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Abstract: We present a novel approach for achieving high-precision trajectory tracking control in
an unmanned surface vehicle (USV) through utilization of receding horizon reinforcement learning
(RHRL). The control architecture for the USV involves a composite of feedforward and feedback
components. The feedforward control component is derived directly from the curvature of the
reference path and the dynamic model. Feedback control is acquired through application of the RHRL
algorithm, effectively addressing the problem of achieving optimal tracking control. The methodology
introduced in this paper synergizes with the rolling time domain optimization mechanism, converting
the perpetual time domain optimal control predicament into a succession of finite time domain control
problems amenable to resolution. In contrast to Lyapunov model predictive control (LMPC) and
sliding mode control (SMC), our proposed method employs the RHRL controller, which yields an
explicit state feedback control law. This characteristic endows the controller with the dual capabilities
of direct offline and online learning deployment. Within each prediction time domain, we employ a
time-independent executive–evaluator network structure to glean insights into the optimal value
function and control strategy. Furthermore, we substantiate the convergence of the RHRL algorithm
in each prediction time domain through rigorous theoretical proof, with concurrent analysis to verify
the stability of the closed-loop system. To conclude, USV trajectory control tests are carried out within
a simulated environment.

Keywords: unmanned surface vehicle; receding horizon reinforcement learning; trajectory tracking;
executive–evaluator

1. Introduction

A USV inherently constitutes a complex nonlinear system, being subject to distur-
bances and influences from the environment during navigation. Consequently, enhancing
the path-tracking accuracy of unmanned ship motion control is a pressing concern.

At present, common methods for achieving such control include the PID [1,2], which
is the most widely used, feedback control [3,4], fuzzy control [5,6], module predictive
control (MPC) [7,8], and reinforcement learning (RL)-based control [9,10] methods. Of the
aforementioned approaches, the PID control method stands out for its advantages. Notably,
it eliminates the necessity for modeling the unmanned ship, rendering it a robust and easily
implementable controller. However, a challenge lies in ensuring the optimality of specific
performance indices. While the fuzzy controller exhibits the capability to deduce and
generate expert behavior, its application is challenged by the intricacies of crafting fuzzy
rules that primarily arise from the complexity inherent in the navigation environment.

The feedback controller, in its typical operation, computes heading and lateral de-
viations by analyzing the geometric relationship between the USV and the desired path.
Based on this, it directly determines the steering wheel angle for precise steering control.
The methods used for tracking, which involve deriving the correlation between the selected
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path anchor point and the USV position, are the single-point tracking method, pre-sight
distance method, and the Stanley method. Both the single-point tracking method [11]
and pre-viewing distance method [12,13] offer the advantages of simplicity in algorithms
and ease of implementation. However, a notable consideration lies in the fact that the
selection of pre-viewing distance is contingent upon the experiential judgment of designers.
The Stanley method, initially introduced by Stanford University for an unmanned vehicle
fleet, is well suited for lower vehicle speeds. It necessitates a continuous curvature in the
reference trajectory for optimal implementation.

A plethora of research findings have emerged concerning the application of MPC in
vehicle motion control, as documented in the literature [14–17]. Of the achievements in
these cited works, Falcone et al. [15] introduced an MPC motion controller grounded in
the continuous linearization model, and their simulation results underscore the efficacy
of the continuous linearization MPC design approach in minimizing computational costs.
Carvalho et al. [17] studied an algorithm for local path planning using locally linearized
MPC, carrying out linearization and convex approximation of nonlinear obstacle avoidance
boundaries. Liniger et al. [18] proposed a lateral motion method of model predictive con-
trolling control (MPCC). Using this method, the lateral deviation is calculated by estimating
the position of the projection point, which reduces the computational complexity to a
certain extent. Ostafew et al. [19] adopted Gaussian process regression to build a nonpara-
metric model of a mobile robot. In the realm of unmanned surface vehicles, the trajectory
tracking controller, employing the MPC method, typically necessitates real-time numerical
calculations for solving an open-loop control sequence. The performance of this approach
can be influenced by the precision of the model in addition to the unavoidable challenge of
managing the complexity inherent in online calculations. Collectively, the current control
strategies have various limitations characterized by suboptimal tracking accuracy and
constrained computational efficiency.

In recent years, approximate dynamic programming (ADP) as well as reinforcement
learning (RL) have experienced widespread adoption in the design of robot decision and
control algorithms, thanks to their remarkable efficiency in solving optimization problems
and adaptive learning capabilities [20,21]. Yang [22] developed a learning method which
is based on PID control for the tracking control of vehicles. Aiming at optimizing the
tracking deviation of robots, the DHP algorithm was employed for real-time adjustment of
PID parameters, enhancing path-tracking accuracy. Gong et al. [23] designed a finite-time
dynamic positioning controller for surface vessels. Shen et al. [24] introduced an innovative
LMPC framework aiming to enhance trajectory tracking performance. Jiang et al. [25] also
proposed sliding mode control to improve the tracking performance of USVs.

Recent advancements include noteworthy works employing deep learning and deep
reinforcement learning to design controllers based on image or state information, facilitating
trajectory control for USVs [26–28]. A key advantage of this approach lies in leveraging deep
networks to enhance the feature representation capabilities of both reinforcement learning
and supervised learning. Notably, the training process is entirely data driven, eliminating
the need for dynamic model information. However, it has the following disadvantages:

(1) Due to the inherent complexity of deep networks, application of this method is
limited to offline training control strategies for online deployment. Moreover, its
control performance is susceptible to the influence of factors such as the quantity
and distribution of training samples.

(2) In the context of deep network learning, the analysis of theoretical characteristics,
such as convergence and robustness, remains a crucial and challenging issue for the
academic community to address.

Motivated by the challenges outlined above, we propose a RHRL-based control
method, aiming at achieving high-precision lateral control for USVs. The initial step
involves constructing a dynamic deviation model for a USV. The steering control of such
vehicles comprises two parts, which are feedforward and feedback. Feedforward control is
derived directly from the curvature and deviation model for the reference path. In parallel,
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the establishment of feedback control is achieved by addressing the problem of optimal
tracking through application of the RHRL algorithm proposed in this paper. Diverging
from conventional optimal control methods rooted in reinforcement learning, RHRL em-
ploys a rolling horizon optimization mechanism. This transformation converts infinite time
domain optimal control problems into a sequence of finite time domain heuristic dynamic
programming problems for resolution. In contrast to the MPC method for unwinding the
loop control sequence, the strategy learned by this method is an explicit state feedback
control law, which is amenable to offline direct deployment and online learning. Further-
more, in Section 3, the convergence and stability of the closed-loop associated with the
proposed RHRL algorithm are theoretically analyzed within each prediction time domain.
Finally, simulation and comparative experiments for USV trajectory control using the RHRL
algorithm are conducted. Through simulation tests, the control performance is found to
be comparable to that of LMPC, with notable advantages in terms of computational effi-
ciency, lower sample complexity, and higher learning efficiency. To verify the algorithm’s
robustness and anti-interference capabilities, simulation incorporating disturbances are
also conducted.

The remaining sections of this manuscript are arranged as follows. In Section 2,
a dynamic model of a USV is built. Then, a USV trajectory control algorithm based on
RHRL is proposed and shown to be stable. In Section 3, the simulation and comparison
experiments are carried out, and disturbances are added. Section 4 contains the conclusions.

2. Materials and Methods
2.1. Modeling

In contemporary vehicle modeling, the utilization of three degrees of freedom (DOF)
and six DOF predominates. However, considering the environment of the USV investigated
in this study, which navigates on the sea surface, we opt for three degrees of freedom in the
modeling process to avoid unnecessary complexity.

In the process of establishing dynamical equations, a crucial decision lies in selecting
the coordinate system for their formulation. Direct application of Newton’s laws of motion
necessitates the expansion of equations in an inertial coordinate system. Nevertheless,
various considerations compel us to derive the dynamic equations in a satellite coordinate
system. One such reason is to establish dynamic equations that are direction independent.
Additionally, employing the satellite coordinate system facilitates the direct assignment of
forces and control moments. However, this would result in the current frame of reference
not being an inertial frame of reference. Hence, to account for the non-inertial reference
frame, Coriolis and centripetal forces are artificially introduced. This allows us to derive
the remaining dynamics as if they were in an inertial reference frame.

The USV under investigation features a catamaran-like structure, incorporating two fixed
propellers positioned at the extremities of each hull. In Figure 1, variables U1 and U2 denote
the speeds of the two thrusters, while θ represents the heading angle.

Considering its actual working environment, trajectory tracking control of the USV on
the horizontal plane will be the focus of our study.

There is a reference frame called the BF (body frame) that is securely fixed to the
USV, with the point of origin deliberately chosen to coincide with the center of gravity.
Global information is recorded by the IF (inertial frame). Thus, the USV’s motion can be
accurately described via the kinematic equation and dynamic equation of the coordinate
transformation between these two frames.

The kinematic equation is
ξ̇ = R(θ)v (1)

where ξ = [x, y, z]T represents the USV’s position and heading in the IF; v = [u, v, r]T

represents the USV’s velocity in the BF; and the rotation matrix R(θ) depends on θ, which
is the heading angle.
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Figure 1. Diagram of the BF (left) and IF (right).

R(θ) can be expressed by the follow equation:

R(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2)

According to the Newton’s law of motion, the dynamic equation can be established
as follows:

Mv̇ + C(v)v + D(v)v + g(ξ) = κ (3)

where κ = [Fu, Fv, Fr]
T represents the thrust force of each propeller. The matrix M takes

the mass (which is added) into consideration; C(v) represents the Coriolis and centripetal
matrix. Concrete forms of the above three matrices are shown as follows:

M =

Mu̇ 0 0
0 Mv̇ 0
0 0 Mṙ

 (4a)

C(v) =

 0 0 −Mv̇v
0 0 Mu̇u

Mv̇v −Mu̇u 0

 (4b)

D(v) =

Xu + Du|u| 0 0
0 Yv + Dv|v| 0
0 0 Zr + Dr|r|

 (4c)

where D(v) is the USV’s damping matrix; g(ξ) denotes the specific restoring force.
The thrusters τ = [τ1, τ2, τ3]

T generate thrust force κ, and the τ comes from κ = B(α)τ.α
denoting the thrusters’ azimuth vector in the BF. We can obtain the distribution of the thruster:

κ = Bτ, B =

1 0 1
0 1 0
l1 0 l2

 (5)

where B denotes an input matrix that is constant. B is a 3× 3 matrix that distributes power
to the thrusters in three directions, and B satisfies the condition that BTB is not singular.
l1, l2 ∈ (0, 1) are the thrusters’ efficiency factors.
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Therefore, we can derive the dynamic model of the USV for trajectory tracking by
combining Equations (1), (3), and (5):

ẋ =

[
R(θ)v

M−1Bτ −M−1Cv−M−1Dv−M−1g

]
= f(x, τ) (6)

where x = [x, y, θ, u, v, r]T is the defined state, and input control is expressed as τ = [τ1, τ2, τ3]
T.

At the end of this section, we successfully derive the dynamic equation governing USV
operation on the water surface.

2.2. The USV Trajectory Control Algorithm Based on RHRL

In this section, the USV trajectory control algorithm utilizing RHRL is elaborated. We
initially formulate the performance index for the finite time domain trajectory control prob-
lem of the USV. Subsequently, we outline the core concepts of the associated reinforcement
learning algorithm along with the design and implementation process of the controller.
Also included is a detailed analysis of convergence based on this approach.

When conducting tracking control, it is necessary to describe the relative position
between the USV and the desired path, as shown in Figure 2. The point P represents the
closet point from the desired path, which is called the road projection point. P(Xp, Yp, φd, κ)
is denoted as the path information at the projection point, where Xp, Yp are the global
coordinates of P. φd is the angle between the tangent line of P and the X-axis, also known
as the direction of the path; κ is the curvature of the path at point P.

Figure 2. Lateral error model.

The distance between P and the USV centroid is called the lateral deviation ey,
and ey > 0 is specified for when the USV is located on the left side of the path, and ey < 0
when the USV is on the right side. Therefore, the lateral deviation can be expressed as

ey = −(X− Xp)sin(φd) + (Y−Yp)cos(φd) (7)

The path deviation eφ of the USV is defined as the difference between the path and the
direction, which is eφ = φ− φd. φ = 1

2 (ż + r)tanθ = rtanθ. The first derivative of ey and
eφ are shown below: {

ėy = vycos(eφ) + vxsin(eφ)

˙eφ = ω− κ[vxcos(eφ)− vysin(eφ)]
(8)
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where ω = φ̇. vx = ẋcosφ + ẏsinφ +
√

u2 + v2sinφ, vy = −ẋsinφ + ẏcosφ +
√

u2 + v2cosφ.
It is assumed that vx remains constant and there is no sidescale phenomenon in the moving
process, and that the expected yaw velocity of the USV’s desired path is constant; then,
the lateral acceleration of the USV when it stably tracks the path is ay = vx

2κ.
Assuming that the course deviation eφ is small, then according to the small angle

theorem, sin(eφ) ≈ eφ, cos(eφ) ≈ 1. Then, the second derivative of the lateral deviation
with respect to time can be expressed as

ëy = (v̇y + vxω)− v2
xκ (9)

The first derivative can be approximated as

ėy = vy + vxeφ (10)

Combining Equations (1), (3) and (4), also (8)–(10); the following equation can be derived as

ė = Ace + Bc1u + Bc2ωd (11a)

Ac =

 Aw 06×3 06×3
03×6 03×3 I3×3
03×6 03×3 −M−1D

 (11b)

Aw =

[
03×3
Aw

]
, Aw =

Mu̇ + Mv̇V 0 Xu + Du|u|
0 Mu̇u −Mṙ

Mṙ Yv + Dv|v| Zr + Dr|r|

 (11c)

Bc1 =

 Ew 06×3
03×3 03×3
03×3 M−1

, Bc2 =

06×3
03×3
M−1

 (11d)

where ωd = φ̇d, e = [ey, ėy, eφ, ˙eφ]T , and the control quantity u = δ f .
Given a sampling period ∆t, the discrete time model of Equation (11a) can be dis-

cretized as

e(k + 1) = Ae(k) + B1u(k) + B2ωd(k) (12)

where A = I + ∆tAc, B1 = ∆tBc1, B2 = ∆tBc2, and k is a discrete time point.
For the above model Equation (12), it is assumed that path information (Xi, Yi)

M
i=1,

and the purpose of this paper is to design a lateral control algorithm based on RHRL (as
shown in Figure 3) such that during the control process, the above-mentioned lateral error
state quantity gradually converges to 0, that is, e→ 0.

Figure 3. Trajectory tracking control block diagram of the USV.
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2.2.1. Design of Performance Index for the Finite Time Domain Trajectory Control Problem

In this section, a detailed control algorithm based on RHRL is presented. We commence
by designing the performance index for the USV finite time domain lateral control problem.
Subsequently, we outline the core concept of the RHRL algorithm and delve into the design
implementation and convergence analysis based on the actuator–evaluator. For the system
deviation model of Equation (12), the control quantity can be decomposed into the form of
a feedforward component u f plus a feedback component ub such that u = u f + ub, which
is shown in Figure 3. The feedforward control quantity represents the expected control
input during steady-state vehicle operation and is applicable when the vehicle is stably
following the reference path.At the same time e(k) = e(k + 1) = 0 holds, ub = 0 as well.
The feedforward control quantity u f can be determined as follows:

∞

∑
j=0

AjB1u f ≈ −
∞

∑
j=0

AjB2ωd (13)

The value in the above formula can be obtained by ωd = vxk. A, B1, B2 are discrete
time coefficient matrices.

Since u f can be easily solved at any current time value k, we assume that u f remains
constant throughout the prediction time domain [k, k + N], then the feedback control
quantity ub to be solved needs to meet the following constraints:

ub ∈ Ub =
{

u ∈ R|u− u f ≤ u ≤ ū− u f

}
(14)

where ū represents the maximum of u, u is the minimum of u. The RHRL algorithm,
introduced in this paper, seeks to minimize the following performance indicator function
by optimizing ub ∈ Ub in each prediction time domain:

V(e(k)) =
k+N−1

∑
l=k

L(e(l), ub(l)) + Vf (e(k + N)) (15)

where the cost function L(e(l), ub(l)) = eT(l)Qe(l) + Pub(l)
2, Q ∈ R4×4 is a matrix which

is positive definite, P is a preset positive real number, and the cost function of the predictive
time domain terminal is

Vf (e(k + N)) = eT(k + N)R̄e(k + N) (16)

where the penalty matrix R̄ ∈ R4×4 is a positive definite matrix, which can be solved using
the following Lyapunov equation:

FT R̄F− R̄ = −Q− KT PK (17)

where F = A + B1K, K ∈ R1×4 is the feedback gain matrix satisfying the conditions
indicating that F is Schur-stable. (The characteristic polynomial ‘F’ for discrete linear
systems is such that the roots are located within the unit circle. This property results in the
system being classified as Schur-stable).

2.2.2. Path Control Algorithm Based on RHRL

The implementation of the finite time domain reinforcement learning algorithm using
the executive–evaluator involves the following main steps:

First of all, according to Equation (15), in any l ∈ [k, k + N − 1], we can express the
value function as a differential form:

V(e(l)) = L(e(l), ub(l)) + V(e(l + 1)) (18)
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where V(e(k + N)) = Vf (e(k + N)). At the l-th prediction moment, V∗(e(l)) would be
defined as the optimal value function, and we obtain the HJB equation of the above finite
time domain optimization control problem as

V∗(e(l)) = min
ub(l)∈Ub

L(e(l), ub(l)) + V∗(e(l + 1)) (19)

and the optimal control strategy:

u∗(e(l)) = argmin
ub(l)∈Ub

L(e(l), ub(l)) + V∗(e(l + 1)) (20)

In fact, due to the control constraints, it is difficult to obtain analytical solutions for
V∗ and u∗ using Equations (19) and (20). In principle, we can approximate the optimal
solution of the value function and the control strategy through the method of value iteration.
For any l ∈ [k, k + N − 1], at given initial values where V0(e(l)) = 0, then iterate steps
i = 0, 1, 2 · · · . This needs to be repeated until Vi+1(e(l)) − Vi(e(l)) → 0 to resolve the
following two steps.

(1) Strategy update

ui(e(l)) = argmin
ub(l)∈Ub

L(e(l), ub(l)) + Vi(e(l + 1)) (21a)

(2) Value update

Vi+1(e(l)) = L(e(l), ui
b(e(l)) + Vi(e(l + 1)) (21b)

In conclusion, the task of trajectory tracking is accomplished through continuous
updating of the strategy and feedback values.

2.2.3. Rolling Time Domain Executor–Evaluator Learning Implementation

We employ the executive–evaluator structure to implement the finite time domain
value function iteration algorithm described above. In existing finite time domain reinforce-
ment learning control algorithms [17], the value function in the prediction time domain is
regarded as a time-dependent function.

Assumption 1. If there has a control strategy ub(e) = Φ(v(e)) so that system (Equation (12)) is
asymptotically stable under control strategy u = ub + u f , where Φ(v(e)) is a continuous function
satisfying ub(e) ∈ Ub, ∀v(e) ∈ R.

The aforementioned assumptions essentially represent another aspect of the stabiliz-
ability of the system Equation (12). Simultaneously, it is worth noting that the dynamic
model Equation (12) presented in this paper is controllable, so there must be a continuous
equation ub(e) ∈ Ub that renders Equation (16) asymptotically stable under the control
strategy u = ub + u f . Therefore, the above assumptions are reasonable.

We define χ f as a control invariant set under the control law ub = Ke ∈ Ub, then we
can state the following theorem.

Theorem 1. (Time-independent value function) If the value of the prediction time domain N satisfies
t ∈ [k, k + N] in any prediction time domain, for any initial state e(k) ∈ R4, the terminal state
e(k + N) ∈ χ f is driven by the control strategy u(e(l)), l ∈ [k, k + N − 1] of system Equation (9)
such that there is such a control strategy ub(e) ∈ Ub that V(e(l)), and l ∈ [k, k + N − 1] is a
function that is independent of time.



Sensors 2024, 24, 2771 9 of 19

Proof of Theorem 1. Firstly, consider the case of e(k) ∈ χ f . Based on the definition of χ f ,
there is a control law ub = Ke = Φ(v(e)) ∈ Ub that ensures the quantity of states at any time
in the future satisfy x(l) ∈ χ f . From that, we can solve and obtain the following function:

V
(
e(l)

)
=

k+n−1

∑
i=l

L
(
e(i), ub(i)

)
+ Vf

(
e(k + N)

)
= e(l)T P̄e(l) (22)

For the case of e(k) /∈ χ f , according to Assumption 1, there is such a control strat-
egy ub = Φ(v(e)) and a finite prediction step N that e(k + N) ∈ χ f . In particular,
let v = Ke, then

V(e(l)) =
k+n−1

∑
i=l

L(e(i), ub(i)) + Vf (e(k + N)) =
+∞

∑
i=l

L(e(i), ub(i)) (23)

where ub = Φ(v(e)).
Hence, a value function and a strategy independent of time exist. Drawing inspiration

from this, we adopt a time-independent executive–evaluator structure to execute the finite
time-domain value function iteration process described above. Initially, a network of
evaluators is designed to approximate the value function:

V̂(e) = ŴT
c φ(e) (24)

where Ŵc ∈ RNc represents the weight of the evaluator network, Nc denotes network node
number; φ(e) is the network’s basis function. According to the definition of the evaluator
network, the resulting errors E and the end error E f can be expressed as

E(l) = Ŵc
T

φ(l)− L(e(l), ûb(l))− Ŵc
T

φ(l + 1) (25)

E f = Ŵc
T

φ
(

e f

)
− e f

T P̄e f (26)

Therein, e f = e(k + N), which can be randomly valued around 0. By minimizing
Ec(l) = E(l)2 + E f

2, the equation for updating the weights of the evaluator network is
derived as follows:

Ŵc(l + 1) = Ŵc(l) + µc

(
∆φ(e(l + 1))E(l)− φ

(
e f

)
E f

)
(27)

where µc > 0 is the learning rate of the evaluator network.
Next, to deal with control constraints, we construct the network of actuators as follows:

ûb(l) = u1tanh
(

Ŵa
T

σ(e(l))
)
+ u2 (28)

where û1 = 0.5
(

ub − ub

)
, û2 = 0.5

(
ub + ub

)
, including Ŵa ∈ RNa is the weight of actuator

network; σ(e) is the basis function vector of the network. Na indicates the node number,
which is on network. Given that the actuator network aims to approximate the optimal
strategy of control, we define the control quantity deviation as follows:

Ea(l) = Ŵa
T

σ(e(l)) +
1
2

R−1B1
T∇φ(e(l))Ŵc(l) (29)

By minimizing Ea
2, we can obtain the update rule of the network weight as

Ŵa(l + 1) = Ŵa(l)− µa
δEa

2(l)
δŴa(l)

(30)

where µa > 0 represents the learning rate of the actuator network.
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Algorithm 1 The main steps of implementing the above finite time domain reinforcement learning
algorithm, which makes use of the executive–evaluator.

(I) Initialize the weights Ŵc, Ŵa, and obtain the initial state Z(0).
(II) When the time t = k∆t, the projection point P is found according to the state Z(t),

and the deviation state e(t) is calculated.
(III) ∀l ∈ [k, k + N − 1], repeat the following process 1–3:

(1) According to Equations (17) and (28), u f (l) and ûb(l) are respectively calculated.

(2) Update Ŵc, Ŵa according to Equations (27) and (30).
(3) Calculate u(l) = u f (l) + ûb(l) according to Equations (13) and (28), and apply the

prediction model for e(l + 1).

(IV) Calculate u f (k) and ûb(e(k)) according to Equations (12) and (27), respectively.
(V) In the time period [k∆t, (k + 1)∆t], apply quantity u(t) = u(k∆t) directly to the USV,

and update the system states Z((k + 1)∆t).
(VI) Set k← k + 1 and repeat operations II-V based on the receding time domain optimiza-

tion strategy.

2.2.4. Convergence Analysis of the Weight of Finite Time Domain Actuator and Evaluator

Next, we present the convergence analysis of the above RHRL algorithm in each
prediction domain [k, k + N − 1]. First, the (local) optimal value function and control
strategy can be represented as a network:

V∗(e) = Wc
T φ(e) + κc (31)

ub
∗ = u1 tan h

(
Wa

Tµ(e) + κa

)
+ u2 (32)

where both Wa and Wc are weight matrices, and κa and κc are the errors of reconstruction.

Assumption 2. (Network reconstruction error)

(1) Wc ≤Wc,m, φ ≤ φm,∇φ ≤ φ̄m, κc ≤ κc,m,∇κc ≤ κ̄c,m
(2) Wa ≤Wa,m, ψ ≤ ψm, κa ≤ κa,m

Assumption 3. (Continuous excitation)
There are positive real numbers q1, q2, (q1 < q2) such that

q1 ≤ φ̄, φ̄ f ≤ q2 (33)

where φ̄ = ∆φT∆φ, φ̄ f = φ f
T φ f , φ f = φ

(
e f

)
.

In order to more compactly describe the following theorem, define γ1 = 4− 4ψ̄µa− (4− 8ψ̄µa)
(β1 + β3), ψ̄ = ψTψ, φ̄ = φ̄(l + 1) + φ̄ f , α = β0, β1, β2, β3 are tunable positive real numbers.

Theorem 2. Under Assumptions 2 and 3, if the appropriate learning laws µc and µa and {βi}3(i = 0)
are chosen so that γ1 > 0 and α − γ2 > 0, then the network weights Ŵc and Ŵa of
Equations (27) and (30) will asymptotically converge to the following region when using the
above strategy:

W̄c ≤
√

Et√
γ1

(34a)

εa ≤
√

Et√
α− γ2λmin(ḡ)

(34b)

where W̄c = Wc − Ŵc, W̄a = Wa − Ŵa, ξa = W̄T
a ψ, and Et is the error.

Furthermore, if κc,m, κ̄c,m, κa,m → 0, then W̄c and ξa converge asymptotically to 0.
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Proof of Theorem 2. The Lyapunov function is defined as follows:

L(l) = Lc(l) + La(l)

where Lc = tr(W̄T
c ηc
−1W̄c), and La = tr

(
W̄T

a ηa
−1W̄a

)
. They can be calculated based on

Equation (26).

E(l) = ŴT
c φ(l)− ŴT

c φ(l + 1) + ∆V∗(l + 1) = WT
c ∆φ(l + 1) + ∆κc(l + 1) (35)

where ∆V∗(l + 1) = V∗(l + 1)−V∗(l), ∆κc(l + 1)=κc(l + 1)− κc(l).

E f = W̄T
c φ f −Wc

T φ f − κc, f = −W̄T
c φ f − κc, f (36)

where κc1 f = κc(k + N), then according to Equations (27), (35) and (36):

∆Lc(l + 1) = Lc(l + 1)− Lc(l)

= 2W̄T
c (−φ̄W̄c + κ̄c) + µc(−φ̄W̄c + κ̄c)

T
(−φ̄W̄c + κ̄c)

≤ −αW̄2
c + Ec

(37)

where κ̄c = −∆φ(l + 1)∆κc(l + 1)− φ f κc f , Ec =
(

2µc + β0
−1
)

κ̄2
c .

Similarly, ∆La(l + 1) can be expressed as

∆La(l + 1) = tr

2W̄T
a (l)

∂Ea
2(l)

∂Ŵa(l)
+ µa

(
∂Ea

2(l)
∂Ŵa(l)

)T
∂Ea

2(l)
∂Ŵa(l)


In consideration of Ea = −ξa− gW̄c + κ̄a, g = ∇φ

(
1
2 R−1B1

T
)

, κ̄a = −κa−∇κc

(
1
2 R−1B1

T
)

,

and ∂Ea
2(l)

∂Ŵa(l)
= 2ψEa, then

∆La = −(4− 4ψ̄µa)∥ξa∥2 − 8ψ̄µagW̄cκ̄a + 4ψ̄µa∥W̄c∥ḡ2 + (4− 8ψ̄µa)(ξaκ̄a − ξT
a gW̄c)

where ḡ = gT g. According to Young’s inequality theorem,

∆La(l + 1) ≤ −γ1∥ξa∥2 + γ2∥Wc∥2
ḡ + Ea

where Ea = (1/β2 + 1/β3)κ̄
2
a . Then, by defining Et = Ec,m + Ea,m, we obtain

∆L = −γ1∥ξa∥2 − (α− γ2)∥W̄c∥2
ḡ + Et (38)

On this basis, if κ̄c,m , κc,m , κa,m → 0, Et → 0 is obtained, then W̄c and ξa asymptotically
converge to 0.

Hence, at this juncture, we have successfully concluded the proof of Theorem 2.

The conclusion of the above theorem indicates that we can make u converge to u∗b with
an arbitrarily small error by increasing the number of base function nodes in the actuator
and the evaluator. Therefore, under the premise that Assumption 1 is true, if a sufficiently
large N is chosen, the equation of system (12) satisfies the terminal state e(k + N) ∈ x f in the
prediction time domain [k, k + N− 1] driven by strategy u∗b(k|k), · · · , u∗b(k + N− 1|k). Thus,
the next prediction time domain [k + 1, k + N], u∗b(k + 1|k), · · · , u∗b(k + N− 1|k), Ke(k + N|k)
is a feasible control strategy. We define the loss function produced by the feasible strategy for
Los f (k + 1|k), and referring to Rawling’s [29], Los f (k + 1|k)− Los∗(k|k) ≤ −L(e(k|k), ub(k|k))
is available. Due to Ke(k + N|k) being suboptimal, we may safely derive

Los∗(k + 1|k + 1)− Los∗(k|k) ≤ Los f (k + 1|k)− Los∗(k|k) ≤ −L(e(k|k), ub(k|k))
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which can be obtain by using Lyapunov stability analysis of the stability of the system,
which is a closed-loop system.

3. Simulation Analysis

To ensure a precise comparison of the control performance between RHRL, Lyapunov-
based MPC (LMPC), and sliding mode control (SMC), the control variable method was
adopted using experimental parameters from [24,25]. In the simulations, all of the hydro-
dynamic parameters in the equations are based on the Falcon model [30].

The simulation results are presented in this section in showcasing the advantages of
the RHRL method. In addition, the operating environment is Matlab 2021b, and the core
is R7-5800H.

3.1. Parameter Selection

Two distinct desired trajectories are employed. Refer to the article of Li [31], where
one trajectory (Path I) is a typical sinusoidal path:

p(t) =
{

xd = 0.4t
yd = sin(0.4t)

(39)

The other trajectory, Path II, is based on [32] and is an S-shaped path:

p(t) =
{

χd = − sin(0.4t)
yd = sin(0.24t)

(40)

For the RHRL controller, the following parameters are utilized: the prediction horizon
is set such that T = 5δ, where δ = 0.1 [s] represents the time period; three matrices are
set for weighting as Q = diag(105, 105, 103, 102, 102, 102), R = diag(10−4, 10−4, 10−4, 10−4),
and P = diag(103, 103, 102, 10, 10). The gains of the control are Kp = Kd = diag(1, 1, 1).And
the l1 = l2 = 0.8.

In this section, the desired trajectory tracking simulation of a USV based on RHRL
will be executed as described to emphasize the feasibility and efficiency of RHRL algorithm
proposed earlier. The parameters for USV simulation are presented in Table 1.

Table 1. Parameters for USV simulation.

Parameters Value

M/kg (mass of USV) 37
D/m (distance from motors and center of mass) 0.7

K (viscosity coefficient) 0.1
I (moment of inertia) 0.2
Te (sampling period) 0.2

i (loop index) 1
Ucruise = U1 = U2 2

3.2. Tracking Performance

Both Figure 4a,c depict the tracking results for Path I. The USV trajectories are rep-
resented by the blue curve for the LMPC control method, the green curve for the SMC
controller, and the red curve for the USV RHRL controller, and the black curve illustrates
the sinusoidal trajectory, which is the desired trajectory. The results demonstrate that all
controllers are successful in guiding the USV along the desired trajectory, affirming the
stability of the closed loop. However, the RHRL method notably exhibits a considerably
accelerated convergence compared to the LMPC and SMC methods. This acceleration in
convergence is attributed to the selection of control gain matrices Kp and Kd, which are
small. The simulation results show that the improvement of tracking accuracy is due to
synchronous online incremental learning and deployment.
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(a)

(b) (c)

Figure 4. The USV trajectory tracking performance in Path I. (a) The USV trajectory for Path I. (b) The
thrust outputs for Path I. (c) The state trajectories for Path I.

Figure 4b illustrates the thrust output of each propeller. It is evident that at the
commencement of tracking, the RHRL controller maximally utilizes the onboard thrust
capability to achieve convergence as swiftly as possible. In essence, the state remains
within the prescribed boundary, aligning with expectations. It is also notable that RHRL
demonstrates superior adjustment capability and undergoes more rapid adjustments.

The outcomes for Path II are presented in Figure 5. Similarities arise from the observa-
tions: The USV exhibits quicker convergence to the desired trajectory through RHRL.
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(a)

(b) (c)

Figure 5. The USV trajectory tracking performance in Path II. (a) The USV trajectory for Path II.
(b) The thrust outputs for Path II. (c) The state trajectories for Path II.

3.3. Robustness Experiment with Disturbance

The incorporation of the receding horizon implementation introduces feedback into the
closed-loop system. One of the inherent advantages of the RHRL controller is its robustness
toward disturbances and emergencies, making it particularly well-suited for control systems
in marine and submarine environments.The RHRL’s robustness is thoroughly examined
and demonstrated through simulations. The definite simulated disturbance of magnitude
[100(N), 100(N), 0(Nm)]T was added. To provide a clearer visualization of the deviation
between the three algorithms, the reference trajectory, indicated by a black line, is also
included in this experiment.

In analyzing the outcomes shown from Figure 5 to Figure 6, it is evident that RHRL
tracking control consistently guides the USV to adequately converge toward the desired
trajectory. In contrast, substantial tracking errors are exhibited when conducting tracking
control using LMPC, the even greater errors are associated with SMC. Figures 6b and 7b
illustrate that the RHRL controller consistently provides feedback for responding within a
small time domain, ensuring minimal deviation.
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(a)

(b) (c)

Figure 6. The USV trajectory tracking performance in Path I with disturbance. (a) The USV trajectory
for Path I. (b) The thrust outputs for Path I. (c) The state trajectories for Path I.

The MSEs (mean square errors) for both paths are consolidated in Tables 2 and 3.
Generally, the MSEs are approximately 10 times smaller for RHRL compared to LMPC and
SMC, especially in the case of Path II. Indeed, it is widely acknowledged that smaller MSEs
correspond to reduced tracking error, thereby resulting in higher tracking accuracy; thus, it
is evident that the RHRL algorithm significantly enhances tracking accuracy.

Table 2. MSE for disturbances in Path I.

MSE LMPC RHRL SMC Improvement I Improvement II

x/m2 0.0518 0.0086 0.0732 83.3% 88.2%
y/m2 0.0286 0.0031 0.0391 89.3% 92.1%

ψ/rad2 0.3198 0.0358 0.4273 88.9% 91.6%
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(a)

(b) (c)

Figure 7. The USV trajectory tracking performance in Path II with disturbance. (a) The USV trajectory
for Path II. (b) The thrust outputs for Path II. (c) The state trajectories for Path II.

Table 3. MSE for disturbances in Path II.

MSE LMPC RHRL SMC Improvement I Improvement II

x/m2 0.1386 0.0158 0.1450 88.6% 89.1%
y/m2 0.0968 0.0079 0.1002 91.8% 92.1%

ψ/rad2 0.8663 0.3561 0.9984 58.8% 64.3%

In order to more objectively demonstrate the excellent performance of the algorithm,
we propose conducting quantitative analysis based on a new factor, namely thrust output.
It is known that a smaller average value of thrust corresponds to lower energy consumption
and enhanced cost-effectiveness. The specific data are shown in Tables 4 and 5. As can be
seen from the tables, the energy consumption of RHRL compared with LMPC is reduced
by 43.85% and 41.65% for Paths I and II, respectively. The data show that RHRL is much
more economical than LMPC. However, due to the algorithm characteristics, RHRL does
not have a significant advantage over SMC based on this analysis.
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Table 4. The average thrust output with disturbances in Path I.

TO LMPC RHRL SMC Improvement I Improvement II

|U1|/N 152.9 86.3 86.8 43.6% 0.57%
|U2|/N 154.2 86.5 87.6 43.9% 1.25%

Table 5. The average thrust output with disturbances in Path II.

TO LMPC RHRL SMC Improvement I Improvement II

|U1|/N 106.7 62.1 63.2 41.8% 1.74%
|U2|/N 109.2 63.9 64.6 41.5% 0.11%

The observed disparity stems from RHRL’s ability to learn and adapt online, utilizing
online optimization to dynamically adjust control gains and effectively compensate for in-
terference. Conversely, both LMPC and SMC lack this flexibility. Consequently, robustness
is significantly enhanced by RHRL control.

4. Conclusions

In this paper, a trajectory control algorithm for USV based on RHRL is introduced in
which reinforcement learning is seamlessly integrated with a rolling time domain optimiza-
tion mechanism. Thus, infinite time self-learning optimization problems are effectively
converted into a series of finite time optimization problems, which can then be solved using
an executive–evaluator algorithm. The incorporation of the rolling time domain mechanism
in this design approach significantly enhances the learning efficiency of the RL algorithm.
Moreover, compared to LMPC and SMC, the optimization method utilizing both effector
and evaluator contributes to enhanced computational efficiency. In diverging from the ma-
jority of existing finite time domain executive–evaluator learning algorithms, the proposed
RHRL employs a time-independent single-network structure. This innovative approach
serves to diminish the intricacy associated with network design and online computational
complexity. Moreover, we analyzed the stability of the closed-loop system theoretically.
Concerning scenarios involving significant errors in the learned approximation strategy,
we plan to conduct in-depth analysis and substantiation in our forthcoming research.
The results of simulations demonstrate that our algorithm is effective based on comparison
with typical traditional algorithms in simulation scenarios. The simulation results show
that RHRL control is superior to LMPC and SMC in terms of control performance and
computational efficiency while also being more economical than LMPC. RHRL control also
has lower sample complexity and higher learning efficiency.
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Abbreviations
The following abbreviations are used in this manuscript:

USV unmanned surface vehicle
RHRL receding horizon reinforcement learning
LMPC Lyapunov model predictive control
PID proportional integral derivative
MPCC model predictive controlling control
ADP approximate dynamic programming
KDHP kernel-based DHP
BF body frame
IF inertial frame
MSE mean square error
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