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Abstract: Transient interference often submerges the actual targets when employing over-the-horizon
radar (OTHR) to detect targets. In addition, modern OTHR needs to carry out multi-target detection
from sea to air, resulting in the sparse sampling of echo data. The sparse OTHR signal will raise serious
grating lobes using conventional methods and thus degrade target detection performance. This article
proposes a modified Alternating Direction Method of Multipliers (ADMM)-Net to reconstruct the
target and clutter spectrum of sparse OTHR signals so that target detection can be performed normally.
Firstly, transient interferences are identified based on the sparse basis representation and then excised.
Therefore, the processed signal can be seen as a sparse OTHR signal. By solving the Doppler sparsity-
constrained optimization with the trained network, the complete Doppler spectrum is reconstructed
effectively for target detection. Compared with traditional sparse solution methods, the presented
approach can balance the efficiency and accuracy of OTHR signal spectrum reconstruction. Both
simulation and real-measured OTHR data proved the proposed approach’s performance.

Keywords: OTHR; modified Alternating Direction Method of Multipliers (ADMM)-Net; spectrum
reconstruction; transient interference

1. Introduction

The over-the-horizon radar (OTHR) transmits high-frequency (HF) band (3–30 MHz)
signals, and radio signals propagated to the ionosphere are reflected to the ground to
detect targets. When compared to typical radar systems, it has advantages such as a great
observing range, broad coverage, and anti-concealed capacity [1–6]. Even though modern
OTHR systems have many benefits, they can have limitations. The OTHR signal is typically
contaminated by environmental noise and transient interferences such as air noise, me-
teor trail echoes, and other electromagnetic devices. Transient interference will submerge
potential targets because of its high energy and temporal transience. Generally speaking,
the transient interference can raise the noise level by up to 20 dB, observably lowering
the target detection ability. Furthermore, modern radar systems must be multi-mode
and multi-functional to track and detect several targets simultaneously. In this sense, the
time domain signal can be seen as a partly sampled signal. These sparse OTHR signals
will generate an exceedingly severe broadening of the clutter during coherent accumula-
tion. As a result, heightened grating lobes in the Doppler spectrum make determining
targets challenging.

Three types of techniques are known for eliminating transient interferences that
survive the beamforming stage: (1) conventional removal approaches with interference
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location and subsequent interpolation-based reconstruction; (2) subspace decomposition
interpolation-free methods; (3) simultaneous location and removal. The first method is
currently widely utilized, which detects and locates interference in the time domain; the
typical algorithms corresponding to the first technique can be referred to in [7,8]. The
foundations of the first type of technique are comparable: they determine interferences
and utilize sequential interpolation to rebuild lost signals. Following clutter filtering, one
noticeable strategy is threshold detection based on the high interference-to-noise ratio (INR)
technique [7–10]. However, when clutter and interference overlap, the performance of these
methods may degrade. As a result, a matrix-pencil strategy-based interference alleviation
method is suggested, which characterizes the interference by its characteristic spectrum dis-
similarity. A covariance matrix incorporating noncontaminated samples is developed [11]
based on the heightened correlation between clutter and target echoes. A Teager–Kaiser
energy operator has been demonstrated to help locate transient interference [12]. After
extracting the degraded samples, classic strategies employ interpolation to retrieve mis-
placed data. An approach to improvement known as weighted forward and backward
improvement is presented in [13]. Furthermore, rather than selecting the contaminated
samples to zero, a smoothing strategy is introduced to preserve most clutter components.
The second category of approaches deteriorates the signal into subspaces and determines
interference based on its short-term and high-energy elements. The typical algorithms
corresponding to the second type of technique can be referred to in [14]. In [14], an adaptive
Gaussian base illustration approach is presented. Following decomposition, the transient
interference is directly located based on its local properties. Since the approach requires
no interpolation, its actual effect is not affected by the length of coherent integration time.
As artificial intelligence approaches advance, several researchers attempt to detect and
revamp interference simultaneously. The typical algorithms corresponding to the third
type of technique can be referred to [15–17], which does not need to detect the location of
interferences. On the one hand, matrix decomposition algorithms distinguish transitory
interferences [15–17]. In [15], the low-rank Hankel matrix recovery technique is introduced
to suppress transient interference. Furthermore, [17] presents the Hankel matrix’s sparse
and low-rank decomposition. However, choosing the optimal values (e.g., regularization
parameters) for these approaches in practical applications is not trivial. On the other hand,
deep learning strategies are researched in [18] for transient interference mitigation. An a
priori-guided deep learning approach for a frequency-modulated continuous wave radar
is developed by treating the interference mitigation problem as a regression problem. In
addition, complex empirical mode decomposition [19] and space–time cascaded process-
ing [20] are also used to suppress transient interference. In [19], a transient interference
suppression approach based on temporal inverse windowing and the complex empirical
mode decomposition technique in the time domain is presented. The method is also useful
when the amplitude and the bandwidth of the transient interference are altered. In [20],
a space–time two-dimensional cascaded processing approach is presented for transient
interference suppression. The approach suggested in [20] can be utilized for transient
interference excision while the duration of the transient interference is a long-time coherent
processing interval (CPI) or short-time CPI. The performance of this approach is not affected
by the duration of transient interference. In general, the imperfections of most existing ap-
proaches can be separated into two categories. (1) The calculation is large for simultaneous
interference location and removal. Threshold detection approaches cannot be developed
for conventional separate processing. (2) The majority of existing approaches ignore the
sparse signal circumstances. In these cases, the discontinuous signal will seriously broaden
the clutter, ultimately degrading detection and reconstruction.

This article uses an integrated target and clutter spectrum recovery algorithm to per-
fect target detection for sparsely sampled OTHR signals of modern OTHR systems. A
modified Alternating Direction Method of Multipliers (ADMM)-Net based on [21,22] for
transient interference excision and spectrum reconstruction for sparse OTHR echoes is
presented to address these issues. An adaptive basis is built to describe the returned signal
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based on the characteristics of transient interferences. After decomposing the produced
echo into a sparse basis, signal reconstruction is carried out by filtering the most likely
transient interference elements. The ADMM [23–25] algorithm is a suboptimal optimization
tool for sparse representation problems [26,27]. However, iteration results in a considerable
computational cost. The selection of hyper-parameters has a notable impact on solution
preciseness. In this article, we expand each iteration of the classic ADMM method into a
layer of modified ADMM-Net. Adaptively, the hyper-parameters are learned from OTHR
data. In this manner, the reconstruction can be simplified as a forward calculation. Through
the enhanced ADMM-Net, it is feasible to identify and extract transient interference si-
multaneously. This method is unique in two ways: (1) A novel ADMM-Net-based deep
learning approach with excellent efficiency and precision is developed by adjusting the
transient interference removal problem into a sparse representation problem. (2) Because
of the sparse basis decomposition, the ADMM-Net can simultaneously detect interference,
remove interference, and rebuild the OTHR signal.

The remainder of the article is arranged as follows: Section 2 describes the sparse
signal model for the OTHR. Section 3 provides the modified ADMM-Net for transient
interference excision and spectrum reconstruction and provides a detailed explanation of
its construction. Section 4 involves the experiments using both simulated and real OTHR
data to verify the proposal’s effectiveness.

2. OTHR Signal Model

The time-domain signal the OTHR receives for a certain range cell is denoted as
f (t). In general, the received echo can be represented as an additive mixture of ocean-
ground clutter echo c(t), prospective target return r(t), transient interference i(t), and other
additive interference and noise n(t). As a result, the signal is defined as the following:

f (t) = c(t) + r(t) + i(t) + n(t) (1)

OTHR illuminates targets from the ionosphere and acquires a considerable amplitude
backscattering echo from the geography and sea, known as the clutter signal. Typically, the
spectrum of a clutter signal is concentrated within a few Doppler bins. The target signal
has a Doppler frequency corresponding to the target’s radial speed. The target signal can
be represented as the following:

r(t) =
N

∑
n=1

An · ej2π fnt (2)

where N means the number of moving targets in the range gate, An represents the scattering
amplitude, and fn is Doppler frequency of the nth moving target. Due to the radial motion
between targets and radar Line Of Sight (LOS), the target echoes raise a Doppler shift.
When the Doppler shift is significant adequately, the target signal spectrum is divided
from the clutter spectrum, resulting in an increased likelihood of target identification.
Nevertheless, the existence of transient interference will overwhelm the target signal.

Transient interference occurs only during a few recurrence periods, but its power is
frequently enormous enough to hide the target signal in the Doppler domain, making
detection challenging. Transient interference is usually in terms of short-duration features,
which can be represented as the following:

i(t) =
K

∑
k=1

Ak · rect
(

t − tk
Tk

)
· ej2π fkt (3)

Assume K transient interference signals exist. In Equation (3), Tk means the time of the
kth transient interference. tk and fk represent the locations in both the time and frequency
domains, which denote the corresponding values on the time and frequency axes; Ak is the
complex amplitude.
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Assume the OTHR observes ocean and ground targets simultaneously, allocating one
of four pulses to ground targets and three to ocean targets. Thus, intermittent sampling
occurs. The consequential sparse ocean signal is presented in Figure 1. Green samples are
available, but white samples are not because the OTHR switches LOS to view ground targets.
Therefore, the white boxes correspond to zero values, and the green boxes correspond to
non-zero values.
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The discontinuous signal can be represented as the following:

y
(
t′
)
= P f (t) (4)

where P means the observed downsampling matrix.

3. Modified ADMM-Net for Transient Interference Excision
3.1. RWB-SINC Model

Before detecting a target, traditional transient interference excision approaches filter
away transient interference in the time domain. While transient interference is removed
from the actual signal, it unavoidably results in an absent signal. Typical transient inter-
ference excision approaches damage the integrity of the OTHR spectrum and then restore
it using interpolation. When the acquired samples are insufficient, error reconstruction
is unavoidable. A novel transient interference excision approach is presented to avoid
such a procedure. The OTHR signal is decomposed into a collection of width-changeable
rectangle window basis–sinc (RWB-SINC). The related parameters of the basis are utilized
to determine transient interferences in others. For non-sparse y(t), it can be decomposed
into the following form:

y
(
t′
)
= P f (t) =

∞

∑
p=1

Bpϕp(t) + n(t) (5)

where Bp means the weight of the pth basis; ϕp(t) represents the spare rectangle window
base (RWB); and n(t) denotes the noise. Since the radar system has restricted bandwidth
and beam width, RWB-SINC is appropriate to represent transient interference, target
signals, and other clutter signals. The sparse RWB-SINC can be written as the following:

ϕp(t) = rect
(

t−tg
Tg

)
· ej2π fgt

F
{

ϕp(t)
}
= sinc

[
Tg

(
f − fg

)]
e−j2π f tg

(6)

where the sinc function can be written as sinc(x) = sin(πx)
πx , and the base changes with

parameter set Θg =
{

Tg, tg, fg
}

. Tg denotes the time of the signal. tg and fg represent
the locations in both the time and frequency domains, which denote the corresponding
values on the time and frequency axes. Obviously, this basis ϕp(t) is an RWB function in
the time domain and SINC-like in the frequency domain. The parameters help the base
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adjust to approximate the local behaviors of decomposed signals, allowing signals in the
time or frequency domains to be represented precisely. Subsequently, the weight Bp and
time width Tg can be utilized to recognize transient interference.

After utilizing the RWB model to characterize the original OTHR signal, a power
threshold is utilized to recognize transient interference from the evaluated components
with a temporary period. According to [7], it is indicated that a power threshold located in
the scope from

(
1.3∥Bϕsmall_deviation∥min

)2 to
(
2.5∥Bϕsmall_deviation∥min

)2 is the most appro-
priate empirical where

(
∥Bϕsmall_deviation∥min

)2 means the lowest power in the miniature
variation elements. After utilizing the RWB representative to describe the original sig-
nal, a power threshold is employed to recognize transient interference from the removed
components briefly.

3.2. Modified ADMM-Net for Spectrum Reconstruction

After transient interference excision utilizing the RWB-SINC model, the compressed
sensing method can reconstruct the spectrum from limited sampled OTHR signals. In
this article, a modified ADMM-Net is used to reconstruct the spectrum of the sparsely
sampled OTHR signals. The whole procedure is illustrated in Figure 2. Subsequently, we
will present the modified ADMM-Net.
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Figure 2. The transient interference excision and spectrum reconstruction process for a sparse OTHR
signal utilizing a modified ADMM-Net.

The spectrum reestablishment case can be identical to a sparse retrieval issue, such as
the following:

x̂ = argmin
x

∥y − ΦPx∥2
2 + ∑

k
λkg(ϕkx) (7)

where y denotes the sparsely sampled OTHR signals, x represents the original spectrum,
ΦP is the corresponding downsampling matrix, λk is the regularization parameter, and g(·)
means the regularization function. The parameter group Θg =

{
Tg, tg, fg

}
of Equation (6)

can be illustrated from the related dictionary ϕk.
The above optimization issue can be handled efficiently by employing the ADMM

algorithm. By presenting additional variables z = {z1, z2, · · · , zK}, Equation (7) is identical
to the following:

min
x,z

1
2
∥y − ΦPx∥2

2 + ∑
k

λkg(zk) s.t. zk = ϕkx (8)
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Its augmented Lagrange function can be rewritten as the following:

ζp(x, z, α) = 1
2∥y − ΦPx∥2

2 +
K
∑

k=1
λkg(zk)

−
K
∑

k=1
⟨αk, zk − ϕkx⟩+

K
∑

k=1

ρk
2 ∥zk − ϕkx∥2

2

(9)

where α = {αk} denotes the Lagrangian multiplier, ρ = {ρk} represents penalty parameters,
and βk = αk/ρk. The ADMM approach handled three subproblems alternatively as follows:

X(n) : x(n) = FH
(

PTP +
K
∑

k=1
ρkFϕH

k ϕkFH
)−1

·
[

PTy +
K
∑

k=1
ρkFϕH

k

(
z(n−1)

k − β
(n−1)
k

)]
,

Z(n) : z(n)k = S
(

ϕkx(n) + β
(n−1)
k ; λk/ρk

)
,

M(n) : β
(n)
k = β

(n−1)
k + ηk

(
ϕkx(n) − z(n)k

)
.

(10)

where x(n) can be usefully processed by fast Fourier transform (FFT); S(·) denotes a nonlin-
ear function; and ηk represents an update speed.

However, the classic ADMM approach requires a lot of work to select the nonlinear
function for the general regularization function. Moreover, adjusting the hyper-parameters is
not effortless. A modified deep ADMM-Net is developed to unfold the iterative processes to
an information discharge diagram to address such difficulties. After this, the network learns
the nonlinear function and optimizes parameters from the OTHR data, enhancing accuracy in
signal reestablishment. With the learned optimized parameters, the testing process forwards
the modified ADMM-Net without iterations and is computationally efficient.

Since we model the RWB-SINC extraction into a reestablished instance, the modified
ADMM-Net can be adjusted quickly and accurately to handle such an issue. We created a
fixed sampling matrix for the ADMM-Net by setting Tg = ∆T · m, tg = n∆t, fg = k∆ f .

The modified ADMM-Net is represented in Figure 3. In the structure, each step
in Equation (8) is described by a partition with three stages. The Lagrange multiplier
updating mechanism expressed in Equation (10) means the multiplier update layer. The
signal reestablish layer reconstructs the OTHR signal utilizing the procedure described
in Equation (10). The nonlinear layer reaches nonlinear modifications employing the
piecewise linear function S(·), which is set equality from −1 to 1. The piecewise linear
function S(·) is expressed as follows:

S
(

a;
{

pi, q(n)k,i

}Nc

i=1

)
=


a + q(n)k,1 − p1, a < p1

a + q(n)k,Nc
− pNc , a > pNc

q(n)k,i +
(a−pk)

(
q(n)k,i+1−q(n)k,i

)
pk+1−pk

, p1 ≤ a ≤ pNc

(11)

where i =
⌊

a−p1
p2−p1

⌋
, {pi}Nc

i=1 is set equality from −1 to 1, and
{

qk,i
}Nc

i=1 are the values
related to the k-th filter in the nth stage. Note that normalization should be carried out for
this module.

The modified ADMM-Net is designed by piling several partitions jointly, which learn
the subsequent optimized parameters in a network structure: ρk in the phase of signal
regeneration, qk,i in the phase of the nonlinear module, and ηk in the phase of multiplier
update. The dictionaries are constructed ahead of time, and there are K filters. In Equation (6),
the signal resolution is characterized as nonlinear channel Z with known regularization.
The optimized parameters are recovered from the signal utilizing an amplitude threshold
to the nonlinear maximum weight allocations.
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The thoroughly sampled OTHR signal spectrum is utilized as the label signal xgt, while
the partially sampled data y are employed as an input of the ADMM-Net. The training set
is created from numerous pairings of partially sampled OTHR data and original OTHR
signals. Normalized mean square error (NMSE) is selected as the loss function, which can
be represented as the following:

E(Θ) =
1

Xset
∑

(yt ,xdt
t )

√
∥x̂(y, Θ)− xgt∥2

2√
∥xgt∥2

2

(12)

where training set Xset is designed to include pairs of under-sampled OTHR signals and
the original spectrum. The optimized parameters are learned by minimizing Equation (12)
employing a golden section search (GSS) algorithm. The parameter ρk was originally set as
0.02, ηk = 0.6, and 51 points have a uniform value of 0.1 for the nonlinear function. These
parameters represent the initialization of network parameters, which will change based on
initial parameters in the network training process.

Back-propagation (BP) updates the optimized parameters using the modified ADMM-
Net. The ADMM-Net is trained through BP, as shown by the dotted line in Figure 3. The
gradients of each phase consist of the inputs and phase parameters. The value of the
network’s data must be complex to rebuild a signal from the complex OTHR data. The
network’s parameters are real values. Consequently, the gradients can be calculated as
the following:

∂E
∂I = real

(
∂E
∂O

)
real

(
∂O
∂I

)
+ j · imag

(
∂E
∂O

)
imag

(
∂O
∂I

)
∂E
∂Θ = real

(
∂E
∂O

)
· real

(
∂O
∂Θ

)
+ imag

(
∂E
∂O

)
· imag

(
∂O
∂Θ

) (13)

where I,O, and Θ are the input, output, and optimized parameters of the layer. real(·) and
imag(·) represent the real and imaginary parts of a function, respectively. Since the OTHR
signal has complex values, the value of the network’s data must be complex in order to
rebuild a signal. On the other hand, the parameters learned (such as step size, Lagrange
multiplier, etc.) from the modified ADMM-Net are real values. So, Equation (13) has two
forms when calculating the gradient. The first term corresponds to the loss function to
calculate the partial derivative of the complex data, and the second term corresponds to
the loss function to calculate the partial derivative of the real parameter.

After training the modified ADMM-Net, rerunning the forward process with the
learned optimized parameters can calculate the OTHR signal rebuild and signal decom-
position. Moreover, changing the input matrix permits the ADMM-Net to perform with
different sampling matrices.

4. Experimental Results and Analysis

This section displays experimental results to illustrate our proposed method’s transient
interference excision and spectrum reconstructive capability.
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4.1. Simulated Experiments

In this subsection, we first use simulated data to validate the Doppler spectrum
reconstruction method for sparse OTHR signals with transient interferences. For clarity,
the simulated parameters are listed in Table 1. For reference, the time-domain signal and
its spectrum without interference are shown in Figure 4a,b. Afterward, an interference
is added to the signal to generate a contaminated signal with a signal-to-interference
ratio (SIR) of −40 dB. The signal-to-clutter ratio (SCR) is −20 dB. As shown in Figure 5,
the target is submerged by the interference in the spectrum domain, resulting in the
dramatic performance degradation of target detection. The received signal is sparsely
sampled because of the multi-function working mode of the OTHR. Here, we generate
discontinuously sampled OTHR signals by regularly removing one from four pulses. The
time and spectrum of sparse OTHR signals are displayed in Figure 6. The discontinuous
sampling further degrades the SIR. It is hard to discriminate the target from the clutter,
making target detection impossible.

Table 1. Simulated parameters.

Parameter Value Parameter Value

Clutter Doppler bandwidth 6 Hz PRF 100 HZ
Doppler shift of target 9.7656 Hz Azimuth Cell 1024
Signal-to-clutter ratio −20 dB SNR 10 dB

Signal-to-interference ratio −40 dB
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To remove the transient interference and recover the signal spectrum simultaneously,
our proposed modified ADMM-Net is conducted to validate its effectiveness.

First, the ADMM-Net is trained on the constructed training data set. This training
set includes several OTHR simulation signals with transient interference. Due to the lack
of an open, sparsely sampled OTHR data set, we generate corresponding data sets at
sparse sampling rates (the sampling rate represents the length of the effective signal in the
total signal) of 80%, 75%, and 66.66%, respectively. Each sparse rate includes 30 sets of
spectrum data and subsampled OTHR signals with transient interference, 25 groups used
for training and 5 for testing. In the network training process, the loss function change
is shown in Figure 7. After 30 epochs, the training loss converges to 0.059. Then, the
reconstructed signal can be generated by replacing the subsampling matrix P, as shown in
Figure 8. For comparison, the results of Bayesian CS [28,29], orthogonal matching pursuit
(OMP) [30], and the traditional ADMM algorithm (30 iterations) [25] are also shown. The
proposal can recover the spectrum precisely and rapidly. By transforming the iteration with
traditional recovery, the reconstruction is accomplished by forwarding the operation with
automatically learned parameters, which can promise a high and precise signal recovery.
Compared with other methods, it is superior in precision and time efficiency.
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4.2. Comparison Experiments

Several metrics are defined to provide precise results for a quantitative comparison
of the proposal with available methods. The similarity of the reconstructed signal and
the reference are evaluated by the normalized root mean square error (NRMSE). The
signal-to-clutter ratio (SCR) is also computed to describe the performance in subsequent
detection. The assessment of the time consumption of each signal is carried out to evaluate
their efficiency.

In this subsection, to assess the effect of the sparsity on proposals, different sampling
ratio cases are generated for comparison. The corresponding network must be trained
according to the sparse rate for different sparse sampled data. Here, network training is
carried out at sampling rates of 80%, 75%, and 66.66%. The signal-to-clutter ratio (SCR)
of the original spectrum is −20 dB. The results are listed in Table 2. Although the OMP
can reach a high precision, the time consumption is beyond acceptance. Compared with
other traditional iteration methods except OMP, the proposed modified ADMM-Net can
achieve the most efficient time consumption while having high reconstruction capability.
The forward operation of the modified ADMM-Net is only equal to six iterations of the
traditional ADMM approach. Thus, the calculation speed has been improved.

Table 2. The effect of the sparsity ratio.

Sparsity Ratio 80% 75% 66.66% Time
Consumption

(CPU)Metric NRMSE SCR (dB) NRMSE SCR (dB) NRMSE SCR (dB)

ADMM-Net 0.0678 −20.96 0.0575 −20.87 0.0652 −21.09 0.319 s
ADMM 0.0783 −20.76 0.0639 −20.46 0.0629 −20.96 0.514 s

Bayesian CS 0.0778 −20.66 0.0755 −20.89 0.0905 −20.95 6.49 s
OMP 0.0167 −20.06 0.0106 −20.03 0.0905 −20.05 12.6 s

Experiments with different SCRs were carried out to study further the influence of SCR
on the proposed method’s spectrum recovery. Figure 9 shows the results. The modified
ADMM-Net can achieve better OTHR signal spectrum recovery faster than the traditional
method. Although OMP has the best effect, the calculation required for the OMP method is
too large and unsuitable for practical application.

4.3. Real Data Experiments

In this subsection, we testify to the performance of CS-based spectrum reconstruction
with partially measured data. The measured data were obtained with an over-the-horizon
radar (OTHR) in China on 11 December 2009; detailed information on the system can be
found in [6]. The measured data were processed using the previously trained network,
while the sparse sampling rate was identical. In our experiment, the data used contained
1024 echo cells.
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Only one range-gate data point is used to simulate discontinuous samples from
multimode operation. We generate discontinuous sampled signals by removing one from
four pulses regularly. Due to the missing partial sample, serious grating lobes appear in
the Doppler spectrum, as shown in Figure 10b, which prevents successful target detection
in the Doppler domain. Its time-domain envelope and Doppler spectrum are shown in
Figures 10a and 10b, respectively.
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Figure 10. Subsampled data from real OTHR data. (a) Time-domain signal. (b) Doppler spectrum.

By applying the trained ADMM-Net-based spectrum reconstruction method to the
discontinuous signal, we can recover the full Doppler spectrum with high quality. In
Figure 11, we compare the proposal and traditional methods in the Doppler domain. The
proposal can achieve the perfect recovery of a complete signal without missing a quarter of
the whole samples. Compared with other methods, the proposal can achieve the highest
SCR (−15.36 dB) for perfect target detection.
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5. Conclusions

This article presents a modified ADMM-Net to reconstruct the target and clutter
spectrum from the sparse OTHR signal. First, the transient interferences are identified and
excised based on the sparse basis representation. The modified ADMM-Net is produced by
unrolling the iterations of ADMM into a data flow map. The trained network can solve
the spectrum reconstruction issue of the sparse OTHR signal. Thus, the complete Doppler
spectrum is obtained, which can be used for target detection. The proposed approach
can balance the efficiency and accuracy of OTHR signal spectrum reconstruction. Both
simulation and real data experiments validate the effectiveness.
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