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Abstract: Due to the global population increase and the recovery of agricultural demand after the
COVID-19 pandemic, the importance of agricultural automation and autonomous agricultural vehi-
cles is growing. Fallen person detection is critical to preventing fatal accidents during autonomous
agricultural vehicle operations. However, there is a challenge due to the relatively limited dataset for
fallen persons in off-road environments compared to on-road pedestrian datasets. To enhance the
generalization performance of fallen person detection off-road using object detection technology, data
augmentation is necessary. This paper proposes a data augmentation technique called Automated
Region of Interest Copy-Paste (ARCP) to address the issue of data scarcity. The technique involves
copying real fallen person objects obtained from public source datasets and then pasting the objects
onto a background off-road dataset. Segmentation annotations for these objects are generated using
YOLOv8x-seg and Grounded-Segment-Anything, respectively. The proposed algorithm is then ap-
plied to automatically produce augmented data based on the generated segmentation annotations.
The technique encompasses segmentation annotation generation, Intersection over Union-based
segment setting, and Region of Interest configuration. When the ARCP technique is applied, sig-
nificant improvements in detection accuracy are observed for two state-of-the-art object detectors:
anchor-based YOLOv7x and anchor-free YOLOv8x, showing an increase of 17.8% (from 77.8% to
95.6%) and 12.4% (from 83.8% to 96.2%), respectively. This suggests high applicability for addressing
the challenges of limited datasets in off-road environments and is expected to have a significant
impact on the advancement of object detection technology in the agricultural industry.

Keywords: autonomous agricultural vehicles; fallen person detection; data augmentation; automated
region of interest

1. Introduction

The continuous increase in the global population and the rapid rise in demand for
agricultural products are driving the need for higher productivity in the global agriculture
industry. According to statistics from the International Food and Agriculture Organization,
the world’s population is reported to reach around 9.7 billion by 2050 [1]. Simultaneously,
with the recovery of demand for agricultural products after the COVID-19 pandemic, there
has been a sharp increase in the demand for agricultural products [2], which indicates the
necessity for increased agricultural production. However, challenges such as the lack of
interest from the younger generation in developed countries, lower income compared to
office jobs, labor shortages due to the difficulties in farming, and the increasing average
age of the global agricultural population, as reported in worldwide agricultural statistics,
are expected to have a negative impact on agricultural productivity [3]. Currently, agricul-
tural vehicles are specialized for agricultural work challenges for older workers, making
prolonged tasks difficult and requiring frequent physical movement to check the work
status, which, in turn, increases the risk of collisions and overturn accidents with other
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workers or obstacles in the forward direction [4]. Although agriculture is a less recognized
occupation, it is one of the most hazardous professions, and each year, numerous fatalities
occur due to accidents related to agricultural vehicles [5]. To address these challenges, there
is a growing need for autonomous agricultural vehicles [6]. Research in the object detection
field is active for autonomous agricultural vehicles [7].

Autonomous agricultural vehicles enable automation, enhance productivity, and
work quality, and contribute to cost savings through reduced labor input. Furthermore,
it can perform tasks that are either impossible with present vehicles or dangerous for
people, presenting possibilities for increased agricultural productivity and meeting the
growing food demand of the rising world population. As the demand for autonomous
agricultural vehicles increases, development is particularly focused on tractors, which are
used in agriculture throughout the seasons. The Society of Automotive Engineers has
defined and classified the autonomy levels of autonomous vehicles from Level 0 to Level
5, with Level 3 and above eliminating the driver’s responsibility for Object and Event
Detection and Response during normal operation. In contrast to autonomous vehicles,
the definition of autonomy levels for autonomous agricultural vehicles emphasizes tasks
related to farming separately from driving and focuses on handling situations in off-road
environments rather than on roads. To raise the autonomy level beyond Level 3, it is crucial
to establish a surrounding environmental perception system for safety in autonomous
agricultural vehicles.

This paper aims to contribute to an effective nearby environmental perception system
by enhancing fallen-person detection monitoring using object detection technology. This is
particularly beneficial in preventing fatal accidents caused by unexpected falls of elderly
workers during work, due to illness, overconsumption, fatigue, or collisions with a vehicle.
To effectively detect fallen persons in object detection technology, the issue of data scarcity
needs to be addressed. One major problem arising from data scarcity is the degradation
of generalization performance. Generalization performance refers to the model’s perfor-
mance on data not observed during the learning process. Degradation of generalization
performance leads to the problem of overfitting, where the model excessively adapts to the
limited training dataset. Off-road environmental data for fallen people are very limited
compared to on-road, and detection accuracy is low on test sets that were not observed
during training. To overcome this, data augmentation techniques are needed to improve
generalization performance [8]. Adequate data generated through data augmentation helps
object detectors accurately detect objects in various situations.

In this paper, we propose a new data augmentation technique called Automated
Region of Interest Copy-Paste (ARCP), modifying the Copy-Paste [9]. Unlike conventional
Copy-Paste, which randomly pastes objects from various source images into a background
image for a specific object in the source image, ARCP automatically sets the Region of
Interest (RoI) and pastes objects from multiple source images into the background image
within that RoI. This technique works well in off-road environments without lane markings,
as shown in Figure 1, and automatically sets RoIs in various environments. As shown in
Figure 1, the yellow trapezoid represents the area symmetrically extended left and right
after connecting the minimum and maximum bounding boxes within the interval. The
purple point is the coordinate of the minimum bounding box. The red line is the minimum
y-coordinate of the RoI set to reflect the tractor’s characteristic of having less need to detect
people far away. The blue line is the y-coordinate of the bonnet. The area of the yellow
trapezoid between the red and blue lines represents the RoI to be pasted, and its size is
adjusted according to the ground truth.

Furthermore, this study utilizes the size and coordinates based on ground truth
within segments of consecutive frames, enabling the utilization of any dataset based on
segment-containing videos. For instance, crop datasets from agricultural environments and
autonomous driving on-road datasets can be utilized. This paper specifically focuses on
datasets concerning fallen person. Using Copy-Paste and instance segmentation models,
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you can automatically set realistic RoIs for any video-based data set, and it works in the
real world.

The main contribution of this paper is to improve the accuracy of fallen person de-
tection by Copy-Paste the scarce fallen person dataset in an off-road environment into the
RoI through the proposed ARCP technique to build an ambient environment recognition
system. There is no previous study that augments fallen-person data in an off-road envi-
ronment. In addition, an existing study [10] that sets the RoI of a hazardous area based on
the braking distance of a tractor in an off-road environment suffers from the inconvenience
of requiring a manual RoI setting for each vehicle. In contrast, in this paper, we propose a
technique to set the RoI automatically.
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Figure 1. From background off-road images, augmented data for training is produced using the
proposed ARCP. The black arrow indicates the input of the original images, and the orange arrow
indicates the output of the augmented images to which this paper’s algorithm has been applied. Here
the actual output image does not contain any dot and lines.

2. Related Work
2.1. Object Detection in Off-Road Environment

While there has been extensive research on object detection in on-road scenarios,
and thus the corresponding public datasets, particularly in the context of autonomous
driving applications [11–25], there is a noticeable scarcity of studies addressing object
detection in off-road environments due to data limitations. For instance, a study by [26]
evaluates a person detection algorithm in off-road environments, considering occlusion
and non-standard poses. This study tests three image-only algorithms (Aggregate Channel
Features, Deformable Parts Model, the Convolutional Neural Network) and discusses the
sensitivity of performance metrics, particularly in high background texture and occlusion.
Another study by [10] focuses on person hazard prevention, proposing new metrics for
people detection in construction sites and off-road environments. It introduces safety-aware
metrics combining practical variables related to person safety, an extension of the stixel
algorithm, and a new detection robustness test based on a multi-object tracker. Meanwhile,
ref. [27] explores computer vision architectures for real-time object detection in off-road
environments, emphasizing multimodal deep fusion and sensor processing. It compares the
SqueezeSeg architecture with a focus on data collection and semantic ground truth obtained
using the Mississippi State University Autonomous Vehicle Simulator, demonstrating
improvements in SqueezeSeg performance metrics. In contrast, ref. [28] introduces a
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domain-randomized synthetic image generator for training deep neural networks in the
context of vehicle detection in off-road environments. This paper particularly focuses on
off-road army tank detection.

There are no published studies addressing the improvement in detection accuracy
for fallen persons in off-road environments. For fallen persons (i.e., object classes that
are not often seen on-road as well as off-road), the synthetic quality of “generative” AI,
such as Generative Adversarial Networks (GAN) [29] or the diffusion model [30] may
not be satisfied. In this context, our approach proposes a data augmentation technique
utilizing individual segmentation methods to enhance the detection accuracy for “real”
fallen persons in off-road environments.

2.2. Data Augmentation for Object Detection

Data augmentation serves various purposes to enhance the generalization perfor-
mance of image processing applications [31]. Particularly, modern object detectors apply
not only basic augmentation techniques, such as random brightness, contrast, scaling, crop-
ping, flipping, and rotation, but also advanced augmentation techniques, like MixUp [32],
CutMix [33], and Mosaic [34]. Furthermore, there is a data augmentation technology called
RandAug [35], which evolved from AutoAugment. This technique involves generating data
by randomly selecting from a list of image transformations, including cropping, scaling,
rotation, and color adjustments. Unlike the previous AutoAug, RandAug proposes a more
competitive technique through parameterization without a separate data augmentation
policy. On the other hand, research on synthetic images using GAN and the diffusion
model has also been conducted [36–43]. Especially, the diffusion model, a probabilistic
generative model that generates and restores noise during training to create images, is
recently used for image generation because it is well known that the synthetic qualities of
diffusion models are much better than those of GAN [44].

Recently, the data augmentation technique specific to individual segmentation, Copy-
Paste, has been actively researched across various application domains due to its intuitive
nature and high performance [45–47]. It involves augmenting data by pasting objects
from one real image onto a different background image after various transformations
(crop, resize, and rotate). This technique is utilized to enhance the generalization per-
formance of learning models in situations where acquiring data is challenging. With the
expected advancement of Copy-Paste, it is anticipated that the high patch-level realism
with other datasets will contribute to improving the generalization performance of learning
models [48].

2.3. Instance Segmentation

Instance segmentation is a computer vision task that involves identifying and clas-
sifying objects based on pixels within an image, including the process of detecting the
boundaries of each object. The goal of instance segmentation is to generate pixel-level
segmentation annotations for an image, where each pixel is assigned to a specific object
instance. This approach effectively addresses the challenge of manually creating a signif-
icant number of segmentation annotations for datasets by automating the generation of
instance-specific annotations. To create an instance segmentation model that generates
high-accuracy segmentation annotations, pre-training on a large-scale dataset with high
generalization performance is essential. Commonly used pre-trained models and datasets
include COCO [49] and Segment Anything (SAM) [50].

Grounded-Segment-Anything (Grounded-SAM) [51] is a project that combines the
strengths of Grounding DINO [52] and SAM to address complex problems with the goal of
individual segmentation. This paper utilizes Grounded-SAM, combining the advantages
of Grounding DINO in enabling object detection for new classes without segmentation
annotations and the benefits of SAM in leveraging a large dataset, for instance, segmentation
models. This combination is employed for data augmentation in object detection.
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In contrast to other studies that require a manual element to set the RoI, this study
differs by automatically setting the size and coordinates of the RoI and proposes to utilize
the RoI automatically combined with traditional Copy-Paste using a modern instance
segmentation model.

3. Materials and Methods
3.1. Framework

Figure 2 presents the overall framework of the new data augmentation proposed in
this paper. The goal is to augment data for fallen person detection in off-road environments
by utilizing segmentation annotations generated by an instance segmentation model. The
newly proposed ARCP algorithm is then employed to create synthetic images based on
these segmentation annotations. Multiple source images are used to generate segmentation
annotations for standing or fallen persons using the YOLOv8x-seg [53] instance segmen-
tation model pre-trained on the COCO dataset. Subsequently, the background off-road
images are employed with Grounded-SAM to create segmentation annotations for the
bonnet. Using these generated segmentation annotations, the proposed ARCP algorithm
automatically generates RoIs. Finally, objects to be pasted within the generated RoIs are
calculated to avoid overlapping, and the images are automatically augmented to create
training off-road images that contribute to the learning process.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 21 
 

 

segmentation annotations and the benefits of SAM in leveraging a large dataset, for in-
stance, segmentation models. This combination is employed for data augmentation in ob-
ject detection. 

In contrast to other studies that require a manual element to set the RoI, this study 
differs by automatically setting the size and coordinates of the RoI and proposes to utilize 
the RoI automatically combined with traditional Copy-Paste using a modern instance seg-
mentation model. 

3. Materials and Methods 
3.1. Framework 

Figure 2 presents the overall framework of the new data augmentation proposed in 
this paper. The goal is to augment data for fallen person detection in off-road environ-
ments by utilizing segmentation annotations generated by an instance segmentation 
model. The newly proposed ARCP algorithm is then employed to create synthetic images 
based on these segmentation annotations. Multiple source images are used to generate 
segmentation annotations for standing or fallen persons using the YOLOv8x-seg [53] in-
stance segmentation model pre-trained on the COCO dataset. Subsequently, the back-
ground off-road images are employed with Grounded-SAM to create segmentation anno-
tations for the bonnet. Using these generated segmentation annotations, the proposed 
ARCP algorithm automatically generates RoIs. Finally, objects to be pasted within the 
generated RoIs are calculated to avoid overlapping, and the images are automatically aug-
mented to create training off-road images that contribute to the learning process. 

 

Figure 2. Framework of the ARCP pipeline. Objects with yellow dashed boxes in the augmented 
image represent objects pasted from the source images to the background image. 

3.2. Automated RoI Copy-Paste (ARCP) 
Figure 3 depicts a collection of videos featuring people in various poses such as jump-

ing, sitting, standing, and fallen positions. These videos were captured at different loca-
tions and time frames, and as they are not from continuous time periods, the RoI changes 
with scene transitions. Therefore, it is necessary to identify the points where scenes tran-
sition to effectively handle the changing RoIs. 

Figure 2. Framework of the ARCP pipeline. Objects with yellow dashed boxes in the augmented
image represent objects pasted from the source images to the background image.

3.2. Automated RoI Copy-Paste (ARCP)

Figure 3 depicts a collection of videos featuring people in various poses such as
jumping, sitting, standing, and fallen positions. These videos were captured at different
locations and time frames, and as they are not from continuous time periods, the RoI
changes with scene transitions. Therefore, it is necessary to identify the points where scenes
transition to effectively handle the changing RoIs.

Assuming the t frame is the current video frame and the t + 1 frame is the next video
frame, the ground truth annotations for both frames are utilized. If the Intersection over
Union (IoU) value for the ground truth boxes of the two frames is greater than 0, indicating
an overlap, the segments are considered to belong to the same scene, and the corresponding
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segment is set. Within each acquired segment, the RoI is set using information from the
maximum and minimum bounding boxes of all boxes in that segment.
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Figure 3. Various poses in scene composition for scene-by-scene in the NREC Person Detection
Dataset [54]. (a) image containing an object in a running pose, (b) image containing an object in a
sitting pose, (c) image containing an object in a standing pose, and (d) image containing an object in a
fallen pose.

Subsequently, using Grounded-SAM, the mask for the bonnet is created, and the
y-coordinate of this mask is determined. Using this information, the intersection point P
between the maximum bounding box, bboxmax, as shown in Figure 4, and the y-coordinate of
the bonnet, bonnety, is calculated. Next, a trapezoid is formed by symmetrically extending
a line connecting the purple point, bboxmin, and P. Then, using Equation (1), the RoIratio
is determined based on the ratio of the length of the base to the length of the top of this
trapezoid. Iw represents the width of the image, and bboxmin_x and bboxmax_x are the x-
coordinates of bboxmin and bboxmax, respectively. The red line in Figure 4 represents the RoI
threshold, determining the top of the RoI.

RoIratio =

∣∣∣∣ (I w − bboxmin_x)− bboxmin_x

(I w − bboxmax_x)− bboxmax_x

∣∣∣∣ (1)

However, as depicted in Figure 5, when the bboxmin_x of a person appearing within
the segment is closer to the left or right edge, the trapezoid becomes more rectangular.
Consequently, the RoIratio value increases. This results in a higher RoI threshold value,
RoIthr, calculated in Equation (3), leading to a smaller range for the RoI. This issue arises
even in scenarios where there is a potential risk of collision with the tractor, as the RoI
cannot be properly set.
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Figure 5. Complement the problem of Equation (1) using Equation (2).

To address this issue, Equation (2) is employed. When the RoIratio value exceeds 0.5, the
operation (1 − RoIratio) is performed. This means that as the RoIratio increases, the reduction
rate of the RoI area after the halfway point is lessened, effectively compensating for the
problem described earlier.

RoIratio = 1 − RoIratio, RoIratio > 0.5 (2)

Next, Equation (3) is used to calculate the new y-coordinate, RoIthr, for the RoI. RoIthr
represents the minimum y-coordinate for the RoI, focusing on the necessary area for data
augmentation in a tractor environment where a short braking distance means there is less
needed to detect objects far away. In this equation, bonnety corresponds to the y-coordinate
of the bonnet, and bboxmin_y is the y-coordinate of bboxmin.

RoIthr =
∣∣bonnety − bboxmin_y

∣∣ ∗ RoIratio + bboxmin_y (3)
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RoIthr and the line where the trapezoid intersects with RoIthr are set on the top side of
the RoI, denoted as RoItop. A trapezoid is then formed by connecting the previously obtained
RoItop and RoIbot, excluding the areas occupied by the bonnet and the original person
bounding box. The algorithm for segmenting each segment and setting the maximum and
minimum bounding boxes is outlined in Algorithm 1.

Algorithm 1. Set Up Maximum and Minimum Bounding Boxes for Each Section

Input:
- ‘bg_imgs’: List of background images
- ‘bg_txts’: List of text files corresponding to ‘bg_imgs’

Output:
- ‘results’: Dictionary of containing bounding box statistics

For each ‘bg_img’ in ‘bg_imgs’ do
Open the corresponding file in ‘bg_txts’ and read lines into ‘bg_lines’

For each ‘bg_line’ in ‘bg_lines’ do
Parse ‘x’, ‘y’, ‘w’, ‘h’ as floats from ‘bg_line’
Adjust ‘y’ to (‘y’ − ‘h’/2)
Create ‘bbox’ as a tensor [‘x’, ‘y’, ‘w’, ‘h’]
Calculate ‘area’ as ‘w’ * ‘h’
Increment ‘count’
Update bounding box statistics:

‘ymin’, ‘ymax’, ‘bboxmin’, ‘bboxmax’ based on ‘y’
‘areamax’, ‘widthmax’, ‘heightmax’, ‘widthmin’, ‘heightmin’ based on ‘w’, ‘h’, and ‘area’

If ‘prev_bbox’ exists, then
Calculate ‘iou’

If ‘iou’ equals 0, then
Store current statistics in ‘results’ for ‘section_num’
Reset statistics
Increment ‘section_num’

Set ‘prev_bbox’ to ‘bbox’

Store final statistics in ‘results’ for the last ‘section_num’

Return ‘results’

Here is the proposed algorithm for pasting standing and fallen individuals using the
maximum and minimum bounding box information obtained from Algorithm 1. Unlike
conventional Copy-Paste, this algorithm pastes objects from multiple source images within
the RoI using a specified maximum paste object value. This value is determined for each
augmented image to ensure that it does not exceed the maximum limit and does not overlap.
The algorithm is outlined in Algorithm 2.

Whenever the segment of the video changes, the bonnet mask image is generated
using the transformer-based model, Grounded-SAM. For the standing or fallen person to
be pasted within the RoI, we apply a rotation of 90, 180, or 270 degrees with a probability
of 0.25, and a flip transformation is applied with a probability of 0.5 for both vertical
and horizontal directions. This enhances generalization performance by accommodating
various data transformations. During pasting, alpha blending is applied to improve the
patch-level representation within the bounding box, aiming to enhance the overall visual
quality [48].
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Algorithm 2. Copy-Paste Objects from Multiple Images

Input:
- ‘results’: Output of Algorithm 1
- ‘fallen_person_imgs’: List of fallen person images

Output:
- Augmented image

For each ‘bg_img’ in ‘bg_imgs’ do
Initialize an ‘occlusion_mask’ to 0
Iw, Ih = size of ‘bg_img’
Open corresponding file in ‘bg_txts’, read lines into ‘bg_lines’

For each ‘bg_line’ in ‘bg_lines’ do
Update the corresponding ‘occlusion_mask’ to 255

If the section changes, then
Update ‘heightmax’, ‘widthmax’, ‘heightmin’, ‘widthmin’, ‘areamax’
Create a ‘bonnet’ mask with Grounded-SAM

RoIratio =
∣∣∣ (I w−bboxmin_x)− bboxmin_x
(I w−bboxmax_x)− bboxmax_x

∣∣∣
If ‘RoIratio’ > 0.5, then

RoIratio = 1 − RoIratio

RoIthr =
∣∣∣bonnety − bboxmin_y

∣∣∣ ∗ RoIratio + bboxmin_y

For each ‘fallen_person_img’ in ‘fallen_person_imgs’ do
Break if you encounter the maximum paste object value during the loop
Create a ‘fallen person’ mask with the YOLOv8x-seg
Adjust position and size for fallen person within RoI
Randomly rotate ‘fallen person’ with a probability of 0.25
Each ‘fallen person’ is flipped vertically and horizontally with a probability of 0.5
if ‘occlusion_mask’ exists at the current position, then

continue
Paste a ‘fallen person’ into the background image
Apply alpha blending

Save the augmented image

4. Experimental Results and Discussion
4.1. Experimental Setup

In this paper, the NREC Person Detection Dataset [54], designed for detecting person
objects in off-road environments, was utilized as the background image. The source
datasets included the Fall Detection Dataset [55], the Fall Detection Dataset [56], and the
UR Fall Detection Dataset [57], encompassing behavioral datasets with both fallen and
standing person. The NREC Person Detection Dataset consists of images with a single
person object, and the original image size is 720 × 480 pixels. For training and testing,
a total of 28,479 images (1187 images with fallen persons) were selected for the training
set, 449 images with fallen persons for the validation set, and 992 images for the test
set. The standing and fallen person datasets from the Fall Detection Dataset, the Fall
Detection Dataset, the UR Fall Detection Dataset were selected for training, consisting of
183, 2367, and 4576 images, respectively, totaling 7126 images. Additionally, to account for
the characteristics of short braking distance tractors and to exclude small objects that may
not be discernible to the person eye due to their distance from the camera, objects with
small sizes were excluded. For a more accurate evaluation of the object detector, objects
outside the RoI were also excluded for both the validation and test sets.
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The object detectors used in the experiments were anchor-based YOLOv7x [58] and
anchor-free YOLOv8x. Particularly, YOLOv7x and YOLOv8x apply not only basic aug-
mentation techniques such as random brightness, contrast, scaling, cropping, flipping, and
rotation but also advanced augmentation techniques like MixUp, CutMix, and Mosaic.
In the experiment, the maximum paste object value, which denotes the value for pasting
objects onto the background images without overlapping, was optimized by experiments,
and a GeForce RTX 2080 Ti was used.

4.2. Evaluation Metrics

In the application of object detection technology, the ratio of the detected bounding
box that matches the annotation bounding box is referred to as the IoU. If IoU is 50% or
higher, it is categorized as True Positive (TP), and if it is less than 50%, it is categorized
as False Positive (FP). Additionally, the case where the annotation bounding box is not
detected is referred to as False Negative (FN). The evaluation metric provided by Precision
is given by Equation (4), and the evaluation metric for Recall is given by Equation (5).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Average Precision (AP) is the area under the Precision-Recall curve, with the x-axis
represents Recall, and the y-axis representing Precision. It is widely used as an evaluation
metric in many computer vision applications to quantitatively assess performance, using
both Recall and Precision. The F1 Score is an evaluation metric that assigns equal weight
to Precision and Recall, providing a single numerical measure of accuracy. Its equation is
provided in Equation (6).

F1 Score = 2 ∗ Precision ∗ Recall
Pricision + Recall

(6)

4.3. Experimental Analysis

Figure 6 represents augmented images of a fallen person object using the RandAug,
X-Paste, Copy-Paste, and ARCP. The augmented image with RandAug, as mentioned below,
is one of the images that has undergone several techniques using predefined parameters.
This image has been modified with color adjustment and horizontal flipping. Due to the
use of basic augmentation techniques with the same existing object, there is a limitation
to the features that can be created from a dataset with a small number of objects. The
quality of synthetic images created with X-Paste from augmented images with X-Paste
is unsatisfactory. This issue arises from an insufficient dataset for the fallen person class
during pre-learning, which increases the likelihood of learning incorrect features. Due to
the limitations of the stable diffusion model in generating fallen person objects with limited
training data, in the experiments, a total of 1296 synthetic images were used when pasting
with X-Paste. Additionally, augmented images with Copy-Paste are randomly pasted at
various coordinates and sizes, which raises the possibility of learning features of incorrect
sizes due to the wrong background and placement within the box. In contrast, the proposed
ARCP can learn features of the correct coordinates and size within the RoI.
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Figure 6. Illustration of Augmented Images from a Background Image (the NREC Person Detection
Dataset [54]), with RandAug [35], X-Paste [42], Copy-Paste [9], and the proposed ARCP. Objects with
yellow dashed boxes in the augmented image represent objects pasted from the source images to the
background image.

Tables 1 and 2 compare the results of models trained on datasets augmented us-
ing existing data augmentation techniques and the proposed ARCP. The accuracy of the
YOLOv7x and YOLOv8x baselines was based on various data augmentation techniques
such as MixUp, CutMix, and Mosaic. Therefore, applying RandAug further did not signifi-
cantly improve accuracy. Additionally, a fallen person was not a commonly encountered
object class, so even when a diffusion model was applied like X-Paste, it did not yield
satisfactory quality in synthetic images, presenting a limitation. In contrast, Copy-Paste
and ARCP, which generated images of fallen people off-road by extracting from real images
of fallen people, measured relatively higher in accuracy.

Table 1. Accuracy in YOLOv7x [58] of data augmentation results among the RandAug [35],
X-Paste [42], Copy-Paste [9], and ARCP.

Model Precision↑
(%)

Recall↑
(%)

AP↑
(%)

F1 Score↑
(%)

YOLOv7x [58] 75.4 70.7 77.8 73.0
YOLOv7x w/RandAug [35] 93.0 76.2 87.0 83.8
YOLOv7x w/X-Paste [42] 79.0 79.1 84.0 79.0
YOLOv7x w/Copy-Paste [9] 84.9 82.9 88.7 83.9
YOLOv7x w/ARCP 97.3 88.6 95.6 92.7

* ↑ indicates that the higher the number, the better the performance. * Bold indicates the best number in this table.
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Table 2. Accuracy in YOLOv8x [53] of data augmentation results among the RandAug [35],
X-Paste [42], Copy-Paste [9], and ARCP.

Model Precision↑
(%)

Recall↑
(%)

AP↑
(%)

F1 Score↑
(%)

YOLOv8x [53] 87.9 75.0 83.8 80.9
YOLOv8x w/RandAug [35] 88.1 77.3 85.0 82.3
YOLOv8x w/X-Paste [42] 75.3 89.1 84.1 81.6
YOLOv8x w/Copy-Paste [9] 87.4 77.8 87.9 82.3
YOLOv8x w/ARCP 90.8 91.0 96.2 90.9

* ↑ indicates that the higher the number, the better the performance. * Bold indicates the best number in this table.

According to the experimental results presented in Table 1, as a result of applying
RandAug and X-Paste to YOLOv7x, both precision and recall were improved. Notably,
RandAug exhibited a more pronounced increase in precision compared to recall. In contrast,
while Copy-Paste and ARCP had lower increases in precision relative to recall compared to
RandAug, both techniques showed a more substantial enhancement in precision. Signifi-
cantly, ARCP achieved a considerable improvement with a precision of 97.3%. Additionally,
its recall rate was also higher at 88.6%, surpassing other data augmentation methods in
terms of overall accuracy. That is, when the ARCP was applied to the YOLOv7x model,
the detection accuracy improved by 17.8%, from 77.8% to 95.6%, compared to the baseline.
Additionally, when compared to the conventional Copy-Paste technique, the detection
accuracy was improved by 6.9%, from 88.7% to 95.6%.

On the contrary, YOLOv8x applied more data augmentation techniques by default
compared to YOLOv7x, resulting in a relatively higher measured accuracy for the baseline,
and similar improvement effects were observed for YOLOv8x (see Table 2). Compared to
the YOLOv8x baseline, RandAug slightly improved both precision and recall. On the other
hand, X-Paste decreased precision but significantly increased recall. Copy-Paste signifi-
cantly increased recall without decreasing precision, and ARCP significantly improved both
precision and recall. That is, when applying the ARCP to YOLOv8x, the detection accuracy
was improved by 12.4%, from 83.8% to 96.2%, compared to the baseline. Furthermore,
when compared to conventional Copy-Paste, the detection accuracy was improved by 8.3%,
from 87.9% to 96.2%.

Overall, YOLOv8 was designed with higher accuracy for detecting small objects
compared to YOLOv7. It features an anchor-based architecture, multi-scaling prediction,
and an improved backbone network. Consequently, in off-road environments where fallen
people are often small and obscured by trees and grass, YOLOv8 demonstrated a higher
baseline accuracy than YOLOv7. Furthermore, as evident from the results, it was observed
that YOLOv7x exhibited a higher increase in accuracy compared to YOLOv8x when data
augmentation was applied. This was evident as YOLOv8x reached over 70% baseline
accuracy in just 50 epochs, whereas YOLOv7x required 100 epochs to achieve the same
level of baseline accuracy above 70%. Additionally, the effectiveness of data augmentation
techniques such as RandAug, X-Paste, Copy-Paste, and ARCP was reduced in YOLOv8x
compared to YOLOv7x. Despite this, ARCP still delivered over 90% accuracy in terms of
the previously described AP for both YOLOv7x and YOLOv8x.

For a comparative analysis between YOLOv7x and YOLOv8x, we compared the
confidence scores of detection boxes for a test video detecting a fallen person using all
techniques. The confidence score is a measure of how reliable the predicted bounding box
is, expressed as a number between 0 and 1, with closer to 1 indicating higher confidence. In
YOLOv7x, the baseline obtained a confidence score of 0.64, RandAug 0.75, X-Paste 0.86,
Copy-Paste 0.92, and ARCP 0.98. Similarly, in YOLOv8x, the baseline obtained a score
of 0.83, RandAug 0.85, X-Paste 0.85, Copy-Paste 0.91, and ARCP 0.95 (refer to examples
in Figures 7 and 8). In this paper, the proposed method, ARCP, achieved the highest
confidence scores in both YOLOv7x and YOLOv8x, providing evidence of its superior
effectiveness among various data augmentation techniques.
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Figure 8. Detection results of YOLOv8x Baseline [53], RandAug [35], X-Paste [42], Copy-Paste [9],
and ARCP.

Finally, to visualize the extent to which the models trained with each data augmen-
tation technique focus on specific areas detecting fallen person, we compared images
visualized using the Grad-CAM [59] technique for a fallen person test image (see example
in Figures 9 and 10). As shown in the figure, the red areas indicate a stronger focus on the
corresponding features when generating results, while the blue areas suggest a weaker
emphasis. As shown in the figure below, the red areas indicate that the model’s features
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learned in that area have a stronger emphasis when generating results, while the blue areas
suggest a relatively weaker emphasis.
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Figure 9. Heat map comparison of YOLOv7x baseline [58], RandAug [35], X-Paste [42], Copy-Paste [9],
and ARCP with Grad-CAM. The yellow box represents the bounding box of the ground truth of the
test image. The red areas indicate a stronger focus on the corresponding features when generating
results, while the blue areas suggest a weaker emphasis.
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In the Grad-CAM shown in Figure 9, YOLOv7x demonstrated increases in both preci-
sion and recall across all data augmentations, using the lowest accuracy baseline, as seen in
Table 1. RandAug, excluding the proposed ARCP, showed a significant improvement in
precision as the width of the augmentation increased, displaying a spreading concentration
around objects as seen in Grad-CAM. Conversely, X-Paste exhibited roughly double the
increase in recall compared to precision, displaying the lowest accuracy among the com-
pared data augmentation techniques. Additionally, Copy-Paste showed the second-highest
accuracy in both YOLOv7x and YOLOv8x, with similar increases in precision and recall,
significantly reducing the focus on false detections around objects. This affirmed that
“real” objects were more beneficial than incorrectly generated objects due to data scarcity
in the stable diffusion model’s pre-training. Modifying Copy-Paste to paste ARCPs into
RoIs revealed a higher concentration within the RoI compared to other data augmentation
techniques concentrating around trees and bonnets outside the RoI. It showed the high-
est performance in both precision and recall, with precision showing a greater increase
than recall. Both YOLOv7x and YOLOv8x effectively centered their focus around objects,
notably reducing false detections in surrounding areas. YOLOv8x tended to exhibit a
wider distribution of yellow areas in Grad-CAM compared to YOLOv7x. Unlike YOLOv7x,
RandAug showed a lower increase in precision compared to recall, and while X-Paste’s
precision accuracy decreased significantly compared to the baseline, recall ranked second
after ARCP. Features of incorrect object learning, as shown in Figure 10, led to bonnets
being learned as human features, increasing false positives, and significantly decreasing
precision. Copy-Paste slightly decreased from the baseline in precision but showed a greater
increase in recall compared to precision. ARCP exhibited more focused concentration on
objects compared to Copy-Paste. Furthermore, unlike YOLOv7x, YOLOv8x showed a
larger increase in recall than precision with ARCP.

Among the various data augmentation techniques proposed in this paper, ARCP
achieved the highest recall at 88.6% (YOLOv7x) and 91.0% (YOLOv8x). However, to reduce
the incidence of the most critical safety incidents, such as fallen person, it is essential to
explore methods that prioritize improving recall to the maximum extent possible, even if it
results in a slight loss of precision. Thus, our method has contributed to demonstrating
its effectiveness, particularly in detecting instances such as fallen person in low-data envi-
ronments, notably in agriculture, rather than the stable diffusion model and conventional
Copy-Paste techniques.

4.4. Discussion

Data augmentation is essential to improving the generalization performance of small
datasets in object detection. This serves to mitigate the overfitting issue. To validate this
effect quantitatively, it is imperative to verify the results across a test set comprising multiple
unseen datasets. However, at present, there is no publicly accessible dataset apart from the
NREC Person Detection Dataset, designed for evaluating object detection performance with
the class of fallen person in off-road environments. Therefore, we opted to construct a test
set that closely approximates real-world conditions by employing ARCP on an agricultural
person detection dataset. The FieldSAFE [60] dataset utilized in the subsequent experiments
underwent manual annotation, involving the labeling of 261 instances.

Table 3 shows the results of the experiment to verify the resolution of the overfitting
problem in the background. As shown in Figure 11, the FieldSAFE dataset was used as
the test set by applying ARCP to the fallen person objects in the NREC Person Detection
Dataset, which is the same as the previous test set, and the FieldSAFE dataset in the test set
is 261 images, that is, 1414 instances.
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Table 3. Accuracy in YOLOv8x [53] on the FieldSAFE background dataset created with ARCP.

Model Precision↑
(%)

Recall↑
(%)

AP↑
(%)

F1 Score↑
(%)

YOLOv8x [53] 25.3 28.9 13.5 26.6
YOLOv8x w/RandAug [35] 34.0 22.3 13.2 26.9
YOLOv8x w/X-Paste [42] 31.6 28.7 18.6 30.1
YOLOv8x w/Copy-Paste [9] 54.9 66.2 44.6 60.0
YOLOv8x w/ARCP 82.9 63.8 72.3 72.1

* ↑ indicates that the higher the number, the better the performance. * Bold indicates the best number in this table.
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Figure 11. Images of test sets with ARCP applied using FieldSASFE [60] as a background image.
The source images are (a) the Fall Detection Dataset [55] + Fall Detection Dataset [56], (b) the UR
Fall Detection Dataset [57], and (c) the NREC Person Detection Dataset. Objects with yellow dashed
boxes represent objects pasted from the source images to the background image.

From Table 3, we can see that the AP of baseline is 13.5%, which is relatively lower
than the AP of Table 1, which clearly indicates that it is an unseen dataset. We observe
that the Copy-Paste technique is 44.6%, which is 31.4 and 26% higher than RandAug and
X-Paste, respectively, and ARCP, which improves the Copy-Paste technique, is 72.3%, which
is 27.7% higher than Copy-Paste. This confirms that the proposed ARCP method effectively
solves the overfitting problem for unseen environments.

In addition, Tables 4 and 5 are experiments to verify the resolution of the object-specific
overfitting problem during Copy-Paste. The alphabets in Tables 4 and 5 refer to the datasets
in Figure 11. The train set used for training is a dataset to which ARCP was applied using
the NREC Person Detection Dataset as a background image and source images as multiple
datasets, and the test set used for testing is a dataset to which ARCP was applied using the
FieldSAFE dataset as a background image and source images as multiple datasets. This is
the applied dataset. The Fall Detection Dataset has 183 images, so we combined it with the
Fall Detection Dataset.

Table 4. AP accuracy in YOLOv7x [58] by training on multiple fallen person detection datasets with
the FieldSAFE [60] dataset as background.

Model (a) (b) (c) (b) + (c) (a) + (c)

YOLOv7x [58] 37.9 32.9 30.7 32.1 38.5
YOLOv7x w/Copy-Paste [9] (a) - 66.2 28.2 64.4 -
YOLOv7x w/Copy-Paste [9] (b) 57.1 - 17.6 - 51.3
YOLOv7x w/Copy-Paste [9] (a) + (b) - - 22.9 - -

YOLOv7x w/ARCP (a) - 68.2 33.1 66.2 -
YOLOv7x w/ARCP (b) 68.7 - 36.4 - 64.9
YOLOv7x w/ARCP (a) + (b) - - 38.0 - -

* Bold indicates a value that is increased from the baseline in this table.
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Table 5. AP accuracy in YOLOv8x [53] by training on multiple fallen person detection datasets with
FieldSAFE [60] dataset as background.

Model (a) (b) (c) (b) + (c) (a) + (c)

YOLOv8x [53] 37.3 37.4 25.4 32.1 35.6
YOLOv8x w/Copy-Paste [9] (a) - 71.9 34.8 70.3 -
YOLOv8x w/Copy-Paste [9] (b) 52.2 - 24.4 - 44.6
YOLOv8x w/Copy-Paste [9] (a) + (b) - - 29.9 - -

YOLOv8x w/ARCP (a) - 78.0 50.2 75.7 -
YOLOv8x w/ARCP (b) 66.0 - 30.5 - 60.8
YOLOv8x w/ARCP (a) + (b) - - 28.0 - -

* Bold indicates a value that is increased from the baseline in this table.

As demonstrated in Table 4, except for the accuracy on datasets (a) + (b) in YOLOv8x,
it is found that ARCP is more effective in addressing overfitting for fallen person objects
across multiple datasets in unseen environments compared to Copy-Paste.

Furthermore, when the proposed method involves Copy-Paste, it is crucial to consider
the light intensity and angle adjustments to further alleviate the overfitting problem. As
depicted in Figure 12, by applying a warp perspective transformation to the FieldSAFE
dataset, we expressed light blurring and angle adjustments in the background. This was
evaluated by using the fallen person dataset as the background image and the dataset with
ARCP applied as the source image for testing. As shown in Tables 6 and 7, it was confirmed
that the ARCP technique achieved the highest accuracies of 34.2% and 19.0% in YOLOv7
and YOLOv8, respectively. This validates that ARCP performs better in environments with
light blurring and distorted angles compared to Copy-Paste. This capability is particularly
beneficial for detecting situations where the tractor’s body oscillates up and down during
off-road driving.
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Figure 12. Image of the Test Set with ARCP applied to the FieldSAFE dataset with a warp perspective
transformation in the background. Objects with yellow dashed boxes represent objects pasted from
the source images to the background image.

Table 6. Accuracy in YOLOv7x [58] for test set images Copy-Paste with sunlight to a test set with
ARCP applied using FieldSASFE [60] as background images.

Model Precision↑
(%)

Recall↑
(%)

AP↑
(%)

F1 Score↑
(%)

YOLOv7x [58] 46.6 27.1 23.6 34.3
YOLOv7x w/Copy-Paste [9] 21.3 24.8 13.0 22.9
YOLOv7x w/ARCP 40.4 52.5 34.2 45.7

* ↑ indicates that the higher the number, the better the performance. * Bold indicates the best number in this table.
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Table 7. Accuracy in YOLOv8x [53] for test set images Copy-Paste with sunlight to a test set with
ARCP applied using FieldSASFE [60] as background images.

Model Precision↑
(%)

Recall↑
(%)

AP↑
(%)

F1 Score↑
(%)

YOLOv8x [53] 25.0 24.9 12.8 24.9
YOLOv8x w/Copy-Paste [9] 30.8 27.0 14.7 28.8
YOLOv8x w/ARCP 37.2 34.6 19.0 35.9

* ↑ indicates that the higher the number, the better the performance. * Bold indicates the best number in this table.

Studying the consistency of light intensity and angle with real-world conditions during
the process of Copy-Paste can enhance the similarity between the augmented dataset and
the real dataset, thereby contributing to a more effective resolution of the data scarcity issue.
This aspect warrants further investigation in future studies.

5. Conclusions

This paper aimed to enhance the environmental perception system of autonomous
agricultural vehicles by improving the detection accuracy of fallen person through data
augmentation. Specifically, to address the lack of datasets for fallen person in off-road environ-
ments, a new data augmentation technique called ARCP was proposed, which automatically
augmented objects from multiple fallen person images onto a background off-road image,
maximizing the RoI. ARCP utilized YOLOv8x-seg and Grounded-SAM for automatic segmen-
tation masks, including IoU-based segment settings and RoI configuration.

Experimental results with fallen-person data in off-road environments showed that
advanced augmentation techniques, such as MixUp, Cut-Mix, Mosaic, and RandAug (dis-
covered through auto augmentation), had minimal impact. Diffusion-based synthetic data
augmentation techniques also demonstrated less effectiveness than expected. However,
both Copy-Paste and the proposed ARCP technique based on real data were found to be
effective. In particular, the proposed ARCP technique showed significant improvements in
detection accuracy, with an increase of 6.9% in YOLOv7x and 8.3% in YOLOv8x compared
to Copy-Paste. This improvement in detection accuracy is expected to contribute to the leap
in autonomous agricultural vehicles using object detection technology in the agricultural
industry. The proposed technique is particularly anticipated to be highly applicable in
datasets that are limited in off-road environments.
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