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Abstract: Transformer-based models have gained popularity in the field of natural language pro-
cessing (NLP) and are extensively utilized in computer vision tasks and multi-modal models such
as GPT4. This paper presents a novel method to enhance the explainability of transformer-based
image classification models. Our method aims to improve trust in classification results and empower
users to gain a deeper understanding of the model for downstream tasks by providing visualizations
of class-specific maps. We introduce two modules: the “Relationship Weighted Out” and the “Cut”
modules. The “Relationship Weighted Out” module focuses on extracting class-specific information
from intermediate layers, enabling us to highlight relevant features. Additionally, the “Cut” module
performs fine-grained feature decomposition, taking into account factors such as position, texture,
and color. By integrating these modules, we generate dense class-specific visual explainability maps.
We validate our method with extensive qualitative and quantitative experiments on the ImageNet
dataset. Furthermore, we conduct a large number of experiments on the LRN dataset, which is
specifically designed for automatic driving danger alerts, to evaluate the explainability of our method
in scenarios with complex backgrounds. The results demonstrate a significant improvement over
previous methods. Moreover, we conduct ablation experiments to validate the effectiveness of each
module. Through these experiments, we are able to confirm the respective contributions of each
module, thus solidifying the overall effectiveness of our proposed approach.

Keywords: visual explanation; vision transformer; post hoc explanation; class-specific explanation

1. Introduction

Explainable machine learning has garnered significant attention in recent years. It
refers to the ability of a machine learning model to provide an easily understandable
causal relationship that explains the process of model prediction, thereby enhancing human
confidence and facilitating model debugging for downstream tasks [1,2].

Explainability in deep learning models can be categorized into two main types [2].
The first category is intrinsic interpretability, which includes models with relatively simple
structures like decision trees [3], logistic regression [4], and linear regression [5]. These
models have transparent internal logic structures that can be readily understood during the
model design process. However, their accuracy is generally lower compared to mainstream
deep learning models. The second category is post hoc explainability, which involves
employing various techniques to extract learned information from trained black box models,
thereby enhancing their explainability. This type of explainability is particularly relevant for
models with complex structures, such as convolutional neural networks (CNNs) [6–10] and
vision transformers (ViTs) [11–17]. These models typically consist of billions of parameters,
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making it difficult to discern the direct causal relationships between the outputs and the
internal structure of the model.

In the field of computer vision, a large amount of work has focused on increasing the
explainability of CNNs by post hoc visualization of discriminative regions associated with
targets in input images.

The emergence of vision transformers (ViTs) has revolutionized computer vision.
Transformer-based methods such as Swin-transformer [15] and PVT [14] have surpassed
traditional techniques and have achieved state-of-the-art (SOTA) performance in various
computer vision tasks, including image classification, object detection, and semantic seg-
mentation. Moreover, transformers have played a critical role in advancing multi-modal
models such as CLIP [18], ALBEF [19], BLIP [20], and GLIP [21]. Additionally, transformers
have been instrumental in the development of large language models (LLMs) [22], which
have gained widespread popularity. However, as the application of transformers expands,
the need for explainability methods becomes crucial. These methods enhance users’ confi-
dence in model results and facilitate the debugging process, ultimately leading to improved
performance in downstream tasks. Exploring explainability methods for transformers is a
promising avenue to refine and optimize the performance of these models.

Despite these advancements, there are few contributions exploring the explainability
of the ViT series of models. Most existing approaches only consider the direct use of
the raw-attention map corresponding to the class token in the multi-head self-attention
(MHSA) module to directly generate explainability maps in ViT [23–25]. However, these
methods often adopt a class-agnostic approach, and the generated explainability maps
tend to emphasize salient features while containing substantial noise. To address the noise
problem associated with explainability methods based on the self-attention map, Abnar et al.
proposed a method called attention rollout [26]. Although this approach improves the
noise problem of raw attention to some extent, it often struggles to distinguish between
true foreground and background regions.

Another approach was proposed by Chefer et al., it utilizes the deep Taylor decom-
position principle to assign relevance and improve the problem mentioned above [27].
By combining the information from back-propagation gradients, this method achieves
class-specific explainability. However, the presence of activation functions in the back-
propagation process can lead to gradient vanishing and other issues, resulting in sparse
and noisy explainability feature maps as outputs.

In our research, we propose a post hoc visualization explainability method called
relationship weighted out and cut (R-Cut) with the objective of generating dense, low-noise,
and class-specific explainability images for visual domain transformers and their derivative
models. R-Cut consists of a two-stage extraction method, as illustrated in Figure 1. In the
first stage, we propose a module called “Relationship Weighted Out (R-Out)” to extract
the class-specific semantic features from the intermediate vectors. In the second stage, we
propose a feature decomposition technique called “Cut” to decompose the class-specific
semantic features into fine-grained foreground and background components.

R-Out

“elephant”

“zebra”

Classification
results

Explainability
maps

Input
image

Cut

Cut

Figure 1. Overview of our method. Our method can generate a class-specific post hoc explainability
map for different results after the “R-Out” and “Cut” steps.
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To validate the effectiveness of our method, we conducted qualitative and quantitative
experiments on the widely used ImageNet1K dataset [28] and compared the results with
those of other SOTA methods. We also conducted experiments on the LRN dataset [29]
designed for automated driving hazard alerts, which we created to test the explainability
of our method in the presence of complex backgrounds. Furthermore, we performed
ablation experiments to verify the effectiveness of the different modules proposed in our
approach. Moreover, we conducted comparative experiments on various hyperparameters
to validate their effectiveness. These comprehensive experiments aimed to provide evidence
supporting the superiority of our method compared to existing approaches in terms of
performance on standard benchmarks and its ability to handle complex scenarios.

This paper makes three main contributions:

1. We propose a dense, low-noise, class-specific post hoc visualization explainability
method for transformer-based models and their derivative models.

2. We conducted various explainability tests on the largest image classification dataset
in the world, demonstrating the superiority of our approach.

3. We conducted extensive explainability experiments to validate the effectiveness of
the proposed method in the context of autonomous driving scenarios with complex
backgrounds. This contribution highlights the practical application of the method in
real-world scenarios and demonstrates its ability to provide meaningful explanations
even in challenging and intricate environments.

2. Related Work
2.1. CNN Explainability

In the field of computer vision, specifically for CNNs, a significant amount of research
has focused on improving the interpretability of neural network models by generating
post hoc visualizations of discriminative regions related to targets in input images [30–37].
There are three main groups of post hoc visualization methods that aim to enhance the
explainability of neural network models in computer vision: CAM-based approaches,
gradient-based approaches, and perturbation-based methods.

CAM-based approaches generate visual interpretation maps by linearly weighting
the combination of activation maps from the last convolutional layer [30,31,33,34]. These
approaches often have specific requirements for the network structure, such as the presence
of a global pooling layer after the convolutional layer.

Gradient-based approaches [31,33,35,37] identify regions in input images that con-
tribute most to the network’s output by back-propagating the gradient of the target category
to the input image. However, this approach can suffer from gradient saturation and gra-
dient vanishing issues due to the activation function, leading to noise in the generated
gradient map. Additionally, Wang et al. [38] have demonstrated that the gradient-map-
based approach can be susceptible to a false-confidence issue.

Perturbation-based approaches [39–42] determine the discriminative regions associ-
ated with the target by perturbing the input image and observing the change in confidence
in the corresponding prediction. This approach provides more intuitive and easily under-
standable explainability maps. However, these methods often require the manual design of
perturbation maps.

2.2. ViT Explainability

Currently, there remain few studies focusing on the explainability of methods belong-
ing to the ViT family. Some approaches have been proposed to generate explainability
maps directly from the raw-attention map corresponding to the cls token [23–25]. These
approaches involve recording the self-attention maps generated by the self-attention heads
of the last block in the ViT model during inference. The final explainability attention map
can be obtained by averaging the attention vectors corresponding to the cls token in these
self-attention maps. This explainability method is class-agnostic—similar to a saliency
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map—and is able to highlight several objects at the same time, even if they belong to
different classes in the input.

However, the main challenge of these methods is the significant differences between
the attention vectors of each head, which can introduce noise when taking the mean of
the self-attention maps. Abnar et al. [26] proposed a method called attention rollout to
solve the problem. They argued that in transformer-based models, the self-attention results
need to be passed through a skip connection. Treating the raw-attention map as the sole
source of explainable information would neglect the information processed during the skip
connection [43].

Furthermore, relying solely on observing the raw-attention output of a single layer may
not yield optimal results. Abnar et al. also proposed a linear combination of attentions to
address this problem. Although this approach improves upon the noise problem associated
with raw attention, it still faces challenges in accurately distinguishing between foreground
and background regions.

Chefer et al. [27] proposed a novel explainability method that assigns relevance based
on the deep Taylor decomposition principle. This method uses layer-wise relevance propa-
gation (LRP) [44] to calculate the scores of each attention head related to the class token in
each block. Combining the gradient information of the back-propagation gradient makes
this method a class-specific explainability method. However, due to the existence of activa-
tion functions, gradients in the back-propagation process may suffer from issues such as
gradient vanishing, resulting in sparse and noisy explainability maps as outputs.

3. Methods

This section provides an overview of the vision transformer and then introduces our
proposed R-Cut method.

3.1. Vision Transformer (ViT)

The ViT model is a popular approach for image classification tasks that uses a
transformer-based architecture. Given an input image X with resolution A × B. The
network first splits X into several non-overlapping patches. If the size of each patch is
p × p, the total number of patches will be S = A×B

p×p . Each patch is then flattened and

linearly embedded into a token vector t0
s ∈ R1×D, s ∈ [1, S], where D is the dimension of

each token vector.
To enable the network to learn global features, a randomly initialized class token

t0
cls ∈ R1×D is added to the tokens. Finally, the position embeddings are added to each of

the tokens to form the input of the transformer block. If there are L cascaded transformer
blocks, the input to each transformer block would be tl ∈ R(S+1)×D, where l = 1, · · · , L.
In the vision transformer (ViT) architecture, each transformer block follows a specific
arrangement of components. These components include layer normalization, an MHSA,
a skip connection, and a multilayer perceptron layer (MLP). The input and output of each
block consists of (S + 1) discrete patch tokens; however, each attention head only processes
subspace tokens t; if the number of heads in the MHSA is H, the dimension of t should be
Dh = D/H and t ∈ R(S+1)×Dh .

The MHSA of each layer Al
h is calculated as follows:

Al
h = Softmax

(
fq(t) fk(t)T

√
d

)
, (1)

Ol
h = Al

h · fv(t), (2)

where fq, fk, and fv are linear transformation layers in the l-th block. Al
h ∈ R(S+1)×(S+1)

is the self-attention map of the input tokens from the h-th head in the l-th layer block.
Ol

h ∈ R(S+1)×Dh is the output of the head. The outputs Ol
h of all heads are concatenated

and fed into an MLP block.
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From the last transformer block, the output class token tL
cls is used to obtain the

category probability vector ViT(X); if there are C categories, ViT(X) ∈ R1×C.
The vector ViT(X) is generated as follows:

ViT(X) = Softmax
(

MLP
(

tL
cls

))
, (3)

where MLP denotes the classification head implemented by the MLP block. The corre-
sponding class can be selected by taking the maximum value in the generated vector
ViT(X).

3.2. Relationship Weighted Out and Cut

The method consists of two main stages, as depicted in Figure 2. In the first stage,
called “Relationship Weighted Out”, the objective is to extract class-aware semantic infor-
mation about the output results from the discrete intermediate tokens. The second stage,
comprising fine-grained feature decomposition and named “Cut”, involves utilizing the
class-specific intermediate vectors obtained in the first stage to construct a novel graph.
Subsequently, graph cut operations are performed on the graph to derive foreground infor-
mation that corresponds to the target. By leveraging these operations, the method generates
a visual explainability map specific to the class based on the foreground information. The
primary computational process is represented as follows:

1. Generate alternative activation maps M from discrete tokens tL;
2. Generate perturbation maps P from alternative activation maps M and input image X;
3. Calculate the class-aware weighting scores w based on perturbation maps P;
4. Extract class-aware patch tokens tc based on the discrete tokens tL and class-aware

weighting scores w;
5. Construct a class-aware weighted graph G based on the class-aware patch tokens tc;
6. Get the class-aware solution eigenvector y1 of the class-aware weighted graph G;
7. Generate the explainability visualization map LR−Cut by partitioning the class-aware

solution eigenvector y1.
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Figure 2. Overall architecture for our method. First, we extract tL
S from ViT. Next, we use our “R-Out”

module to extract class-aware token tc. We then employ the “Cut” module for fine-grained feature
decomposition. By combining these modules, we obtain class-specific explainability maps.

3.2.1. Relationship Weighted Out

In this stage, we extract the class-aware semantic information related to the output
results from the discrete patch tokens. Since directly extracting class-aware semantic
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information from the discrete tokens is challenging, we propose a perturbation-map-based
approach to obtain the class-aware weight information. This approach consists of two main
parts: generating alternative activation maps M and calculating the class-aware weighting
scores w to extract class-aware patch tokens tc.

Generate alternative activation maps M: As discussed in Section 3.1, ViT utilizes
discrete tokens to convey information. The intermediate discrete tokens involved in the
forward transmission process carry semantic information of the corresponding category
as the network propagates category information during forward propagation. However,
within each transformer block, there are multiple intermediate tokens. To address the
interference caused by the skip connection, we select the output of the normalization
layer after the skip connection in the last block to extract semantic information. We firstly
generate the patch tokens tL

S by removing the last layer’s class token tL
cls from the output

of the last layer’s normalization tL ∈ R(S+1)×D. Then, the alternative activation maps M
will be generated from patch tokens tL

S as follows:

M = up(
reshape(tL

S )− min(reshape(tL
S ))

max(reshape(tL
S ))− min(reshape(tL

S ))
), (4)

where reshape(·) denotes a deserialization operation that can regroup the discrete patch
tokens into a matrix map format, up(·) represents bi-linear interpolation for up-sampling
with a scale factor of p, and M ∈ R(A×B)×D.

Generate perturbation maps P: In this method, we consider M as D heat maps and
perturb the original input image X through those heat maps to obtain perturbation maps
P ∈ R((A×B×3)×D). The formula is shown as follows:

P = M ⊙ X, (5)

where ⊙ denotes element-wise multiplication.
Calculate the class-aware weighting scores w: To compute the weight scores w for each

perturbation map Pi, we input both the perturbation map matrix P and the original image
X into the pre-trained ViT model. Then, we use the similarity between the output vectors
to compute the weight scores w for each perturbation map Pi. A higher similarity between
the output vectors indicates a stronger contribution of the corresponding perturbation map
to the target class, which is calculated as follows:

wi =
∑C

j=1
(
ViT(Pi)j × ViT(X)j

)√
∑C

j=1 ViT(Pi)
2
j ×

√
∑C

j=1 ViT(X)2
j

, (6)

where w is a row vector of size D, D is the number of perturbation maps, ViT(·) denotes
the output vector of the ViT model, and C represents the length of the output vector.

Extracte class-aware patch tokens tc: Since the perturbation maps P are generated
based on the original patch tokens tL

S , the weight of each dimension of P regarding the
original output result is equivalent to the weight of each dimension of the patch tokens
tL

S regarding the original output result. Therefore, we can extract tc ∈ RS×D using the
following formula:

tc
ij = wi × tL

Sij. (7)

3.2.2. Fine-Grained Feature Decomposition

In this section, we discuss how to finely partition the foreground and background
information related to the category from the discrete tokens tc obtained from Section 3.2.1.
In our previous research [29], we experimented with a simple method of summing all the
dimensions of tc and reshaping the result to obtain the explainability feature map. The
result shows that even when using such a simple method, we can also get a good result.
However, this straightforward method does not consider the spatial position relationship of
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the discrete patch tokens, and it may not effectively address the issue of local discontinuities
in the generated explainability map. To overcome these limitations and achieve more precise
foreground–background partitioning, we propose a new method based on the graph cut
technique discussed in Appendix B.

Firstly, we generate a class-aware weighted graph G = (V , e) using the class-aware
patch tokens tc. This graph considers both the direct relationship between nodes and the
positional embedding relationship between the patch tokens. Next, we perform graph cut
operations on this weighted graph to decompose it and obtain the corresponding class-
specific eigenvector y1. By leveraging the class-specific eigenvector y1, we can identify the
foreground vector yc

1 associated with the target class.
Construct a class-aware weighted graph G: We generate the corresponding graph

based on the class-aware patch tokens tc. Specifically, we select the S class-aware patch
token vectors (tc

s ∈ R1×D, s = 1, · · · , S) in tc as the S nodes in the graph, resulting in V .
Next, we define the edge eij between two tokens Vi and Vj as the cosine similarity between
them, incorporating both semantic and spatial information. By computing these similarities,
we can obtain e. The formula for calculating the edge weights is as follows:

eij =

 1, if ∑D
k=1 (Vik × Vjk)√

∑D
k=1 V2

ik ×
√

∑D
k=1 V2

jk

≥ φ

0, else
(8)

where φ is a settable hyperparameter representing a constraint on the edges; we consider
two nodes to be related only if the similarity between them exceeds φ.

Get the eigenvector y1: To obtain the eigenvector y1, we apply the normalized cut
(Ncut) method described in Appendix B to partition the class-aware weighted graph G. This
involves computing the generalized eigensystem (K − e)y = λKy of G and extracting the
second-smallest eigenvector y1 ∈ R1×S. Appendix B provides a proof that the eigenvector
y1 is the Ncut of the class-aware solution of G, which is the class-aware vector we need
corresponding to the target class.

Generate the explainability visualization map LR−Cut by partitioning the class-specific
foreground and background information: To achieve this, we determine the splitting point

by taking the mean value ȳ1 =
∑S

i yi
1

S of the continuous eigenvector y1. Then, we define the
foreground set as f = {nodei|yi

1 ≥ ȳ1} and the background set as b = {nodei|yi
1 < ȳ1}.

To eliminate the interference brought by the background information, we set all
nodes in the background set to 0. The class-specific vector yc

1 is obtained by keeping the
information of the foreground set unchanged.

Finally, we can obtain our class-specific explainability visualization map LR−Cut
as follows:

LR−Cut = λ ∗ 255 ∗ up(reshape(yc
1)) + (1 − λ) ∗ X. (9)

where λ represents the weight of the weighted-add, and ∗ represents multiplication.

4. Experiments
4.1. Experiment Setting

To verify the effectiveness of our class-specific post hoc visualization explainability
method, we conducted three kinds of evaluation experiments (i.e., the point game [45],
weakly supervised localization, and the perturbation test) with four SOTA explainabil-
ity methods on ImageNet1K [28], i.e., raw-attention [23–25], rollout [26], grad-cam [31],
and Hila’s method [27]. These methods belong to three different architectures: raw-
attention and rollout are attention-based, grad-cam is gradient-based, and Hila’s method is
a combination of attention and gradient-based approaches. We also performed three kinds
of ablation experiments to verify the effectiveness of the different modules proposed in
our methods. To further validate the applicability of our approach in real-world, complex
scenarios, we also tested our method on the LRN dataset, which focuses on autonomous
driving risk warning [29]. Lastly, we performed multiple sets of hyperparameter compar-
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ison experiments to ensure the rationality of the designed hyperparameters throughout
our experiments.

4.1.1. Datasets

We evaluated the proposed method (R-Cut) on the ImageNet1k [28] and LRN [29]
datasets to verify the accuracy and effectiveness at generating explainability maps. Each
of these two datasets brings different explainability map challenges. Figure 3 showcases
samples from the ImageNet1K and LRN datasets.

ImageNet1K

LRN

Watch out for the pedestrian ahead left Watch out for the pedestrian ahead right

Snowbirds BulbulsLabel:

Label:

Figure 3. Dataset examples. Figure displays two closely related bird species from the ImageNet1K
dataset and two closely related categories of hazardous pedestrians from the LRN dataset.

ImageNet1k contains 1000 categories of image information, 1.28 million data points
for training, and 50,000 datasets for variation. The 1000 object categories in ImageNet1k
include common object classes found in daily life as well as relatively similar inter-class
categories with small differences, such as numerous bird families and canines. This dataset
contains many single-class but multi-object images in the validation set, which causes
missed-detection problems for the generated explainability images. The biggest challenge
for the fine-grained classes is the tendency of explainability maps to focus on discriminative
regions due to the small inter-class differences. For example, in the case of birds like
snowbirds and bulbuls, which differ mainly in the shape of their beaks, the explainability
maps tend to cluster around the beak area.

The LRN dataset is a linguistic warning dataset we created for risk scenes in au-
tonomous driving scenarios [29]. This dataset contains a total of 34,488 images and 10 lin-
guistic cue categories. Each risk cue category consists of the type of risk object “car, cyclist,
and pedestrian” and the general orientation information “ahead, ahead right, and ahead
left” (e.g., “watch out for the pedestrian ahead right”). Therefore, even the same risk
object in this dataset can be a different category depending on its location. The main
challenges of this dataset are the complexity of the road scenarios and the influence of
location information on the explainability maps.

4.1.2. Implementation Details

In our experiments, we used the same pre-trained ViT base model as the backbone for
our explainability map tests to ensure fairness. Given the ViT method’s previous success
in image classification, we opted to maintain consistency with the hyperparameters used
in ViT experiments. The chosen hyperparameters include: the input X is a three-channel
224 × 224 RGB image, each patch size of the patch embedding is 16 × 16, the number of
heads in the MHSA layer is 12, and the number of transformer blocks is also 12. And
we take 0.05 as the similarity threshold φ for constructing the graph. To ensure robust
evaluation, we shuffle the dataset and then divide it into training, validation, and test sets
at a 70:15:15 ratio for training and testing purposes. During our experiments, our method
is numerically compared with previous SOTA methods. In subsequent tables, underlined
numbers denote figures for comparison with our method. All our experiments are trained
and tested on an RTX A6000 GPU with a batch size of 256 and 200 epochs of iterations
during training.
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4.2. Evaluation Matrices

For the quantitative experiments, we employed three commonly used evaluation
metrics to assess the quality of explainability: the point game, IoU (intersection over union),
and perturbation test.

4.2.1. The Point Game Test

As described in [45], this method evaluates the correctness of the explainability map
by checking whether the highest pixel value in the generated explainability image falls
within the ground truth (GT) bounding box of the target object. If the highest pixel value is
located within the GT bounding box, this indicates that the network’s explainability map
correctly explains the object category.

The formula for this metric can be expressed as:

PG =
1
N

N

∑
i=1

[ f (xi) = yi]max j ∈ GTi Mij. (10)

where N represents the total number of samples, xi refers to the input image of the i-th
sample, yi denotes the ground truth label of the target category, f is the trained classification
model, Mij represents the pixel value at position j in the generated explainability image,
and GTi is the ground truth bounding box for the target category yi.

The indicator function [ f (xi) = yi] is equal to 1 when the predicted label of the model f
is the same as the true label yi; otherwise, it is equal to 0. Therefore, this metric is a weighted
average of classification accuracy and explainability, where the weight of explainability is
determined by the highest pixel value Mij.

4.2.2. The IoU Test

In the experiment on weakly supervised localization IoU conducted by [46], we
followed a specific procedure. Firstly, the generated explainability feature map was up-
sampled to match the size of the original image. Next, we set the threshold thres = 0.2 to
discard some background regions. Subsequently, the region within the explainability map
was utilized to generate the predicted bounding box A by enclosing it with the minimum
outer rectangle. Lastly, we employed intersection over union (IoU) as the evaluation metric
to assess the quality of object-level localization achieved by the explainability feature map.

The formula for this metric can be expressed as:

IoU =
A ∩ B
A ∪ B

. (11)

where B is the GT bounding box.

4.2.3. The Perturbation Test

This test consists of two experiments: most relevant first perturbation (MRFP) and
least relevant first perturbation (LRFP) as described by Hila’s method [27].

In MRFP, we begin by masking off the most relevant pixel part of the explainability
map and generate the corresponding perturbation map. We then input the perturbation
map into the trained model and observe the statistical change in the corresponding target’s
confidence. A larger confidence change indicates better performance.

In LRFP, we preferentially mask off the most irrelevant part of the explainability
map. We hope that the change in confidence is as small as possible because, in theory,
the removed part does not belong to the target.

Throughout our experiments, we incrementally increase the proportion of masked
pixels from 10% to 90%. We calculate the mean value of the confidence change as the actual
confidence change value.
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4.3. Results
4.3.1. Performance on ImageNet1K

This section encompasses various types of qualitative and quantitative analysis on the
ImageNet1K dataset. For our qualitative analysis, we conducted post hoc explainability
visualization experiments on single-class single-object images, single-class multi-object
images, multi-class single-object images, and multi-class multi-object images. Regard-
ing our quantitative analysis, we employed three different tests: the point game, IoU,
and perturbation test.

Figure 4 presents the performance of our R-Cut method and other methods on the
Imagenet1k dataset for single-class single-object images, single-class multi-object images,
and fine-grained images (the bird family) with small inter-class differences. The explain-
ability visualization experiments were conducted separately for regular-shaped objects and
irregularly shaped objects in order to ensure fairness.

(a)

(e)

(b)

(c)

(d)

(f)

Input Raw-attention Rollout Grad-cam Hila R-Cut

Figure 4. Single-class explainability visualization test for ImageNet1k: (a–c) represent the normal cat-
egories, (d–f) represent the fine-grained categories, and (c,f) represent the explainability visualization
results for single-class multi-object images.

As shown in Figure 4, the raw-attention and rollout methods exhibit more background
noise, while the grad-cam method accurately locates the object but only highlights the
discriminative regions. Hila’s method is relatively effective at activating the corresponding
regions but still exhibits local discontinuities in the explainability map. In contrast, our
R-Cut method eliminates the background noise and mitigates the discriminative region
problem in fine-grained categories (d) and (e). Moreover, our method accurately identifies
all objects in single-class multi-object images (c) and (f). To demonstrate that our method is
a class-specific approach, we conducted comparative explainability visualization analysis
on multi-classes images, such as the classic “dog and cat” and “elephant and zebra”. The
purpose is to show different corresponding explainability visualizations for different object
categories within the same image.
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As shown in Figure 5, the raw-attention method and rollout method are class-agnostic
methods, while the grad-cam method and Hila’s method can visualize different classes of
objects but suffer from background noise interference and local discontinuity problems.
In contrast, our method not only can visualize the explainability maps of different classes
but can also generate regions of explainability maps that can effectively mask objects. Our
R-Cut method can also visualize and explain multi-class multi-object images clearly.

Dog →

Cat →

Elephant →

Zebra →

Elephants →

Zebras →

Input Raw-attention Rollout Gradcam Hila s R-Cut

Figure 5. Multi-class explainability visualization test on ImageNet1K: “Dog and Cat” and “Elephant
and Zebra” represent the multi-class single-object explainability visualization results; “Elephants and
Zebras” represents the multi-class multi-object explainability visualization results.

Point game test results: Table 1 shows the results of the point game localization
experiments on the ImageNet1k dataset with explainability maps. It is evident that our
method outperforms the SOTA method by 2.36% on the ImageNet1K dataset when utilizing
GT categories. Additionally, without the knowledge of GT categories, our method still
achieves a notable improvement of 1.61% compared to the previous SOTA method. These
results emphasize the effectiveness and superiority of our method for accurately localizing
objects within the ImageNet1K dataset.

Table 1. Point game test on ImageNet1K dataset.

ImageNet1k

Pre GT

Raw-attention 59.21 59.21
Rollout 70.33 70.33

Gradcam 71.70 74.05
Hila 75.50 77.73

R-Cut 77.11 (↑1.61) 80.09 (↑2.36)

IoU test results: Table 2 presents the results of the pixel-level explainability localization
IoU experiments. Our method demonstrates a significant improvement of 4.5% (with GT)
and 4.09% (without GT) on the ImageNet1K dataset when compared to the previous
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method by Hila. These results validate the enhanced completeness and explainability of
our method for localizing object pixels.

Table 2. Weak object detection IoU on ImageNet1K.

ImageNet1k

Pre GT

Raw-attention 46.37 46.37
Rollout 52.91 52.91

Gradcam 51.95 53.14
Hila 53.41 54.29

R-Cut 57.50 (↑4.09) 58.79 (↑4.50)

Perturbation test results: The above two test metrics are artificially defined metrics; in
order to get a good explanation to reflect the actual regions that the model is using, we also
conducted a perturbation test. As showed in Table 3. For MRFP, wherein we mask off the
most relevant region related to the model’s prediction, we expect a high confidence change
in the model’s prediction about the corresponding category. Our method demonstrates a
significant improvement of 3.6% compared to Hila’s SOTA method. For LRFP, we believe
that the masked-out region should be irrelevant to the model’s prediction, so we hope that
the impact on confidence is as small as possible. We can see that our method‘s LRFP result
is 15.69%, which is 1.22% lower than Hila’s method.

Both qualitative and quantitative results show that our explainability visualization
method is much better than the previous SOTA method on the ImageNet1K dataset.

Table 3. MRFP and LRFP tests on ImageNet1K.

ImageNet1k

MRFP LRFP

Raw-attention 45.57 24.36
Rollout 53.31 21.01

Gradcam 52.23 26.42
Hila 53.47 16.91

R-Cut 56.91 (↑3.44) 15.69 (↓1.22)

4.3.2. Performance on LRN Dataset

To verify the effectiveness of our method in complex scenarios, we also performed
qualitative and quantitative analyses on the hazard warning dataset LRN [29] for au-
tonomous driving scenarios. Figure 6 shows the explainability visualization results of our
R-Cut method and other methods on the LRN dataset. We visually post hoc explained
each of the three risk categories: dangerous vehicle, dangerous cyclist, and dangerous
pedestrian. The visualizations clearly demonstrate that our method can visually explain
the situation accurately even in traffic scenes with complex backgrounds.

Point game test results: Table 4 shows the results of our method and other SOTA
methods in point game localization experiments on the LRN dataset with the generated
explainability maps. Our method outperforms the previous SOTA method with significant
improvements. Specifically, our method achieves a remarkable improvement of 21.44%
without GT and 21.67% with GT compared to the previous SOTA method. These results
demonstrate the superior object-level explainability localization performance of our method
in driving scenes.

IoU test results: Table 5 shows the results of the pixel-level explainable localization
IoU experiments. Our method and other baselines were evaluated on the LRN dataset.
It is observed that our method achieved a notable improvement of 5.34% without the
GT category and 5.56% with the GT category compared to Hila’s method. These results
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demonstrate that our method can more completely explain the pixels that belong to the
risk object.

Input

Raw-attention

Hila

Grad-cam

Rollout

R-Cut

Car Cyclist Pedestrian

Figure 6. Explainability visualization results for the LRN dataset. In this result, “car” represents the
warning “Watch out for the car ahead right”; “cyclist” represents the warning, “Watch out for the
cyclist ahead left”; “pedestrian” represent the warning “Watch out for the pedestrian ahead right”.

Table 4. Point game test on LRN dataset.

LRN

Pre GT

Raw-attention 33.56 33.56
Rollout 41.78 41.78

Gradcam 51.56 53.22
Hila 50.22 52.33

R-Cut 73.00 (↑21.44) 74.89 (↑21.67)

Table 5. IoU test on LRN dataset.

LRN

Pre GT

Raw-attention 24.11 24.11
Rollout 32.55 32.55

Gradcam 44.75 46.67
Hila 45.56 47.00

R-Cut 50.90 (↑5.34) 52.56 (↑5.56)

Perturbation test results: In the MRFP test, we aimed to observe the impact on the
output perturbation map confidence after the perturbation, and we expected to see a
significant impact. As shown in Table 6, our method outperformed Hila’s method by 5.73%
in this test. In the LRFP test, our method outperformed Hila’s method with a reduction
of 1.62%.
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Table 6. MRFP and LRFP tests on LRN dataset.

LRN

MRFP LRFP

Raw-attention 33.16 31.3
Rollout 37.92 35.42

Gradcam 42.53 29.71
Hila 44.39 20.38

R-Cut 50.12 (↑5.73) 18.76 (↓1.62)

4.3.3. Ablation Test

To validate the efficacy of our two proposed modules, we conducted qualitative
and quantitative experiments to evaluate three method variants: (1) only “Relationship
weighted out”, (2) only “Cut”, and (3) R-Cut. As shown in Figure 7, the “Relationship
weighted out” method includes a class-aware function, but it does not consider spatial
location relationships, which leads to local discontinuities. For example, the chest posi-
tion of the dog is not activated in the R-Out column in Figure 7a. On the other hand,
the Cut method generates locally dense explainability maps by considering location, tex-
ture, and color information during the graph decomposition process, but it remains a
class-agnostic map. Moreover, since color information is considered in the computation
process, the Cut method considers the brown desktop and the black drawer in Figure 7b
as not belonging to the same entity. In contrast, the R-Cut method can generate both
class-aware and dense explainability maps.

(a)

(b)

R-Out R-CutCut

Figure 7. Ablation tests of three method variants. (a) needs to demonstrate explainability for the
region of the dog, while in (b), interpretability needs to be shown for the entire table area. Plots in
even rows represent the heatmaps of the corresponding explainability maps.

Table 7 shows the performance of the three method variants on the point game, IoU,
and perturbation test experiments, and it is evident that the R-Cut method achieves the best
results. The experimental results demonstrate that only R-Cut can generate a fine-grained
class-specific explainability map.

Furthermore, we present the localization results of our method for the point game test
with different hyperparameter φ values to demonstrate the rationality of our chosen values.
As depicted in Table 8, it is evident that our method achieves the best performance when
φ = 0.05.
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Table 7. Ablation tests of three method variants.

Point Game Test

R-Out Cut R-Cut

ImageNet1K 78.15 77.11 80.09
LRN 74.22 73.88 74.89

IoU Test

R-Out Cut R-Cut

ImageNet1K 55.27 52.46 58.79
LRN 49.33 35.33 52.67

Perturbation Test

R-Out Cut R-Cut

ImageNet1K MRFP 54.44 54.37 56.91
LRFP 17.72 19.86 15.69

LRN MRFP 48.53 47.82 50.12
LRFP 19.92 21.4 18.77

Table 8. Performance of point game test with different hyperparameter φ values.

0 0.05 0.1 0.15 0.2 0.25

ImageNet1K 79.33 80.09 78.29 77.92 77.24 76.75

5. Discussion

Based on multiple previous experiments, it is evident that our method stands out
compared to others. Not only does it generate class-specific explainability maps tailored
to multi-object categories, but it also yields more refined results. The heatmaps produced
are clearer and more continuous and do not have the occurrence of solely detecting dis-
criminative regions in fine-grained images. Clearly, our approach provides effective and
rational explainability for the model. While our algorithm demonstrates remarkable ex-
plainability results on both the ImageNet and LRN datasets, our study also reveals certain
limitations. Primarily, our method necessitates substantial computational overhead, which
is compounded by its intricate procedural steps. As a consequence, each explainability
iteration demands a significant time investment. Hence, our forthcoming endeavors are
focused on optimizing the algorithm’s speed to alleviate these concerns. Furthermore,
we recognize that our current explainability framework overlooks applications within
the multimodal domain. As our next trajectory, we aim to delve deeper into the realm of
multimodal explainability with the aim of more nuanced explorations and implementations
in this domain.

6. Conclusions

This paper introduces a novel post hoc visualization explainability method for
transformer-based image classification tasks. Our method addresses the crucial need
for trust and understanding in classification results. Through our proposed “Relationship
weighted out” module, we can obtain class-specific information from intermediate layers,
enhancing the class-aware explainability of the discrete tokens. Additionally, our “Cut”
module enables fine-grained feature decomposition. By combining the two modules, we
can generate dense class-specific visual explainability maps.

We extensively evaluated our explainability method on the ImageNet dataset, conduct-
ing both qualitative and quantitative analyses. Furthermore, we tested the explainability of
our method in complex backgrounds by performing numerous experiments on the LRN
dataset for automatic driving danger alerts.

The results of both sets of explainability experiments demonstrate significant im-
provement of our method compared to previous SOTA approaches. Additionally, through



Sensors 2024, 24, 2695 16 of 19

ablation explainability experiments, we provide further validation of the effectiveness of
the different modules proposed in our method.

Overall, our method not only enhances trust in transformer-based image classification
but also contributes to the comprehension of the model, benefiting downstream tasks. In
the future, we plan to extend our work to perform explainability experiments on multi-
modal tasks.
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Appendix A. Error Analysis

To further investigate the limitations of our R-Cut method, we examined the results
of all incorrect explainable estimates and summarized the reasons that led to inaccurate
output explainability maps as follows.

Reason 1: The ImageNet1K dataset contains many hard-to-predict samples, resulting
in deviations between the model predictions and the ground truth class. Our method does
not work well when the model itself predicts incorrectly. To verify this conjecture, we
removed the results in the test samples for which the model itself predicted incorrectly
and re-ran the point game and IoU tests. Finally, our method achieved 61.01% IoU in the
IoU test and 81.25% in the point game test, which are 2.22% and 1.16% improvements,
respectively, compared to the previous results.

Reason 2: The ImageNet1K dataset contains some test samples that have multiple
classes, while ImageNet1K itself is a single-target classification dataset. This leads to
incomplete prediction results, and the generated explainability map results only contain
one class. As shown in Figure A1, in image (a), the ground truth bounding box results in
an “instrument”, but our model’s localization results in a “dog”. This is because in the
ImageNet1K data, the “dog” is also a class, but the ground truth of this image is not labeled
with multi-class labels. Similarly, Figure A1b is also a multi-category image, but it only has
a single class label.

(a) (b)

Figure A1. Explainability visualization results for the wrongly predicted images. (a,b) represent the
multi-category images and the test results. Red rectangles represent the ground truth bounding box,
and the green rectangle represents the bounding box of the predicted result.

https://www.image-net.org/
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Appendix B. Graph Cut

The Ncut algorithm is a typical graph cut method that has been widely used in various
fields, including computer vision, pattern recognition, and image processing, due to its
effectiveness and efficiency. It was first introduced by Shi et al. in 1997 [47]. In traditional
image segmentation, the algorithm represents an image as a graph, where each pixel block
is considered a node in the graph. The correlation between pixel values is used to generate
a weighted graph V . Based on the weighted graph, the algorithm actively partitions the
image into two disjoint regions, I and J, which exhibit similar features such as texture
or color.

The Ncut algorithm defines the cut cost as a fraction of the total edge connections to
all the nodes in the graph. Optimal segmentation is achieved by minimizing the following
equation:

Ncut(I, J) =
cut(I, J)
sim(I, V)

+
cut(I, J)
sim(J, V)

, (A1)

where cut(I, J) is defined as the sum of the edge weights between nodes in I and nodes
in J, respectively, i.e., cut(I, J) = ∑u∈I, f∈J w(u, f ). Similarly, sim(I, V) and sim(J, V) are
defined as the sum of the edge weights between nodes in I and V and between nodes in J
and V , respectively.

By minimizing the Ncut equation, the algorithm tries to maximize the cut cost while
minimizing the similarity between the two regions. This ensures that the resulting segmen-
tation has high inter-cluster similarity and low intra-cluster similarity.

Jianbo Shi et al. [47] showed that by setting y = (1+ x)− b(1 − x) under the condition
yTK1 = 0, it can be proven that the minimum value of Ncut(X) is achieved by minimizing
the following equation:

min
X

Ncut(X) = min
y

yT(D − e)y
yTKy

(A2)

where K is a diagonal matrix of size S × S, k(i) = ∑j w(i, j) represents the sum of the
weights between the i-th token and the other tokens, and e is an S × S dimensional sym-
metric matrix that describes the matrix of weights between tokens, where e(i, j) = w(i, j).

By minimizing the above equation, we can obtain the optimal partition of the graph
into two disjoint regions with the same features, as required by the Ncut algorithm.

By setting Z = D
1
2 y, Equation (A2) is easily written as

min
X

Ncut(X) = min
Z

ZTK− 1
2 (K − e)K− 1

2 Z
ZTZ

(A3)

But according to the article on Ncut, Equation (A3) above is the Rayleigh quotient [48],
and when constraint relaxation is performed on y, the equation above is equivalent to
solving a standard eigensystem: K− 1

2 (K − e)K− 1
2 Z = λZ. It is easy to prove that for the

minimum eigenvalue λ = 0, the eigenvector [49] is Z0 = K
1
2 1. Since (K − e) is known

to be a positive semidefinite [50] Laplacian matrix, the second-smallest eigenvector Z1 is
perpendicular to Z0. Based on this relation, we can obtain

Z1 = argminZTZ0=0
ZTK− 1

2 (K − e)K− 1
2 Z

ZTZ
(A4)

and with y = K− 1
2 Z, we can get:

y1 = argminyTK1=0
yT(K − e)y

yTKy
(A5)

Therefore, the second-smallest eigenvector of the generalized eigensystem (K − e)y = λKy
is the real-valued solution to the Ncut problem.
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