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Abstract: Indoor fires may cause casualties and property damage, so it is important to develop a
system that predicts fires in advance. There have been studies to predict potential fires using sensor
values, and they mostly exploited machine learning models or recurrent neural networks. In this
paper, we propose a stack of Transformer encoders for fire prediction using multiple sensors. Our
model takes the time-series values collected from the sensors as input, and predicts the potential
fire based on the sequential patterns underlying the time-series data. We compared our model with
traditional machine learning models and recurrent neural networks on two datasets. For a simple
dataset, we found that the machine learning models are better than ours, whereas our model gave
better performance for a complex dataset. This implies that our model has a greater potential for
real-world applications that probably have complex patterns and scenarios.

Keywords: fire detection; deep learning; transformer; multiple sensors; time-series data

1. Introduction

There is an average of 358,300 home-based fires every year in the U.S. according
to the Center for Disease Control, the U.S. Fire Administration, and the National Fire
Protection Association (NFPA). Indoor fires cause many casualties and property damage,
so it is important to prevent fire accidents in advance. Previous studies of the indoor
fire prediction task can be divided into two groups: sensor-based and vision-based. The
vision-based studies exploit video clips or image samples to detect fires or any clues of fire,
whereas the sensor-based studies utilize time-series values collected from multiple sensors
(e.g., CO2, humidity, and temperature). The images and video clips are usually much larger
than the sensor values, so the sensor-based approach is preferable if it is given a limited
computational resource or Internet bandwidth.

There have been sensor-based studies for indoor fire forecasting using machine learning
(ML) models. The ML models require intensive feature engineering, so deep learning (DL)
models have become more preferable. In particular, recurrent neural networks (RNNs) using
long short-term memory (LSTM) [1] or Gated Recurrent Unit (GRU) [2] cells allow to effec-
tively comprehend long-term dependencies within time-series values of multiple sensors.

Since Transformer [3] has appeared, many Transformer-based language models have
shown impressive power in learning linguistic patterns within documents. In particular,
the Transformer encoder-based models (e.g., Bidirectional Encoder Representations from
Transformer (BERT) [4]) are used not only for language comprehension tasks but also
for other domains such as object detection in images [5] and classification using time-
series sensor data [6]. The multi-head self-attention mechanism of the Transformer allows
it to better grasp the sequential patterns within the time-series data and contributes to
performance improvement in down-stream tasks.
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In this paper, we propose a new way of fire prediction using multiple sensors. The
task is defined as the prediction of potential fires in advance given a certain amount of
collected sensor data. To tackle the task, we design a stack of Transformer encoders where
the Transformer architecture is known to be effective in analyzing sequence data. Our first
contribution is that, as far as we know, this is the first study that employs the Transformer
encoders to the fire prediction task. Our model takes the time-series values obtained from
the sensors as input, and predicts fire accidents in advance. Our second contribution is that,
by empirical results with two publicly available datasets, we demonstrate that our model
has a strong potential in a complex fire prediction task.

2. Related Work

There are lots of studies that have utilized images or video clips for fire prediction.
Such a vision-based approach takes the benefit from sufficient information beneath the
images, but these studies have a common practical issue that they require a high-resolution
camera and a sufficient amount of computational power. That is, big images are required
to obtain better detection performance, and it takes a long time or requires expensive
machines to train or run machine learning (ML) models with the big images. Therefore,
using many cheaper sensors is a reasonable alternative way.

There are studies that have exploited multiple sensors for fire prediction, and they
mostly employed the machine learning (ML) or data-driven models. In [7], a data-fusion
based on Dempster–Shafer theory was used to aggregate smoke, temperature, and light sen-
sor values, and achieved 98% of accuracy. Chen et al. [8] proposed a fast and cost-effective
indoor fire alarm system using support vector machines (SVMs) [9]. They employed carbon
monoxide, smoke, temperature and humidity sensor values, and accomplished 99.8% of F1
scores. Jana and Shome [10] proposed an ensemble of ML models such as logistic regression,
SVM, decision tree, and Naive Bayes, and obtained 97.52% precision. Dampage et al. [11]
utilized ML models to detect forest fires at initial stage using a wireless sensor network.

Even though the ML models exhibited quite successful performance on the fire pre-
diction task, deep learning (DL) models have become more preferable for their superior
robustness and performance without a heavy manual feature engineering. In [12], given
CO2, smoke, and temperature sensor values, they obtained 99.4% accuracy using a back-
propagation neural network (BPNN). Nakip et al. [13] proposed a recurrent trend predictive
neural network (rTPNN) for multi-sensor fire detection, where the sensors include temper-
ature, smoke, carbon monoxide, carbon dioxide, and oxygen sensors. Li et al. [14] utilized a
temporal convolutional network (TCN) to extract features, and generated prediction results
using the SVM classifier. Jesubalan et al. [15] designed a learning-based mechanism for
forest fire prediction using deep learning models. Liu et al. [16] adopted long short-term
memory (LSTM) [1] to analyze sequences of temperature, smoke, carbon dioxide, and
carbon monoxide, and achieved 97% F1 score.

Since Transformer [3] of the natural language processing (NLP) field has appeared,
many of its variants including ChatGPT (https://chat.openai.com) have achieved state-
of-the-art (SOTA) performance in various fields with different data types such as images,
speeches, texts, and sensors. There are a few studies that have applied the self-attention
mechanism of Transformer to fire prediction, but they have focused only on the image or
video data. For example, FireFormer is a Transformer-based architecture dedicated to forest
fire detection using surveillance cameras [17]. In Ref. [18], a Transformer-based model for
the detection of fire in videos was proposed, and showed that their model outperformed
previous convolutional neural network (CNN) models.

In this paper, we propose a new model that is essentially a stack of Transformer
encoders for fire prediction. It takes sequences of multiple sensor values, and predicts
potential fire accidents. The ‘multi-head self-attention’ mechanism of Transformer captures
various relations of all possible pairs in the sequence of sensor values, and the ‘multi-layer’
architecture allows it to comprehend high-level semantics and syntactic patterns. This
enables it to better learn complex sequential patterns of the given sequences, contributing

https://chat.openai.com
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to performance improvements. As far as we know, this is the first study that proposes a
Transformer-based architecture for fire prediction using multiple sensor values.

3. Method
3.1. Problem

The task of this paper is to predict fires in advance. Given a certain amount of collected
data of multiple sensors, we predict whether the fire will break out in several minutes.
Suppose we have a database (DB) system that collects time-series values from S sensors,
where the sensor values are sampled using a particular sampling rate R (e.g., every 2 s).
The collected dataset D ∈ R|D|×S, where |D| is the total number of instances (i.e., the total
number of steps) within the dataset.

Figure 1 describes the input and output of the model M. Given the current step t5,
the model takes the instances of window size Win as input (i.e., RWin×S). That is, the input
matrix consists of [ ft2 ; ft3 ; ft4 ; ft5] where ft· indicates the S-dimensional feature vector at
the step t·. The feature vector does not contain temporal information or any time-related
feature values (e.g., timestamps). The model generates a prediction label ô12 (e.g., ‘fire’,
‘normal’) of the step t12 which is Wout steps ahead of the current step t5, where the Wout
is the output window size. The prediction label ô12 indicates whether the fire breaks out
after Wout steps from the current step t5. The model fails when its prediction ô12 is different
from the actual label o12. More formally, the output (i.e., prediction label) generated from
classifier f can be represented as Equation (1), where the input matrix Mt−Win+1:t ∈ RWin×S:

ôt+Wout+1 = f (Mt−Win+1:t; Wout) (1)

Figure 1. Overview of the method, where the current step is t5, the input window size Win = 4, and
the output window size Wout = 6.

3.2. Solution

Transformer [3] was originally designed for machine translation between languages.
It has an encoder–decoder architecture, where the encoder converts a given input sequence
into real-number vectors of distributed representation, and the decoder generates an output
sequence based on the results of the encoder. The Transformer decoder was employed
in the Generative Pre-trained Transformer (GPT) series [19–21], where their most well-
known product is ChatGPT. On the other hand, the Transformer encoder was adopted in
Bidirectional Encoder Representations from Transformer (BERT) [4] and its many variants.
The encoder is designed to learn embeddings for various predictive tasks, so we take the
Transformer encoder to address the task of fire prediction.

Figure 2 depicts the structure of our encoder-based model. The model takes a se-
quence of S-dimensional vectors RWin×S as an input, and the S-dimensional vectors are
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firstly mapped to another h-dimensional representation space through the linear layer.
Note that RWin×S is the input matrix in the Equation (1), where the Win is the input window
size; please refer to Figure 1 for an example of window size. The positional encoding (PE)
of the Transformer is applied to the vectors, and they are passed to the stack of encoders. If
we regard the PE as a function, then it takes a position index as an input and generates a
real-number vector that represents the positional information. The generated real-number
vector (i.e., position vector) usually takes the same shape of the input embedding vectors;
in this paper, the position vector will be the h-dimensional vector so that it can be combined
with the h-dimensional embedding vector generated by the linear layer through arbitrary
function (e.g., element-wise addition). The PE allows it to consider the positional infor-
mation of the sensor values so that it grasps the sequential patterns of the sequence. The
Transformer encoder has a ‘multi-head self-attention’ mechanism, where the self-attention
analyzes pair-wise relations between any pairs of a given sequence, and the multi-head
enables it to analyze various types of relations. Suppose the encoder takes h-dimensional
vector as an input, then the encoder generates the h-dimensional vector as an output. This
allows a stacked encoder architecture. The number of encoder layers L depends on the task
complexity. The left-most representation generated from the last encoder layer is finally
delivered to the output layer for the prediction. The output layer dimension depends on the
number of classes. The output layer can be followed by a Softmax function for multi-class
classification. The model structure is basically similar to the original Transformer encoder.
The major difference is that our model takes the real-number feature vectors, so it does not
have any embedding layer (i.e., look-up table) and just linearly converts the vectors into
h-dimensional vectors. That is, the embedding layer of original Transformer takes tokens
(i.e., categorical values) as input, whereas our model takes sensor values (i.e., numerical
values) as input, and the linear layer projects the sensor values into the h-dimensional
space. Another difference is that our model is designed for the classification task, so it has
the output layer on top of the encoder stack.

Figure 2. Model structure.
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One may ask why do we need to choose the Transformer encoder for the fire pre-
diction using the time-series data (i.e., sequences of multiple sensor values). Instead of
the Transformer, there are some alternatives for the sequence analysis; for example, long
short-term memory (LSTM) [1] and Gated Recurrent Unit (GRU) [2] are known to be
effective in analyzing sequential patterns, so they probably have a strong potential in
the fire prediction task. Although these alternatives have shown quite successful perfor-
mance on tasks of sequential data, the Transformer exhibited better performance in recent
studies [22–25]. The reason is the multi-head self-attention mechanism of the Transformer,
which enables to better comprehend contextual information in the input sequence and to
model long-term dependencies. Some studies report that the RNN models (e.g., LSTM
and GRU) outperform the Transformer [26]. However, we found that there are no studies
that have exploited Transformer for the fire forecasting task, so we conduct experiments to
compare the Transformer with other models, including RNNs.

4. Experiment
4.1. Dataset

Two datasets are used for experiments in this paper. The first dataset is obtained from
NIST report of test FR 4016 (https://www.nist.gov/el/nist-report-test-fr-4016, accessed on
4 April 2024), where it provides 96∼130 feature values (i.e., 96 ≤ S ≤ 130) collected in a
manufactured house and a two-story house. The features correspond to various sensors of
temperature, CO, CO2, O2, smoke, etc. The ‘NIST’ dataset contains several files, each of
which has feature values collected from a distinct room. We utilized only 96 features that
commonly appeared in all files. We observed that five files (e.g., sdc01, sdc03, sdc04, sdc05,
and sdc06) have different sampling rates (e.g., 5 s), so we discarded them. The number of
remaining files is 22, and their sampling rate RNIST is 2 s. The ‘TIME’ column of the dataset
indicates the relative time based on the time of fire; for example, ‘TIME = −3’ means the
corresponding instance is obtained 3 s before the fire, whereas ‘TIME = 5’ represents that
the instance is obtained 5 s after the fire. We generated the ‘label’ column, and set o = to
‘normal’ for instances if TIME < 0, whereas o = ‘fire’ when TIME ≥ 0; the task of the NIST
dataset is binary classification. Please refer to the official web page for more details.

The second dataset, denoted as the ‘Pascal’ dataset in this paper, is collected in a
standard EN 54 test room [27]. It contains a single file that has 16 columns, where the
‘ternary label’ ∈ {background(normal), nuisance, fire} is used as a label; the task of the
Pascal dataset is ternary classification. The ‘nuisance’ indicates the activation of the fire
alarm, caused by mechanical failure, malfunction, improper installation, lack of proper
maintenance, or any other reason. It has 11 features (i.e., S = 11) of several different sensors,
including CO, CO2, H2, humidity, temperature, etc. We found that the sampling rate RPascal
is 1.11200 s in average. Please refer to the official web page (https://data.mendeley.com/
datasets/npk2zcm85h/1, accessed on 4 April 2024) of the dataset for more details.

For experiments, we defined the input as S-dimensional feature vectors for 60 s. The
sampling rates of NIST and Pascal datasets are 2 s and nearly 1 s, respectively, so the
Win is 30 and 60 for the NIST and Pascal datasets, respectively. The output is defined as
a label after 300 s, so Wout is 150 and 300 for the NIST and Pascal datasets, respectively.
This setting is based on the report that the first 5 min is important to prevent severe fire
damage [28]; it will be greatly helpful if we can secure another 5 min. From the two original
datasets, we randomly extracted samples, and those are denoted as DNIST and DPascal ,
where D· = {(Fi, oi) : 1 ≤ i ≤ |D·|}. The input matrix of i-th sample Fi = RWin×S. The
i-th output oi ∈{fire, normal} for the DNIST , whereas oi ∈ {fire, nuisance, normal} for the
DPascal . Table 1 summarizes the statistics of the sampled datasets. The models learn from
the training samples, and make a prediction for each test sample. For all experiments, we
took 10% of the training set as a validation set for a grid searching.

https://www.nist.gov/el/nist-report-test-fr-4016
https://data.mendeley.com/datasets/npk2zcm85h/1
https://data.mendeley.com/datasets/npk2zcm85h/1
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Table 1. Dataset statistics.

File Names of the Original Dataset Number of Samples

NIST Train
sdc02, sdc08, sdc11, sdc12, sdc13, sdc30, sdc31, sdc34, sdc35, normal:fire = 873:586

sdc36, sdc37, sdc38, sdc39, sdc40, sdc41

Test sdc07, sdc09, sdc10, sdc14, sdc15, sdc32, sdc33 normal:fire = 112:113

Pascal Train Indoor Fire Dataset with Distributed Multi-Sensor Nodes normal:nuisance:fire = 3813: 199:578
Test normal:nuisance:fire = 416:21:66

4.2. Result

We compared our model with other machine learning (ML) models such as support
vector machine (SVM) [9] and random forest (RF) [29]. For these models, we flattened the
matrix RWin×S into K-dimensional vector where K = Win × S. By the grid searching, we
found no performance variation with different hyper-parameter settings of the SVM, so we
followed the default setting (e.g., 1.0 for the regularization parameter C, RBF kernel with
a scaled coefficient, and 1 × 10−3 tolerance for the stopping criterion). On the other hand,
the RM gave the best performance when the number of estimators was 200, and the other
remaining hyper-parameters followed the default setting (e.g., gini criterion, unlimited depth,
and minimum samples of a leaf is 1). We also conducted experiments with multi-layered
GRU, where the dimension of the hidden layer was 128. We used ‘Scikit-learn’ and ‘PyTorch’
packages to implement machine learning models and deep learning models, respectively.

Table 2 describes the performance of the models on DNIST , where the metric is the
overall accuracy, false positive rate (FPR), true positive rate (TPR), and TPR-FPR. All
results are averages of three independent runs. For our model, the Transformer encoder
stack, we varied the number of encoder layers from 1 to 8. The dimension of hidden
representation is 32, the embedding dimension is 128, and the number of heads is 4. The
results in Table 2 demonstrate that our models generally outperform the ML models and the
GRU. This is consistent with previous studies that have shown performance improvement
by Transformers; the multi-head self-attention mechanism of Transformer allowed to
better comprehend the sequential patterns underlying the time-series sensor values. In
other words, the multi-head self-attention mechanism extracts pair-wise relations from
the sequences, and the multi-layered encoder grasps high-level relations or semantics,
contributing to the performance improvement. Our model gave the best results when
the number of layers was four. For fair comparison, we made the GRU have the same
number of layers. We employed the cross-entropy loss for training GRU and Transformer
encoder stacks. Equation (2) represents the cross-entropy loss, where p· and q· indicate
a predicted distribution and one-hot correct vector (i.e., gold vector), respectively. The
number of epochs is 15 for 4-layered GRU, and 40∼55 for Transformer encoder stacks.
We employed the Adam optimizer [30] with an initial learning rate 0.0001, and early-stop
strategy with five patience steps. The size of mini batches was 32. The four-layered GRU
has 384 K trainable parameters, while the Transformer encoder stack of four layers has
312 K trainable parameters:

L = −
h

∑
k=1

qk log(pk) (2)

Table 3 summarizes the experimental results on DPascal . In this table, the RF gives
the best performance, and the two-layered GRU shows a comparable performance to the
Transformer encoder stacks. The reason for this result is the complexity of the dataset. That
is, the feature dimensions of DNIST and DPascal are 96 and 11, respectively, meaning that the
DNIST has more complex sequential patterns. Such a complexity gap between the datasets
caused the performance gap; the overall performance on DNIST is much lower than that
of DPascal . The Transformer encoder stack gave its best performance when the number of
layers was two, which implies that the two-layered structure was enough to analyze the
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sequential patterns of DPascal . In other words, the complexity of DPascal is relatively low,
so the shallow structure (i.e., two-layered) was enough to analyze such simple sequential
patterns of the dataset. To summarize, for a simple and easy task, the ML models may
outperform the deep learning (DL) models, including Transformers. On the other hand,
the Transformer-based model has a strong potential for the dataset of high complexity.

Table 2. Experimental results with DNIST , where FPR and TPR represent the false positive rate and
true positive rate of the ‘fire’ class, respectively.

Model Accuracy FPR TPR TPR-FPR

SVM 0.6281 0.6964 0.9499 0.2535
RF (200 estimators) 0.6400 0.4256 0.7050 0.2794

GRU (4 layers) 0.6089 0.7679 0.9823 0.2144
Transformer encoder stack (1 layer) 0.6948 0.4911 0.8791 0.3880
Transformer encoder stack (2 layer) 0.6518 0.6101 0.9115 0.3014
Transformer encoder stack (4 layer) 0.6963 0.4405 0.8319 0.3914
Transformer encoder stack (6 layer) 0.6444 0.5119 0.7994 0.2875
Transformer encoder stack (8 layer) 0.6652 0.2798 0.6106 0.3308

We also examined the inference time of the proposed model because it would not be
applicable to real-world applications if it takes too long to predict potential fires. We found
that the eight-layered Transformer encoder took 0.54 s for 503 data instances, meaning that
it will work for predicting fires in five minutes.

Table 3. Experimental results with DPascal , where FPR and TPR represent the false positive rate and
true positive rate of the ‘fire’ class, respectively.

Model Accuracy FPR TPR TPR-FPR

SVM 0.9616 0.0091 0.8125 0.8034
RF (200 estimators) 0.9907 0.0023 0.9688 0.9665

GRU (2 layers) 0.9607 0.0334 0.9167 0.8833
Transformer encoder stack (1 layer) 0.9734 0.0091 0.8594 0.8503
Transformer encoder stack (2 layer) 0.9766 0.0091 0.8958 0.8867
Transformer encoder stack (4 layer) 0.9726 0.0091 0.8698 0.8607
Transformer encoder stack (6 layer) 0.9766 0.0114 0.8906 0.8792
Transformer encoder stack (8 layer) 0.9744 0.0099 0.8802 0.8703

5. Conclusions

We introduced a new way that exploits the Transformer encoders to address the fire
prediction task using time-series values collected from multiple sensors. By empirical
results, we showed that the traditional machine learning models are better than deep
learning models if the given dataset is simple. Our model exhibited better performance for
the complex dataset (i.e., NIST dataset), which indicates that it has a greater potential for
real-world applications that probably have complex patterns and scenarios. Nevertheless,
there is big room for performance improvement, especially in the NIST dataset. We believe
that our work contributes to not only fire prediction but also other various prediction tasks,
such as risk prediction for patients or health-care services. We also believe that this work
may contribute to developing fire surveillance system using autonomous vehicles or drones.
We are working on collecting more data from sensors, and the dataset will be manually
annotated for the fire prediction task. We will also develop pre-trained Transformer-based
models with a large dataset, and investigate the combination of Transformer and other
models for more performance improvement.
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