state space S is the Cartesian product of all local states of each active MD,
denoted as ∏m Sm. Since the edge server collects all idle mobile device data at the end of
each time slot, the global system state at t can be expressed as follows:

S(t) = [S1(t),S2(t), . . . ,S|M|(t)] = (AD(t), ID(t)) (15)

where AD(t) = 7 × |M| is the state information of the active MDs set, where row d is
(st

m, ct
m, hm(t), RBm(t), eh

m(t), Qcomp
m (t), Qtran

m (t)). Without loss of generality, if no task is
generated at active device m in time t, the task size st

m and task complexity ct
m are all set to

be 0.
(2) Action space: The local action decisions of agent m at time t are denoted as

(am(t), fm(t)). These decisions include the task-offloading decision for the current gener-
ated task and the CPU frequency selection for the active MD. Therefore, the global action
decisions at slot t can be represented as (A(t), F(t)).

(3) Reward: As a fully cooperative multi-agent learning model, each agent shares a
common goal. We use the average task completion delay at time slot t as the reward for all
agents, which is calculated as follows:

r(t) =
1
M

M

∑
d=1

L(m, t) (16)

Since we are considering joint actions among devices, this reward value is used to update
the actor network of all devices and the global critic network.

5.2. MAOC Algorithm

To tackle the huge action space of P1, a multi-agent DRL technique is utilized to
decompose the joint actions of all active devices into independent actions of each active
MD. We formulate the problem P1 as a fully cooperative multi-agent RL model, where
agents learn to interact with each other and their environment to maximize a shared
reward signal.

Utilizing the MAPPO technique, we assign an independent actor network to each
device for making action decisions based on local state information, as depicted in Figure 2.
Additionally, a global critic network evaluates joint actions using global state informa-
tion, guiding the actor network updates. Moreover, we implement our MARL algo-
rithm using the CTDE framework, which incorporates a centralized critic for training
and multiple decentralized actors that leverage shared experience. This setup allows each
agent to make decisions based on its local observations. Our algorithm, named the Multi-

Sensors 2024, 24, 2779 11 of 19

Agent Online Control (MAOC) algorithm, consists of two phases: centralized training and
decentralized execution.

Replay

Memory

Hidden

Layer

Input

Layer

Global Critic

Network

Critic

Layer

Hidden

Layer

Input

Layer

Global Critic

Network

Critic

Layer

(')V S

()V S

()R tˆ()A t

Backward

Surrogate
Clip

Backward

Optimizer

Optimizer
Gradient

Update

Gradient

Update

R(t)

Sampling

Hidden

Layer

Input

Layer

Offloading

Head

Frequency

Head

Actor

Network

()mS t

()ma t (|)m ma S

()mf t (|)m mf S

(1)mS t +

2 ()S t

()MS t

1()S t

(|)t ta S

(|) ˆ()
(|)

new

t t

t t

a S
A t

a S

(|)new

t ta S

Figure 2. Architecture of the MAOC algorithm.

5.2.1. Centralized Training

The network update mechanism of our proposed algorithm resembles that of the PPO
algorithm within the actor–critic framework. To enhance sample efficiency, we incorporate
importance sampling to enable the reuse of samples. In order to prevent network instability
or crashes caused by aggressive network updates, we employ a policy clip operation
to constrain updates within a limited range, ensuring the stability and robustness of
the network.

The training phase is illustrated in Figure 2, with the following specific detail: All de-
vices randomly select the same batch of trajectories (Sm(t), am(t), π(am|Sm), fm(t), π(fm|Sm),
r(t), Sm(t + 1)) from the experience replay memory.

The communication process among devices during the training phase is as follows:
(1) At the end of each time slot, idle MDs send their system state information to the edge
server. Upon receiving the information from idle devices, the edge server integrates this
data with its own state information and broadcasts it to all active MDs. (2) Each active MD,
upon receiving this information, combines it with its own state data to form its system state.
At slot t, each active MD interacts with the environment, receives current observations
ot, and makes stochastic decisions based on its policy. (3) In the next time step, each
intelligent agent can observe the state ot+1 and the reward rm(t), and then, send ot, ot+1,
and rm(t) to the central controller located at the edge server. (4) Utilizing the acquired data,
the edge server makes predictions using the critic network, and calculates the temporal
difference (TD) target and TD error. Subsequently, the TD error is broadcast to all active
MDs’ intelligent agents by the edge server, which also updates the parameters of the value
network. (5) Upon receiving the TD error, each intelligent agent of the active MD updates
its policy network.

For the global critic network, the advantage function is calculated using the reward
r(t), and then, the network parameters are updated as follows:

Lt(θ
critic) = r(t) + γV(S(t))− V(S(t + 1)) (17)

For the actor network, we use the local state information of the device obtained from
the replay memory Sm(t) as input to calculate the current action policy output πnew(at|St)
by the network. We then use importance sampling to calculate the advantage value based
on Equation (18) and perform clipping to ensure that the update magnitude is small enough.
Finally, we backpropagate and update the actor network parameters.

Sensors 2024, 24, 2779 12 of 19

Lt(θ
actor) = min(rt(θ

actor)Ât, clip(rt(θ
actor), 1 − ϵ, 1 + ϵ)Ât) (18)

where rt(θactor) = πnew(at |st)
π(at |st)

denotes the probability ratio, and ϵ is a hyperparameter that
represents the trust region size.

In the loss function of the actor network, the first item refers to conservative policy
iteration [34], which can result in an excessively large policy update. The second item
modifies the surrogate objective by clipping the probability ratio, which removes the
incentive to move rt outside of the interval [1 − ϵ, 1 + ϵ] [32]. By using the minimization
operation, the final objective serves as a lower bound on the unclipped objective. As a
result, we make a small and safe update, where we only slightly increase the probability of
a good action.

Note that we use the generalized advantage estimation (GAE) trick to compute the
advantage function, which is as follows:

Ât =
∞

∑
l=0

(γλ)lδt+l (19)

where γ is the discount factor, which determines the importance given to future rewards,
while λ is a parameter similar to TD(λ), with a trade-off between variance and bias. δV

t+l
refers to the TD error, which is computed as δt+l = r(t + l) + γV(t + l + 1) − V(t + l),
where V denotes the critic network operation.

Our proposed centralized training algorithm is summarized in Algorithm 1.

Algorithm 1: Multi-Agent Online Control algorithm (MAOC)
Input: Active Device Set M,total episode number L, episode length T

1 for m ∈ M do
2 Initialize the replay memory RMm;
3 Initialize the Actor network
4 end
5 Initialize the Global Critic Network;
6 for n = 1 to L do
7 for t = 1 to T do
8 for m ∈ M do
9 Obtain the local state information Sm(t) corresponding to the active

device m;
10 Compute the offloading decision at

m and CPU frequency decision f t
m by

actor network;
11 end
12 Interact with the environment based on decisions A(t) and F(t);
13 for m ∈ M do
14 Store transition into replay memory RMm;
15 end
16 end
17 for m ∈ M do
18 Sample random mini-batch of transitions from the replay memory RMm;
19 Update the actor network according to Equation (18);
20 end
21 Randomly sample the same batch of transitions from the replay memory RMm

for each device m;
22 Integrate local state information Sm(t) of each device into global observation

information S(t);
23 Update the global critic network according to Equation (17);
24 end

Sensors 2024, 24, 2779 13 of 19

5.2.2. Decentralized Execution

At the end of each time slot t, idle devices transmit their own state information to the
edge server. Then, the edge server broadcasts this information to active devices, paving the
way for the next time slot. Thus, each active device can seamlessly integrate the broadcast
information from the edge server and its own current state information into its local state.
This local state is then fed into the actor network for inference to obtain the corresponding
action policy π(am|Sm) and π(fm|Sm). The action am and fm are then obtained through
sampling and used to interact with the environment.

5.2.3. Complexity Analysis of MAOC Algorithm

The complexity of the MAOC algorithm is a blend of the initialization and training phases.
During initialization, each active device establishes its replay memory and actor

network, with complexity dependent on the number of active devices in set |M|. This
phase maintains a constant complexity level as it sets up these components.

In the training phase, iterative episodes unfold where devices engage with the environ-
ment, update their actor networks, and contribute to a global critic network. The algorithm
complexity is analyzed from the following two aspects. (1) Time step operations: At each
time step, tasks such as gathering local state information, decision making with the actor
network, environment interaction, and transition storage in the replay memory occur. The
complexity per time step is typically linear, influenced by factors like the number of active
devices and state space size. (2) Network updates: Updating the actor networks and the
global critic network involves sampling from the replay memory, calculating losses, and
updating network parameters. The complexity of network updates is related to the size of
the replay memory, network architecture, and the number of devices contributing to the
global critic network.

6. Simulation Results

We construct the reinforcement learning model using the PyTorch framework and
train it on a computing server with four GeForce RTX 2080 Ti GPUs and one Intel(R)
Xeon(R) Silver 4116 CPU @ 2.10 GHz CPU with 48 cores. After the training, we evaluate the
performance of the proposed algorithm through simulation experiments. The environment
parameter settings are shown in Table 2 [13,35].

Table 2. The system parameter settings.

Parameter Value

Active device number |M| 10
Idle device number N 4

Idle CPU frequency f idle 2 × 108 cycles/s
Edge server CPU frequency f0 4 × 108 cycles/s

CPU power parameter δ 10−27 Watt· s3/cycle3

Active device optional CPU frequency fd [2 × 108, 2.5 × 108, 3 × 108] cycles/s
Total bandwidth B 3 MHz

White noise N0 10−3 Watt
Task generation probability 0.5

Minimum task size smin 2 × 105 bits
Maximum task size smax 5 × 105 bits

Minimum task complexity cmin 500 cycles/bit
Maximum task complexity cmin 1000 cycles/bit
Device transmission power pd 5 Watt

Maximum battery capacity RBmax 50 J

The neural network parameters are as follows: the batch size is set to 64, learning rate
is set to 1 × 10−4, the number of active devices is fixed at 3, the number of idle devices is
fixed at 3, and the probability of task generation is fixed at 0.5. The actor network adopts

Sensors 2024, 24, 2779 14 of 19

a three-layer multilayer perceptron, while the critic network adopts a four-layer multilayer
perceptron. Both networks have a middle layer with 128 nodes, and the Adam optimizer is
used to update the networks. We generate training data online using simulators, while test
data are pre-generated by simulators and saved to eliminate the influence of simulators on
the experimental results.

To evaluate our proposed algorithm, we compare it with the following baseline algorithms:
(1) No D2D mode: This scenario only considers offloading tasks to the edge server

and executing tasks locally, without utilizing D2D technology.
(2) All local mode: In this mode, all tasks are executed only on the devices where they

are generated, without any task offloading.
(3) PPO algorithm: This approach leverages a single-agent PPO algorithm in the edge

server, which collects the state information of all MDs as the training network input. The
actor network directly outputs joint actions and broadcasts them to the MDs.

(4) Centralized MAPPO: In this setup, all agents exchange their local state information
during the execution phase. Each agent then uses the global state information as input for
the actor network to make corresponding decision actions.

Figure 3 illustrates that our proposed MACO algorithm outperforms the other baseline
algorithms. It can be observed that our proposed algorithm demonstrates convergence
at around 150 episodes, indicating its effectiveness and feasibility. While our proposed
algorithm’s convergence speed may be marginally slower than that of the CM algorithm,
its advantage lies in not requiring inter-agent communication during execution. This
characteristic reduces data transmission overhead, enhancing its practicality for real-world
scenarios. Compared to alternative algorithms, our proposed approach exhibits significant
enhancements: an 81.2% improvement compared to all local mode, enhancement compared
to PPO algorithms, and a 48.2% boost over the No D2D mode. This underscores the
exceptional performance of our algorithm, emphasizing that more input information is
not always better. In some cases, redundant information can have a detrimental effect on
results [36].

0 100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

Episode

Av
er

ag
e

 D
ea

ly

MAOC Algorithm
PPO Algorithm No D2D

Centralized MAPPO
All Local

Figure 3. Performance compared with baseline algorithms.

Figure 4 illustrates the convergence of our proposed algorithm with varying learning
rates. If the learning rate is excessively high, for instance, 5 × 10−3, the neural network
fails to converge, as the parameters oscillate beyond the acceptable range. Conversely,
a learning rate that is excessively low, like 5 × 10−6, results in the algorithm’s performance
hovering around local optima with minimal enhancements.

Sensors 2024, 24, 2779 15 of 19

0 200 400 600 800 1000
Episode

5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0

Av
er

ag
e

de
la

y

learning rate = 5e-03
learning rate = 1e-03
learning rate = 5e-04
learning rate = 1e-04
learning rate = 5e-05
learning rate = 1e-05
learning rate = 5e-06

Figure 4. Convergence under different learning rates.

Figure 5 shows the performance of our proposed algorithm with varying numbers
of active devices. As the number of active devices increases, the tasks generated per
time slot also rise, consequently elevating the system load when the edge server and idle
devices remain constant. This increase in system load contributes to a rise in average
delay. Nonetheless, our proposed algorithm converges even in the face of these escalating
challenges within the environment.

0 200 400 600 800 1000
Episode

10

20

30

40

50

60

70

80

Av
er

ag
e

de
la

y

active device number =
active device number =
active device number =
active device number =

10
20
30
40

Figure 5. Convergence under different numbers of active devices.

Figure 6 shows the performance of our proposed algorithm under various mean values
of harvested energy. A higher mean harvested energy value indicates a less stringent energy
constraint. From Figure 6, it can be seen that our algorithm shows good convergence when
the mean value is greater than 5. Moreover, as the mean value increases, the algorithm
converges faster.Meanwhile, we can observe that when the average harvested energy
surpasses 6 units, the captured energy proves adequate to fulfill the device’s requirements,

Sensors 2024, 24, 2779 16 of 19

with no additional benefit from further increases. Conversely, an insufficiency in harvested
energy leads to temporary operational interruptions.

0 200 400 600 800 1000
Episode

0

5

10

15

20

25

30

Av
er

ag
e

de
la

y

harvest energy mean = 3
harvest energy mean = 4
harvest energy mean = 5
harvest energy mean = 6
harvest energy mean = 7
harvest energy mean = 9

Figure 6. Performance under different harvested energy means.

Figure 7 shows the performance of our proposed algorithm under different battery
capacities. It is evident that suboptimal outcomes are only evident when the battery
capacity is limited, as seen with a value like 30. Conversely, when the battery capacity is
substantial, the algorithm consistently delivers comparable performance, regardless of the
specific capacity, underscoring its efficient utilization of the captured energy.

0 200 400 600 800 1000
Episode

3
4
5
6
7
8
9

10
11
12

Av
er

ag
e

de
la

y

battery capacity= 30
battery capacity= 40
battery capacity= 60
battery capacity= 70
battery capacity= 80
battery capacity= 90

Figure 7. Performance under different battery capacities.

Figure 8 shows the performance of our proposed algorithm under varying CPU
frequencies of idle devices. As the CPU frequency of idle devices increases, indicating
a stronger processing capability, tasks offloaded to the device are completed more swiftly.
However, due to stringent energy constraints on idle devices, higher CPU frequencies
result in increased energy consumption. The harvested energy from the battery may prove
insufficient to meet the energy demands of high CPU frequencies, leading to a rise in
average delay rather than a reduction. It is evident from Figure 8 that the average delay is
minimized when the CPU frequency is 2.5 × 108.

Sensors 2024, 24, 2779 17 of 19

0 200 400 600 800 1000
Episode

4

6

8

10

12

14

Av
er

ag
e

de
la

y

idle cpu frequency = 1.0e+08
idle cpu frequency = 1.5e+08
idle cpu frequency = 2.0e+08
idle cpu frequency = 2.5e+08
idle cpu frequency = 3.0e+08
idle cpu frequency = 3.5e+08

Figure 8. Performance under different idle MD CPU frequencies.

7. Conclusions

In this paper, we introduced a task-offloading framework that leverages energy har-
vesting and DVFS techniques in D2D-assisted MEC networks to minimize task delay within
energy constraints. To tackle limited information exchange stemming from communication
channels and user privacy concerns, we developed an MAPPO-based algorithm called
MACO. MACO follows a centralized training with decentralized execution framework to
determine offload targets and CPU frequencies. Our experimental results showcased the
efficacy and resilience of our proposed algorithm. For future research, we aim to introduce
a radio frequency-based charging method to enhance device battery life and enhance
overall system controllability.

Author Contributions: Conceptualization, X.M. and H.H.; methodology, X.M. and H.H.; software,
X.M.; validation, H.H. and H.S.; investigation, X.M.; resources, H.H.; writing—original draft prepara-
tion, X.M.; writing—review, H.H. and H.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research is supported in part by the Science and Technology Foundation of Guangdong
Province, China, No. 2021A0101180005. The corresponding author is Huaiwen He.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available on request.

Acknowledgments: The authors would like to thank the editor and all reviewers for their valuable
comments and efforts on this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Abbas, N.; Sharafeddine, S.; Mourad, A.; Abou-Rjeily, C.; Fawaz, W. Joint computing, communication and cost-aware task

offloading in d2d-enabled het-mec. Comput. Netw. 2022, 209, 108900. [CrossRef]
2. Xiao, Z.; Shu, J.; Jiang, H.; Lui, J.C.S.; Min, G.; Liu, J.; Dustdar, S. Multi-objective parallel task offloading and content caching in

d2d-aided mec networks. IEEE Trans. Mob. Comput. 2022, 22, 6599–6615. [CrossRef]
3. Ke, H.; Wang, J.; Deng, L.; Ge, Y.; Wang, H. Deep reinforcement learning-based adaptive computation offloading for mec in

heterogeneous vehicular networks. IEEE Trans. Veh. Technol. 2020, 69, 7916–7929. [CrossRef]

http://doi.org/10.1016/j.comnet.2022.108900
http://dx.doi.org/10.1109/TMC.2022.3199876
http://dx.doi.org/10.1109/TVT.2020.2993849

Sensors 2024, 24, 2779 18 of 19

4. Cao, B.; Zhang, L.; Li, Y.; Feng, D.; Cao, W. Intelligent offloading in multi-access edge computing: A state-of-the-art review and
framework. IEEE Commun. Mag. 2019, 57, 56–62. [CrossRef]

5. Mi, X.; He, H. Multi-agent deep reinforcement learning for d2d-assisted mec system with energy harvesting. In Proceedings
of the 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, South Korea, 19
February 2023; pp. 145–153.

6. Salim, M.M.; Elsayed, H.A.; Abdalzaher, M.S. A survey on essential challenges in relay-aided d2d communication for next-
generation cellular networks. J. Netw. Comput. Appl. 2023, 216, 103657. [CrossRef]

7. Wang, X.; Ye, J.; Lui, J.C.S. Mean field graph based d2d collaboration and offloading pricing in mobile edge computing. IEEE/ACM
Trans. Netw. 2023, 32, 491–505. [CrossRef]

8. Wu, H.; Chen, J.; Nguyen, T.N.; Tang, H. Lyapunov-guided delay-aware energy efficient offloading in iiot-mec systems. IEEE
Trans. Ind. Inform. 2022, 19, 2117–2128. [CrossRef]

9. Wang, H.; Lin, Z.; Lv, T. Energy and delay minimization of partial computing offloading for d2d-assisted mec systems. In
Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March 2021;
pp. 1–6.

10. Chen, J.; Xing, H.; Xiao, Z.; Xu, L.; Tao, T. A drl agent for jointly optimizing computation offloading and resource allocation in
mec. IEEE Internet Things J. 2021, 8, 17508–17524. [CrossRef]

11. Zhao, P.; Tao, J.; Kangjie, L.; Zhang, G.; Gao, F. Deep reinforcement learning-based joint optimization of delay and privacy in
multiple-user mec systems. IEEE Trans. Cloud Comput. 2022, 11, 1487–1499. [CrossRef]

12. Goudarzi, M.; Palaniswami, M.; Buyya, R. Scheduling iot applications in edge and fog computing environments: A taxonomy
and future directions. ACM Comput. Surv. 2022, 55, 1–41. [CrossRef]

13. Tang, M.; Wong, V.W.S. Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Trans. Mob.
Comput. 2020, 21, 1985–1997. [CrossRef]

14. Qiu, X.; Liu, L.; Chen, W.; Hong, Z.; Zheng, Z. Online deep reinforcement learning for computation offloading in blockchain-
empowered mobile edge computing. IEEE Trans. Veh. Technol. 2019, 68, 8050–8062. [CrossRef]

15. Huang, H.; Ye, Q.; Du, H. Reinforcement learning based offloading for realtime applications in mobile edge computing. In
Proceedings of the ICC 2020-2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7 June 2020; pp. 1–6.

16. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for mec. In
Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15 April 2018;
pp. 1–6.

17. Sunehag, P.; Lever, G.; Gruslys, A.; Czarnecki, W.M.; Zambaldi, V.; Jaderberg, M.; Lanctot, M.; Sonnerat, N.; Leibo, J.Z.; Tuyls, K.;
et al. Value-decomposition networks for cooperative multi-agent learning. arXiv 2017, arXiv:1706.05296.

18. Guo, M.; Li, Q.; Peng, Z.; Liu, X.; Cui, D. Energy harvesting computation offloading game towards minimizing delay for mobile
edge computing. Comput. Netw. 2022, 204, 108678. [CrossRef]

19. Asim, M.; Affendi, M.E.L.; El-Latif, A.A.A. Multi-irs and multi-uav-assisted mec system for 5g/6g networks: Efficient joint
trajectory optimization and passive beamforming framework. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4553–4564. [CrossRef]

20. Chai, R.; Lin, J.; Chen, M.; Chen, Q. Task execution cost minimization-based joint computation offloading and resource allocation
for cellular d2d mec systems. IEEE Syst. J. 2019, 13, 4110–4121. [CrossRef]

21. Liang, J.; Li, K.; Liu, C.; Li, K. Joint offloading and scheduling decisions for dag applications in mobile edge computing.
Neurocomputing 2021, 424, 160–171. [CrossRef]

22. Xia, S.; Yao, Z.; Li, Y.; Mao, S. Online distributed offloading and computing resource management with energy harvesting for
heterogeneous mec-enabled iot. IEEE Trans. Wirel. Commun. 2021, 20, 6743–6757. [CrossRef]

23. Chen, X.; Zhang, H.; Wu, C.; Mao, S.; Ji, Y.; Bennis, M. Optimized computation offloading performance in virtual edge computing
systems via deep reinforcement learning. IEEE Internet Things J. 2018, 6, 4005–4018. [CrossRef]

24. Huang, L.; Feng, X.; Zhang, C.; Qian, L.; Wu, Y. Deep reinforcement learning-based joint task offloading and bandwidth allocation
for multi-user mobile edge computing. Digit. Commun. Networks 2019, 5, 10–17. [CrossRef]

25. Huang, L.; Bi, S.; Zhang, Y.A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge
computing networks. IEEE Trans. Mob. Comput. 2019, 19, 2581–2593. [CrossRef]

26. Hao, H.; Xu, C.; Zhang, W.; Yang, S.; Muntean, G.-M. Joint task offloading, resource allocation, and trajectory design for multi-uav
cooperative edge computing with task priority. IEEE Trans. Mob. Comput. 2024, in press. [CrossRef]

27. Dai, X.; Xiao, Z.; Jiang, H.; Alazab, M.; Lui, J.C.S.; Dustdar, S.; Liu, J. Task co-offloading for d2d-assisted mobile edge computing
in industrial internet of things. IEEE Trans. Ind. Inform. 2022, 19, 480–490. [CrossRef]

28. Sun, M.; Xu, X.; Huang, Y.; Wu, Q.; Tao, X.; Zhang, P. Resource management for computation offloading in d2d-aided wireless
powered mobile-edge computing networks. IEEE Internet Things J. 2020, 8, 8005–8020. [CrossRef]

29. Liu, Y.; Cai, Y.; Liu, A.; Zhao, M.; Hanzo, L. Latency minimization for mmwave d2d mobile edge computing systems: Joint task
allocation and hybrid beamforming design. IEEE Trans. Veh. Technol. 2022, 71, 12206–12221. [CrossRef]

30. Elgendy, I.A.; Zhang, W.; He, H.; Gupta, B.B.; El-Latif, A.; Ahmed, A. Joint computation offloading and task caching for multi-user
and multi-task mec systems: Reinforcement learning-based algorithms. Wirel. Netw. 2021, 27, 2023–2038. [CrossRef]

31. Zhang, J.; Du, J.; Shen, Y.; Wang, J. Dynamic computation offloading with energy harvesting devices: A hybrid-decision-based
deep reinforcement learning approach. IEEE Internet Things J. 2020, 7, 9303–9317. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2019.1800608
http://dx.doi.org/10.1016/j.jnca.2023.103657
http://dx.doi.org/10.1109/TNET.2023.3288558
http://dx.doi.org/10.1109/TII.2022.3206787
http://dx.doi.org/10.1109/JIOT.2021.3081694
http://dx.doi.org/10.1109/TCC.2022.3140231
http://dx.doi.org/10.1145/3544836
http://dx.doi.org/10.1109/TMC.2020.3036871
http://dx.doi.org/10.1109/TVT.2019.2924015
http://dx.doi.org/10.1016/j.comnet.2021.108678
http://dx.doi.org/10.1109/TITS.2022.3178896
http://dx.doi.org/10.1109/JSYST.2019.2921115
http://dx.doi.org/10.1016/j.neucom.2019.11.081
http://dx.doi.org/10.1109/TWC.2021.3076201
http://dx.doi.org/10.1109/JIOT.2018.2876279
http://dx.doi.org/10.1016/j.dcan.2018.10.003
http://dx.doi.org/10.1109/TMC.2019.2928811
http://dx.doi.org/10.1109/TMC.2024.3350078
http://dx.doi.org/10.1109/TII.2022.3158974
http://dx.doi.org/10.1109/JIOT.2020.3041673
http://dx.doi.org/10.1109/TVT.2022.3192345
http://dx.doi.org/10.1007/s11276-021-02554-w
http://dx.doi.org/10.1109/JIOT.2020.3000527

Sensors 2024, 24, 2779 19 of 19

32. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

33. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. In Proceedings of the International conference on machine learning, Stockholm, Sweden, 3 July 2018;
pp. 1861–1870.

34. Kakade, S.; Langford, J. Approximately optimal approximate reinforcement learning. In Proceedings of the The 19th International
Conference on Machine Learning, Sydney, Australia, 8 July 2002; pp. 267–274.

35. Li, G.; Chen, M.; Wei, X.; Qi, T.; Zhuang, W. Computation offloading with reinforcement learning in d2d-mec network. In
Proceedings of the 2020 International Wireless Communications and Mobile Computing (IWCMC), Limassol, Cyprus, 15 June
2020; pp. 69–74.

36. Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The surprising effectiveness of ppo in cooperative, multi-agent games.
arXiv 2021, arXiv:2103.01955.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Works
	System Model
	Device Model
	Computation Model
	Transmission Model
	Energy Model
	Delay Model

	Problem Formulation
	Solution with Multi-Agent DRL-Based Algorithm
	 Markov Decision Process of P1
	MAOC Algorithm
	Centralized Training
	Decentralized Execution
	Complexity Analysis of MAOC Algorithm

	Simulation Results
	Conclusions
	References

