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Abstract: Non-intrusive load monitoring (NILM) can identify each electrical load and its operating
state in a household by using the voltage and current data measured at a single point on the bus,
thereby behaving as a key technology for smart grid construction and effective energy consumption.
The existing NILM methods mainly focus on the identification of pre-trained loads, which can
achieve high identification accuracy and satisfying outcomes. However, unknown load identification
is rarely involved among those methods and the scalability of NILM is still a crucial problem at the
current stage. In light of this, we have proposed a non-intrusive load identification method based
on a Siamese network, which can be retrained after the detection of an unknown load to increase
the identification accuracy for unknown loads. The proposed Siamese network comprises a fixed
convolutional neural network (CNN) and two retrainable back propagation (BP) networks. When an
unknown load is detected, the low-dimensional features of its voltage–current (V-I) trajectory are
extracted by using the fixed CNN model, and the BP networks are retrained online. The finetuning
of BP network parameters through retraining can improve the representation ability of the network
model; thus, a high accuracy of unknown load identification can be achieved by updating the Siamese
network in real time. The public WHITED and PLAID datasets are used for the validation of the
proposed method. Finally, the practicality and scalability of the method are demonstrated using a
real-house environment test to prove the ability of online retraining on an embedded Linux system
with STM32MP1 as the core.

Keywords: non-intrusive load monitoring; V-I trajectory; Siamese network; embedded Linux system

1. Introduction

Nowadays, the progress and development of advanced metering infrastructures
can provide strong technical support for the efficient management of electrical energy
consumption [1,2]. As one of the key techniques for energy management, load monitoring
can provide detailed usage information for the consumers to better control their electricity
consumption behaviors and, ultimately, save energy [3,4]. With the aid of load monitoring,
the consumers can save up to 15% of energy [5].

Load monitoring, in general, can be divided into two categories, namely, intrusive load
monitoring (ILM) and non-intrusive load monitoring (NILM). ILM is based on hardware,
which requires the installation of a monitoring device for each load. Thus, this method
analyzes the load consumption with a high precision. However, it is not cost-effective due
to the complex hardware installation, which has a high cost. NILM, a concept originally
developed by Hart [6], focuses on an algorithm and only needs to deploy a meter at the
entrance of each household. Compared with ILM, NILM has a lower cost in terms of a
lower amount of hardware deployment, easier maintenance, and increased protection of
user’s privacy [7]. Hence, NILM has much broader application prospects than ILM.

NILM has not received adequate attention, after being proposed in the initial stage, due
to its high computation requirements, complex algorithm, and low accuracy. However, with
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significant improvements in computer technology and artificial intelligence, the previous
issues associated with NILM can be solved by the emerging technologies and algorithms;
therefore, more researchers have switched their focus to this field.

As an essential step of NILM, load feature extraction is a core concept in this method.
At the early stages, active and reactive power are two major indicators and they are
combined with traditional machine learning methodologies for load identification. For
instance, in [8], the load switching event is detected by comparing the power changes to a
user-set threshold, and the load is identified by using a complex power signature based
on the magnitude of active and reactive power. Although this algorithm has nearly no
requirements in computation and implementation, the growing electrical loads will greatly
influence the identification accuracy.

In recent decades, NILM has benefited from advances in sensors innovation and
the widely applied technologies in signal analysis, which could implement the higher-
dimensional load feature identification through machine learning algorithms. For instance,
the active power, reactive power, current, and power factor are used as the inputs of a multi-
objective classification algorithm based on random k-label sets for load identification [9].
Qureshi et al. have introduced an event-based non-intrusive disaggregation algorithm that
uses Gaussian mixture models (GMMs). This algorithm can automatically detect appliances
with two states by analyzing aggregated data, while applying the Bayesian information
criteria (BIC) to identify the best number of clusters [1]. Additionally, Luan and Yang
disaggregate the aggregated power data into individual load power data by using the
Hidden Markov Model (HMM) [10], which is suitable for the later analysis of electricity
consumption data. Then, Wang et al. introduce a new Adaptive Factorial Hidden Markov
Model (Adaptive-FHMM) to track the changing working states of individual appliances,
which features an adaptive clustering mechanism that autonomously adjusts the number
of hidden states in response to changes in power usage during different operational phases
and leverages this detailed state information from each appliance to create an integrated
model to forecast the power consumption of the appliance [5]. However, both methods have
a huge computational burden. In [11], the load features are obtained using wavelet analysis
and then the machine learning algorithms, such as decision tree and semi-supervised
machine learning, are used to identify the load. Deep learning techniques are widely used
in feature extraction and in the load identification process. In [12], a temporal convolutional
neural network is used to automatically extract high-level load signatures for individual
appliances. In [13], the deep convolutional neural network is utilized to provide a solution
for load disaggregation.

In addition, the sequence-to-point (seq2point) learning and sequence-to-sequence
(seq2seq) learning algorithms are commonly used for energy disaggregation. Seq2point
learning is first proposed with a CNN in [14] as a method of NILM, where the input is a
window of the total energy data and the output is a single point of the target appliance.
Further, different algorithms are incorporated into seq2point models for energy disaggre-
gation to improve the identification accuracy, for example, the temporal convolutional
network (TCN) [15], the bidirectional dilated residual network [4], the discrete wavelet
transform [16], and the bi-directional TCN [17]. Different from the seq2point model, the
seq2seq-based NILM aims to output the sequences, of an equal length to the input, that
contain only the power consumption of a single appliance. In [18,19], LSTM and an autoen-
coder combined with an attention mechanism are employed for seq2seq load aggregation
models, respectively. These approaches rely on calculation and processing using intelligent
algorithms; thus, they generally require a large amount of computation resources.

Due to the rich information represented by the V-I trajectory and the significant
progress in computer graphic processing, a V-I trajectory image has been incorporated
into NILM as a crucial load feature and the load identification accuracy can be prompted
by deploying the deep neural network. In [20], a V-I trajectory extraction approach is
proposed based on the steady-state data before and after an event and a support vector
machine multi-classification method is applied for load identification. In [21], a weighted
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pixelated image of the V-I trajectory is utilized as the CNN input to enhance the extraction
process of crucial features and the method is tested on both PLAID [22] and WHITED [23]
datasets. In [24], the reconstructed image of the V-I trajectory is used as the input for the
CNN to classify the appliances, and the identification accuracy of similar appliances can be
improved. Liu and Wang have previously employed the transfer learning method with
the AlexNet model for NILM [3]. With the trajectory preprocessing and color encoding
techniques, different electrical loads can be distinguished by using the shape and color
information of their V-I trajectories and a high identification accuracy can be achieved. A
large number of new methods from the combination of different feature selection techniques
with several classification algorithms are investigated in [25] and several NILM methods
using the V-I trajectory features are overviewed in [26].

Although the aforementioned methods can achieve an ideal identification accuracy
in theoretical calculations, they are still challenging to implement in a practical situation.
There are two main concerns. Firstly, these methods cannot provide a reliable unknown
load identification solution. Classical load identification methods rely heavily on historical
data to train the classification model, which is incapable of identifying new unknown loads.
Secondly, the high-level identification accuracy depends on the precise training model,
which requires large-scale training data [27]. But the load database is not easy to obtain in
practice.

In recent years, a growing number of methods have been proposed for unknown load
detection. A new appliance detection method is proposed for NILM using the features
of switching ON or OFF [28]. Yin et al. suggest a method for identifying unknown loads
by using a low-dimensional feature space from Siamese neural networks to determine the
feature similarities and incorporate transfer learning to construct the pre-identification
model for unknown loads by facilitating category-added learning [29]. The first step is
pre-classification using a one-dimensional CNN model and, in the second step, according
to the classification results, the similarity of the space convex hull overlap rate with the
Siamese neural networks is calculated. In addition, NILM algorithms based on Siamese
networks have been proposed by Baets [30] and Yu [31], respectively. These methods can
accurately detect the unknown load using the V-I trajectory representation, but still cannot
satisfy the practical situation. The binary V-I trajectory feature used for load identification
in [30] is not distinctive enough to recognize appliances that fall into the same category,
because it cannot reflect the power features [32]. Another problem is that, due to the newly
discovered unknown load data that did not participate in the training of the identification
model, the identification accuracy for newly discovered loads is not high [31]. Kang [33]
has proposed an adaptive NILM method using an autoencoder network and a TOPSIS
algorithm. Two feature vectors are obtained using Fast Fourier Transform (FFT) and an
autoencoder model and then the similarity between the load feature vectors is calculated
using the TOPSIS algorithm. This method can also accurately detect unknown loads and
the current feature is used to make up for the disadvantage of the V-I trajectory that cannot
reflect the power features, but the identification accuracy is also influenced by the number
of unknown loads. The reason for this is that the identification model is not updated
synchronously as new loads are added. Although these models can be retrained to increase
the identification accuracy of new loads, the time cost is unacceptable and the high demand
for computation resources is also challenging for embedded devices [34].

In light of the above discussions, it is necessary to design a method that can detect the
unknown load and maintain a high identification accuracy when the number of unknown
loads increases, which is beneficial to implement the method in practical situations.

Therefore, this paper has proposed an approach that can enhance the identification
ability of unknown loads by updating the system model in real-time. Firstly, the Siamese
networks are used to calculate the similarity of the V-I trajectory features and perform
a preliminary classification. It contains the following three subnets: a fixed CNN and
two retrainable BP networks. The CNN and one of the BP networks are responsible
for data compression of the V-I trajectory, with the aim of obtaining low-dimensional
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features. The other BP network is focused on calculating the similarity between the V-I
trajectory features in the database. In addition, there is a situation where the preliminary
classification is invalid. For instance, for the resistive loads with the same internal circuits,
their V-I trajectories are highly similar. To distinguish different types of loads with similar
V-I trajectories, power feature matching is further implemented. After the detection of
unknown loads, these two BP networks will be retrained and upgraded in real-time on the
embedded device. The user will be reminded to label the new load when an unknown load
is detected and the system can be upgraded online using the subsequent retraining process.

A comparison of the proposed method with several existing typical methods is shown
in Table 1 and the main contributions of this paper are as follows:

Table 1. Comparison between different NILM methods.

Ref. Feature Model Real-Time
Operation

Unknown
Load

Detection

Model
Real-Time
Updating

Computing Support
from PC or Server in

Operation

[10] Power HMM Disable Disable Disable Necessary
[14] Power Seq2point Disable Disable Disable Necessary
[13] Weighted V-I image CNN Enable Disable Disable Unnecessary

[16] Reconstructed V-I
image CNN Enable Disable Disable Unnecessary

[3] Colored V-I image AlexNet Enable Disable Disable Necessary
[22] Binary V-I image Siamese Model Enable Enable Disable Unnecessary

[23] Binary V-I image +
Power Siamese Model Enable Enable Disable Necessary

[25] Binary V-I image +
FFT

Autoencoder +
TOPSIS Enable Enable Disable Unnecessary

[21] Current 1D-LeNet
Siamese Model Enable Enable Enable Necessary

Proposed Binary V-I image +
Power

Retrainable
Siamese Model Enable Enable Enable Unnecessary

(1) Compared with the energy disaggregation method in [10,15], the proposed model can
detect the unknown load by using feature fusion of the V-I trajectory and the power
feature.

(2) Compared with the conventional V-I trajectory-based load identification methods
such as those in [30,31], the identification accuracy can be improved by dynamically
updating the feature database and retraining the model.

(3) In the model retraining process, only the BP network parameters need to be finetuned
and the CNN remains unchanged. Therefore, it can be deployed on the embedded
Linux system without PC and Server support.

The remainder of this paper is organized as follows: Section 2 introduces the principle
of the proposed load identification method based on the retrainable Siamese network. The
following section demonstrates the Siamese network structure and training process. And
then, Section 4 aims to validate the performance of the proposed method through public
datasets and to compare it with other methods. Moreover, this section proves the feasibility
of the online training of the BP networks through experimental results. Finally, Section 5
concludes the methodology’s strengths and indicates its limitations.

2. Principle of Load Identification Based on a Retrainable Siamese Network

This section will introduce the principle of the proposed load identification algorithm
and load features used in this paper.

2.1. Load Identification Process

The load identification workflow of the proposed method is shown in Figure 1. Before
load identification, it is necessary to pre-train the feature extraction model on a PC or
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Server. Assuming that only one load is switched on or off at a time, the voltage and current
waveform of a single load can be extracted by calculating the steady-state voltage and
current difference before and after the switching event.
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The load identification process is as follows:

(1) Collect the steady-state voltage and current of the load using a high sampling rate
with the minimum number of one cycle of data points;

(2) Normalize the voltage and current and obtain the V-I trajectory image of the load;
(3) Input the V-I trajectory image into the Siamese network to calculate the similarity

with the known V-I trajectory in the feature database;
(4) Compare the similarity with the preset threshold for preliminary identification.

• When the similarity is less than the threshold, it will be recognized as an unknown
load. The feature database is updated by adding both the V-I trajectory feature
vector and the corresponding power feature. The training set is constructed of
pairs of V-I trajectory feature vectors. Then, the two BP networks in the Siamese
model are retrained in real-time.

• When the similarity exceeds the threshold, the power features are further ana-
lyzed through the length ratio and cosine distance between the power features.
When similar power features exist, the load is identified as one of the known
loads. Otherwise, when there are significant differences with the known power
features, the load will be marked as new and the feature database is updated by
adding only the power feature.

2.2. V-I Trajectory Image

The V-I trajectory belongs to the high-frequency features, which can reflect the load
features such as harmonic characteristics, the phase angle difference between voltage
and current, and electronic appliance conduction characteristics during the steady-state
operation [35].

The algorithm to obtain the V-I trajectory image is referred to in [3]. First, the steady-
state voltage and current waveforms from appliances that are operating continuously are
collected. The voltage and current values are then normalized by dividing their respective
maximum absolute values. Next, we segment the plane defined by voltage and current into
a 2N × 2N grid of cells and interpolate the original waveform trajectory to maintain the
continuity of the curve after converting it into a binary representation form. Finally, these
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interpolated points are mapped onto the 2N × 2N matrix grid, which has been initialized
to all zeros, and the cell is marked as 1 when the data point that the V-I trajectory is mapped
to is within the valid range of the grid, otherwise it will be marked as 0. Thus, the image
size is the key point in this scenario and the resolution of the V-I trajectory image is set as
32 × 32 in this paper, because the shape features of the V-I trajectory will not be distinctive
enough if the pixel number is too small, as it is easy to cause the loss of the high sampling
rate data information [24]. On the contrary, if the pixel number is too large, the noise
and disturbance in the images will become sharp and will deteriorate subsequent feature
extractions [3].

After obtaining the V-I trajectory image based on the voltage and current data, the
proposed method inputs the image into the pre-trained Siamese network to calculate the
similarity with existing V-I trajectory features, for a preliminary classification.

2.3. Power Feature Matching

One V-I trajectory image can correspond to different loads; for instance, the resistive
loads with the same internal circuits but different powers. Since the V-I trajectory cannot
reflect the load power features, the power feature matching process is further required.
The cosine distance and length ratio between the power feature vectors are calculated as
follows:

cos <
→
a ,

→
bi >=

PPi + QQi√
(P2 + Q2)

(
P2

i + Q2
i
) (1)

lr =
min

(∣∣∣→a ∣∣∣, ∣∣∣∣ →bi

∣∣∣∣)
max

(∣∣∣→a ∣∣∣, ∣∣∣∣ →bi

∣∣∣∣) =
min

(√
P2 + Q2,

√
P2

i + Q2
i

)
max

(√
P2 + Q2,

√
P2

i + Q2
i

) (2)

sim
(
→
a ,

→
bi

)
= 0.5 ∗ cos <

→
a ,

→
bi > +0.5 ∗ lr (3)

→
a = (P, Q) (4)
→
bi = (Pi, Qi) (5)

where P and Q are the active and reactive power features of the load to be identified and
Pi and Qi are the active and reactive power features of the loads in the corresponding

dataset. cos <
→
a ,

→
bi > is the cosine distance that represents the angle between two vectors,

lr represents the magnitude relationship, and sim
(
→
a ,

→
bi

)
means the similarity between

power features.
The load power features are marked as being in the feature database when the value

of (3) exceeds the threshold. Otherwise, these load power features will be labeled as a new
load and the feature database will be updated.

3. Retrainable Siamese Network

This section will introduce the structure and the training process of the retrainable
Siamese network.

3.1. Introduction of the Siamese Network

The new load cannot be predicted, as it could appear at any time. The modern NILM
system should be able to identify these new loads [28] and improve the model performance
through self-updating. However, most of the neural network models for load identification
are focused on solving the classification problem. These classification models require
numerous training data to support, cannot address the issue of detecting unknown loads,
and cannot automatically update the network parameters in real-time.
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In this paper, the Siamese network is used for the feature extraction and similarity
calculation between different V-I trajectories. A Siamese network, as shown in Figure 2, is a
special kind of neural network mainly utilized to measure the similarity of two inputs [36].
The two feature extraction models share all the weights, which means that only one network
is needed to be trained. The two inputs are passed through the “Feature extraction Model”
to obtain new low-dimensional feature vectors and then the similarity between the two
inputs is calculated using the “Decision Model”. When the similarity is larger than the
preset threshold, it means that these two input V-I trajectories are the same; otherwise,
these two input V-I trajectories are different.
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Siamese networks are dedicated to addressing two comparable inputs, which have
been widely used in numerous fields such as face recognition and fingerprint verification.
In [37], a complete low-resolution face recognition system is developed using the Siamese
network as part of the facial recognition component. In [38], a Siamese CNN encoding
network is constructed to measure the distance of input samples, which significantly
reduced the demand of training samples.

Compared with traditional networks, the Siamese network has two significant advan-
tages for NILM. Firstly, it can accurately detect unknown loads. The similarity between the
V-I trajectory to be identified and each known V-I trajectory in the database is calculated
and is then compared with the threshold value. When the maximum similarity is larger
than the threshold, it is considered that the V-I trajectory to be identified is one of the V-I
trajectories from known loads and then the power features are further matched. When
the maximum similarity is less than the threshold, it is considered that the V-I trajectory
to be identified is not in the database, that is, the load is an unknown load and, therefore,
the new load needs to be labeled and the network model needs to be retrained. Secondly,
the Siamese network can optimize the quantity of the training datasets. Since the network
accepts two inputs, samples can be randomly combined in pairs, which can extend the
dataset. Thus, it can greatly reduce the number of samples required for training.

3.2. Self-Adaption of the Siamese Network

Although the Siamese network has a high-performance in detecting unknown loads,
the representation ability of the network will be influenced by the growth in the number
of unknown loads. The retraining network model can mitigate this negative impact by
rectifying the model parameters when unknown loads are detected. However, the time
cost of retraining the whole network is considerably high and it demands a large number
of computation resources.

In this paper, the Siamese network is divided into the feature extraction model and
the decision model, to achieve the automatic update in real-time, as shown in Figure 3. The
feature extraction model consists of a fixed CNN network and a retrainable BP network. The
decision model only includes a single retrainable BP network that focuses on calculating
the similarity between the feature vectors of the two V-I trajectories.
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Figure 3. Retrainable Siamese network.

In the Siamese network, the CNN network for feature extraction is built based on the
lightweight Lenet-5 model. Although there are more precise models in image processing,
such as the AlexNet model and the VGG-16 model, since the V-I trajectory image is not
as complex as the face image and the target of this method is online identification on
embedded devices, the structure of the lightweight Lenet-5 model is considered adequate.
The structure of the BP network is not complex, which helps to satisfy the lightweight
requirements. Compared with other machine learning or deep learning designs, the
proposed Siamese network has two advantages. First, it is partially retrained. Since the
BP networks have a relatively simple structure, they can be retrained online to fulfill the
real-time requirement. Second, the whole structure is lightweight. Since both the Lenet-5
model and BP networks are not complex, the whole network can be implemented on the
embedded devices.

Since the CNN network is fixed, the feature vectors extracted using the CNN are
saved in the feature database. Therefore, when calculating the similarity between V-I
trajectories, only the load V-I trajectory to be identified needs to go through the CNN for
feature extraction and this is then compared with the known load feature vectors in the
database to calculate the similarity, which can greatly reduce the identification time. Also,
this design can reduce the calculation and time costs of training on the embedded system,
enhancing the whole network performance.

The feature extraction model and the decision model are trained separately. First, the
feature extraction model (including the CNN and the first BP network) is trained. The
model inputs are the V-I trajectory images and the outputs are the extracted feature vectors.
The loss function is a contrastive loss function defined as follows:

loss f =
1
2
[y × d2 + (1 − y)× (max (m − d, 0))2] (6)

where y is a binary value, indicating whether the two inputs belong to the same class (if the
two inputs belong to the same class, the value of y is set to one; otherwise it is set to zero);
d is the Euclidean distance between the two extracted output feature vectors; and m is the
margin value when the samples are dissimilar. The dissimilar input vectors only contribute
to the loss function if their distance is smaller than the margin. The aim of training is to
make the distance between the feature vectors of two similar inputs as small as possible
and the distance between the feature vectors of two different inputs as large as possible.

After the training of the feature extraction model, the decision model is then trained
with the feature vectors extracted using the feature extraction model. The loss function of
the decision model is defined as follows:

lossd =
1
2
(yd − yt)

2 (7)
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where yd is the output of the decision model; yt is the true similarity of a given input in the
training dataset, yt is set to one if the two feature vectors that formed the input belong to
the same class, otherwise it is set to zero.

The BP network of the decision model has a three-layer architecture, i.e., an input layer
with 64 neurons, a middle layer with 32 neurons, and an output layer with 1 neuron. The
input is a 64-dimensional vector and the similarity of the two input vectors is calculated
from the full-connection layer with 32 neurons. The similarity is a number between 0 and
1 and it will be compared with a pre-set threshold. When the similarity is larger than the
threshold, the two inputs are considered to belong to the same class; otherwise, the two
inputs are considered to belong to different classes.

When an unknown load is detected, the two BP networks of the feature extraction
model and the decision model can be retrained to update the whole model.

4. Results

The Worldwide Household and Industry Transient Energy Dataset (WHITED) and the
Plug Load Appliance Identification Dataset (PLAID) are used to benchmark the proposed
method. Then, the feasibility of online training for BP networks on the embedded Linux
system is validated. Finally, the proposed method is compared with other load identification
methods.

4.1. Experiment Results Using the WHITED Dataset
4.1.1. Siamese Network Pre-Training and Feature Database Construction

The WHITED dataset includes the voltage and current data of appliances sampled at
44 kHz, for 46 different appliance types. To mitigate the requirement on the sampling rate,
the sampling rate can be reduced to 5.5 kHz under the condition that the V-I trajectory is
not distorted. A complete V-I trajectory can be obtained when more than 100 samples are
collected in one cycle and this requirement can be easily achieved using available sampling
equipment [33]. For this, one sample is taken from every eight samples of the WHITED
dataset.

In this paper, 30 different loads are used for verification, among which Load 1 to
Load 18 are assumed to be known, while Load 19 to Load 30 are assumed to be unknown.
The load names and labels are shown in Table 2 and the label represents the load in the
subsequent analysis.

Table 2. Loads from the WHITED datasets used in validation.

Label Name (P, Q) Label Name (P, Q)

Load 1 AC (330, 43) Load 16 Air Pump (100, 18)
Load 2 Bench Grinder (370, 140) Load 17 Guitar Amp (17, 20)
Load 3 Cable Modem (4, 2) Load 18 Hair Dryer (1940, 135)
Load 4 CFL (13, 2) Load 19 Kitchen Hood (110, 155)
Load 5 Charger (70, 17) Load 20 Iron (1430, 110)
Load 6 Coffee Machine (790, 65) Load 21 Led Light (35, 11)
Load 7 Desktop PC (100, 45) Load 22 Microwave (1340, 270)
Load 8 Drilling Machine (310, 45) Load 23 Monitor (55, 18)
Load 9 Fan_ChingHai (25, 40) Load 24 Power Supply (12, 15)
Load 10 Fan_Cyclone (280, 42) Load 25 Sewing Machine (150, 60)
Load 11 Fan_Honeywell (136, 15) Load 26 Vacuum Cleaner (705, 60)
Load 12 Flat Iron (280, 30) Load 27 Rice Cooker (330, 7)
Load 13 Fridge (560, 285) Load 28 Network Switch (2, 0.5)
Load 14 HIFI (29, 17) Load 29 Laptop (67, 20)
Load 15 Juice Maker (220, 45) Load 30 Water Pump (450, 75)

Figure 4 shows the V-I trajectories of Load 1 to Load 18. It can be seen that the V-I
trajectories of Load 6 and Load 18 are very similar, so they are noted as being the same
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type. The Siamese network is trained with 17 different V-I trajectory images of 18 known
loads and each image type contains 20 samples.
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Figure 4. V-I trajectories of known loads (Load 1 to Load 18).

After the pre-training of the Siamese network, the feature database needs to be con-
structed, as it is a crucial foundation for the algorithm. The initial feature database is
constructed with 17 V-I trajectory feature vectors extracted through the CNN network and
the corresponding 18 power features of the 18 known loads from the WHITED dataset.
It should be noted that, in the feature database, each V-I trajectory feature vector can
correspond to the set of several load power features, because some loads have the same V-I
trajectory, but different powers, as shown in Figure 1.

After the detection of an unknown load, the feature database will be dynamically
updated. When the V-I trajectory of an unknown load is not in the feature database (i.e.,
the unknown load is identified using the Siamese network), both the V-I trajectory feature
vector and its corresponding power feature need to be added into the feature database.
When the V-I trajectory of the unknown load is the same as one of those in the feature
database (i.e., the unknown load is identified using power feature matching), only the
power feature is needed to be added into the feature database and needs to be mapped to
the existing V-I trajectory vector.

4.1.2. Retraining of the BP Networks

The BP networks will be retrained after an unknown load is found with a different
V-I trajectory (for an unknown load found using power feature matching, retraining is
not needed). In order to retrain the BP networks, the training dataset involving the V-I
trajectory features must be reconstructed. The process of training dataset reconstruction is
shown in Figure 5. It should be noted that, in the feature database, it is not the V-I trajectory
image itself, but the 64-dimensional feature vector extracted from the V-I trajectory through
the CNN network that is saved. Thus, as described in Section 3.2, the time required for
identification can be greatly reduced.
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Although, it is better when more samples are added to the feature database, as it
will lead to a larger amount of calculation. Considering the need for retraining on the
embedded terminal, 20 V-I trajectory samples obtained from the steady-state voltage and
current data, as well as the corresponding power feature for one unknown load, are added
to the feature database.

After updating the feature database, the training dataset will be reconstructed using
the pairwise combination of the V-I trajectory feature vectors. Finally, only the BP networks
in the feature extraction model and the decision model will be retrained.

4.1.3. Identification Results

In order to verify the improvement effects after retraining, the identification accuracies
both with and without retraining are compared. After several validations, the optimal
similarity threshold of the Siamese model is found to be 0.8. When comparing the power
features, the threshold value is set to 0.9.

In the experiment, Precision, Recall, and F1-score are used as performance indicators,
where Precision and Recall refer to the correct rate and recall rate, while the F1-score
indicates the harmonic mean of the Precision and Recall. Their calculation formulas are
shown in (8)–(10), where TP, TN, FP, and FN refer to true-positive cases, true-negative
cases, false-positive cases, and false-negative cases, respectively.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F1 = 2·Precision × Recall
Precision + Recall

(10)

The first step is to validate the identification accuracy for known loads. As the V-I
trajectories of known loads are already used to train the Siamese networks, the identification
accuracy of 18 known loads is up to 100%.

Then, the performance of unknown load detection is verified and the validation results
are shown in Table 3. The outcomes illustrated that the proposed method could accurately
detect the unknown loads. Among the unknown loads, the V-I trajectories of the Iron (Load
20) and the Network Switch (Load 28) have a high similarity with the known load of the
Hair Dryer (Load 18) and the Cable Modem (Load 3), respectively. Therefore, they would
be wrongly labeled as known loads, if only the V-I trajectory features were compared.
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However, with the help of further analysis based on power feature matching, Load 20 and
Load 28 can be accurately classified into unknown loads. And then, their power features
have to map to the corresponding V-I trajectory in the feature database.

Table 3. Identification results using the WHITED dataset.

Label
Unknown Load

Detection
Without Retraining With Retraining

Precision Recall F1-Score Precision Recall F1-Score

Load 19 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 20 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 21 100% 85.00% 68.00% 0.7556 97.96% 96.00% 0.9697
Load 22 100% 100.00% 78.00% 0.8764 100.00% 96.00% 0.9796
Load 23 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 24 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 25 100% 73.33% 88.00% 0.8000 96.08% 98.00% 0.9703
Load 26 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 27 100% 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Load 28 100% 100.00% 96.00% 0.9796 100.00% 100.00% 1.0000
Load 29 100% 100.00% 92.00% 0.9583 100.00% 100.00% 1.0000
Load 30 100% 81.97% 100.00% 0.9009 96.15% 100.00% 0.9804

The validation results show that retraining the BP model can improve the identification
accuracy of unknown loads. Because the Led Light (Load 21), Microwave (Load 22), Sewing
Machine (Load 25), and Laptop (Load 29) fluctuate greatly during operation (the current
waveforms of the Laptop and the Led Light are shown in Figure 6), the features extracted
using the Siamese model are also unstable. Therefore, the BP network cannot offer a
high-precision similarity. This issue can be solved by adjusting the parameters of each
neuron in the BP model, which can prompt identification accuracy. The average F1-score of
12 unknown loads has been improved from 0.9392 to 0.9917 with retraining.
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4.2. Experiment Result using the PLAID Database

The PLAID dataset includes voltage and current data sampled at 30 kHz for 11 different
appliance types captured in 55 households. The Siamese network was trained on the
WHITED dataset and tested on the PLAID dataset, to verify the transferability.

To verify the effectiveness of the proposed method, the experimental results of 10 dif-
ferent loads are presented and their V-I trajectories are shown in Figure 7. The initial feature
database already has 18 known loads from the WHITED dataset and the identification
results are shown in Table 4.
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Table 4. Identification results using the PLAID dataset.

Name
Without Retraining With Retraining

Precision Recall F1-Score Precision Recall F1-Score

Compact Fluorescent Lamp 95.92% 94.00% 0.9495 98.04% 100.00% 0.9901
Hairdryer 100.00% 98.00% 0.9899 100.00% 98.00% 0.9899

Microwave 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000
Air Conditioner 98.04% 100.00% 0.9901 100.00% 100.00% 1.0000

Laptop 94.12% 96.00% 0.9505 100.00% 98.00% 0.9899
Vacuum 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000

Incandescent Light Bulb 98.00% 98.00% 0.9800 98.04% 100.00% 0.9901
Washing Machine 86.67% 78.00% 0.8211 100.00% 100.00% 1.0000

Fan 100.00% 96.00% 0.9796 100.00% 100.00% 1.0000
Fridge 77.19% 88.00% 0.8224 100.00% 100.00% 1.0000

Since the V-I trajectories of the Laptop, Fridge, and Hairdryer of the PLAID dataset
are the same as those of the Cable Modem, Fridge, and Coffee Machine of the WHITED
dataset in the feature database, they can be detected as unknown loads using power feature
matching and only the power features need to be added into the feature database. The
V-I trajectories of other loads are different from those in the database; hence, they can be
detected using the Siamese network. Then, the feature database is updated by adding
both the V-I trajectory and its corresponding power feature, and the training dataset is
reconstructed to retrain the two BP networks in the Siamese model.

The results illustrate that the proposed method can accurately identify unknown loads
from different datasets and that the identification accuracy can be increased after retraining.
The average F1-score has been improved from 0.9483 to 0.9960.

4.3. Validation in the Real-House Environment Using the Embedded Linux System
4.3.1. TensorFlow Lite

TensorFlow Lite is a framework that enables machine learning on mobile, embedded,
and IoT devices. It can help to meet the real-time requirements of the NILM system and
power consumption privacy. As shown in Figure 8, the workflow of TensorFlow Lite
deployment is as follows:

• Model selection: Select a new model or retrain an existing one;
• Conversion: Convert a TensorFlow model into a compressed flat buffer through the

TensorFlow Lite Converter;
• Deployment: Load the compressed “.tflite” file into a mobile or embedded device;
• Optimization: Quantize by converting 32-bit floats to more efficient 8-bit integers or

run on GPU.
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4.3.2. Deployment of NILM Model

In this paper, the CNN network of the Siamese model is pre-trained on the computer
and the TensorFlow Lite Converter compress this CNN model to a “.tflite” file, to load it
into the embedded Linux system with STM32MP1 as the core. The STM32MP1 has dual
cores—namely, A7, with a running frequency up to 800 MHz; and M4, with a running
frequency up to 209 MHz. Any embedded device with a higher or similar performance
can be used as the hardware platform. The size of the CNN network is approximately
80 KB after conversion and it takes around 20 ms to run this model on the embedded Linux
system.

The two BP networks are implemented in the Python 3.7 environment, using the
NumPy library on the embedded Linux system and each network is about 20 KB in size. It
takes about 80 ms to complete the whole identification process, so the proposed method
can meet the real-time requirements of the NILM system.

The initial feature database is in the form of csv files, which save the V-I trajectory
feature vectors and the corresponding set of power features from Load 1 to Load 18 of the
WHITED dataset.

Six different loads are included in the lab experiment, which are Microwave, Fridge,
Heater, Hair Dryer, Laptop, and Iron. However, different operational states of the same de-
vice often exhibit distinct characteristics, making it challenging for the model to categorize
them into the same class, such as is the case with the heater and the hairdryer. Therefore,
we divided the multi-state device into different types of loads, such as Heater 1, Heater
2, Hairdryer 1, and Hairdryer 2, respectively. In addition, all loads are operated as an
independent switched On/Off event, to acquire their voltage and current data.

The hardware for the NILM system, as well as the laboratory-based loads utilized for
validation purposes, are depicted in Figures 9a and 9b, respectively. The data acquisition is
conducted at a frequency of 10 kHz. Throughout the experimental procedure, it is postu-
lated that only a single load-switching event occurs at any given instance. The detection of
these load-switching events is accomplished through the application of the Cumulative
Sum Control Chart (CUSUM) algorithm [39], a prevalently employed methodology for
identifying points of change.

After the system runs, all six loads in Figure 9b are identified as unknown loads using
the proposed method; their V-I trajectories and power features are shown in Figure 10 and
Table 5.

It should be noticed that the Heater and Hairdryer have two working modes. By
comparing Figures 4 and 10, it can be seen that the V-I trajectories of the Fridge and Laptop
are similar to Load 3, and the V-I trajectories of Heater 1, Heater 2, Hairdryer 2, and the
Iron are similar to Load 6; thus, these loads can be detected using power feature matching.
But, the V-I trajectories of the Microwave and Hairdryer 1 are not in the feature database
constructed from the WHITED dataset; hence, they can be detected through the Siamese
network.
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Table 5. Power features of the lab-loads.

Name Active Power (W) Reactive Power (Var)

Microwave 566 100
Fridge 30 10

Heater1 156 5
Heater2 304 12

Hairdryer1 156 5
Hairdryer2 200 5

Laptop 16 10
Iron 605 14
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Since the V-I trajectories of the Microwave and Hairdryer1 did not participate in
the pre-training, their identification accuracy is relatively low, at about 70%. Therefore,
retraining is needed to enhance the identification accuracy. In total, 20 V-I trajectory vectors
of the Microwave and Hairdryer1 are extracted using the CNN network, respectively, to
be added to the feature database. The training dataset is reconstructed via the pairwise
combination of the V-I trajectory feature vectors and the existing model is loaded to initialize
the weights of the model. And then, the BP networks in the feature extraction model and
the decision model are retrained on the embedded Linux system.
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During the BP network training process, the learning rate is set to 0.01. As shown in
Figure 11, the loss value has converged to 0.1 after 10 iterations and the accuracy of the test
dataset is up to 99.5%.
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The identification results with and without retraining are shown in Table 6. It can be
seen that the identification accuracy of the Microwave and Hairdryer1 has been consider-
ably enhanced after retraining. The identification accuracy for the Laptop is not obviously
enhanced after retraining, since the power of the Laptop is unstable. The identification
accuracy of other loads with stable power is very high. The final average F1-score of the
lab-loads has been improved from 0.9124 to 0.9875, with retraining.

Table 6. Identification results on lab-loads.

Name
Without Retraining With Retraining

Precision Recall F1-Score Precision Recall F1-Score

Microwave 100.00% 70.00% 0.8235 100.00% 100.00% 1.0000
Fridge 90.57% 96.00% 0.9320 92.45% 98.00% 0.9515

Heater1 80.00% 100.00% 0.8889 100.00% 100.00% 1.0000
Heater2 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000

Hairdryer1 100.00% 75.00% 0.8571 100.00% 100.00% 1.0000
Hairdryer2 100.00% 100.00% 1.0000 100.00% 100.00% 1.0000

Laptop 95.74% 90.00% 0.9278 97.87% 92.00% 0.9485
Iron 76.92% 100.00% 0.8696 100.00% 100.00% 1.0000

The experimental results show that 50 training iterations took 177 s, in total, when
there are 19 different types of V-I trajectories (17 from the initial database and 2 from the
Microwave and Hairdryer1) in the training set. It can be demonstrated that the proposed
method can achieve the real-time online training function on the embedded Linux system,
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to enhance the identification accuracy and this is the foundation of the scalability for the
NILM system.

4.4. Comparison with Other Algorithms

The proposed method is compared with others to validate the performance through
four technical indicators, i.e., ACC, Fmacro, unknown load detection ability, and deployment
difficulty. ACC is the ratio of the correctly identified observations to the total observations,
and Fmacro refers to the macro-averaged F1 score, which is calculated by taking the average
of the F1 scores of each class in the dataset. The calculation formulas of ACC and Fmacro are
shown in (11) and (12).

ACC =
TP + TN

TP + TN + FP + FN
(11)

Fmacro =
1
N ∑N

i=1 F1i (12)

where N is the number of classes and F1i is the F1-score for class i. In addition, the unknown
load detection ability determines whether the algorithms are capable of detecting unknown
loads and the deployment difficulty is evaluated by the number of required devices and
computation dependence in actual applications. For example, the deployment difficulty is
considered high when a PC or Server for computing support and communication devices
is required during real-time operation, while the deployment difficulty is considered low
when no additional devices are required. The comparison results are shown in Table 7.

Table 7. Comparison of different algorithms using the PLAID dataset.

Ref. Feature Model Dataset Accuracy
(%) Fmacro

Unknown Load
Detection

Deployment
Difficulty

[21] Binary V-I
image CNN All loads in

PLAID 78.50 0.7760 Disable Easy

[3] Colored V-I
image AlexNet All loads in

PLAID 98.04 0.9540 Disable Difficult

[31] Binary V-I
image + Power Siamese Model House6 in

PLAID / 0.9788 Enable Difficult

[29] Current 1D-LeNet
Siamese Model 6 loads in PLAID 99.80 / Enable Difficult

[30] Binary V-I
image Siamese Model 11 loads in

PLAID 99.40 0.8990 Enable Easy

[33] Binary V-I
image + FFT

Autoencoder +
TOPSIS

11 loads in
PLAID 97.60 / Enable Easy

Pro-posed Binary V-I +
Power

Retrainable
Siamese Model

10 loads in
PLAID 99.60 0.9920 Enable Easy

In [21], only the binary V-I trajectory is used as the load feature; thus, the identification
accuracy is not high, because the V-I trajectories of loads with the same internal circuit are
similar. In [3], the identification accuracy is increased by using color-encoding techniques.
The load identification is defined as a multi-classification issue in [3,21], which only applies
to the known item classification. Hence, both approaches cannot detect unknown loads
and the classification model has to be retrained, as a whole, to serve the new load.

Both methods in [29,31] can identify unknown loads. However, the model complexity
is high and the system requires high computing power, which brings a considerable
barrier when it comes to deployment on the embedded system. Although the methods
in [30,33] can be implemented on the embedded system, the Siamese network model and
the autoencoder model for feature extraction are fixed. Thus, the accuracy of the NILM
system will be affected by the increased number of unknown loads.

The proposed method in this paper can accurately detect unknown loads by calculating
the similarity of the V-I trajectory and power feature matching. Furthermore, with the
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number of unknown loads increasing, the model can be retrained online on the embedded
systems. From the comparison results, it can be seen that the proposed method is more
scalable than state-of-the-art methods

5. Conclusions and Future Research Directions

This paper has proposed a non-intrusive load identification method based on a re-
trainable Siamese network that is composed of a fixed CNN network and two retrainable
BP networks. The CNN network and one of the BP networks extract the low-dimensional
feature vectors of the V-I trajectories, while the other BP network calculates the similarity
of the feature vectors. According to the similarity, whether the load V-I trajectory is identi-
fied as unknown or known will be determined. If the load V-I trajectory is identified as
unknown, the BP networks can be subsequently retrained, so that the performance of the
Siamese network will be improved. If the load V-I trajectory is identified as known, power
feature matching is executed.

The proposed method can be implemented on an embedded Linux system with online
retraining. Therefore, it can improve the real-time performance of the NILM system and
the privacy of the customer. The WHITED dataset and the PLAID dataset are used to
verify the performance of the proposed method. Finally, the practicality and scalability are
validated using the real-house environment test to prove the ability of online retraining on
an embedded Linux system with STM32MP1 as the core. From the experimental results, the
proposed method can be efficiently generalized, compared with state-of-the-art methods.

However, there are still some limitations of the proposed method. For instance, the
method does not identify the simultaneous switching events on multiple appliances. Also,
the switching events in which a single load has various working states are not discussed.
Subsequent research will focus on solving these issues.

The load identification results of our research have paved the way for efficient energy
management. With the individual load consumption information, the users can know
their energy consumption status in real time; thus, they can adjust their behaviors to save
energy. In addition, the load information can be input into the Home Energy Management
Systems (HEMS), which can automatically move the shiftable and interruptible loads to
the valley period to reduce the expenses [40,41]. Moreover, the HEMS can participate in
the demand-side response with the knowledge of load consumption information. In the
future, we will incorporate the NILM with the HEMS for smart energy management.
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