
Citation: Zervoudakis, P.;

Karamolegkos, N.; Plevridi, E.;

Charalampidis, P.; Fragkiadakis, A.

EPOPTIS: A Monitoring-as-a-Service

Platform for Internet-of-Things

Applications. Sensors 2024, 24, 2208.

https://doi.org/10.3390/s24072208

Academic Editors: Behnam Mobaraki

and Jose Turmo

Received: 28 February 2024

Revised: 23 March 2024

Accepted: 26 March 2024

Published: 29 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

EPOPTIS: A Monitoring-as-a-Service Platform for
Internet-of-Things Applications
Petros Zervoudakis 1, Nikolaos Karamolegkos 1 , Eleftheria Plevridi 1,2, Pavlos Charalampidis 1

and Alexandros Fragkiadakis 1,*

1 Institute of Computer Science, Foundation for Research and Technology-Hellas (FORTH),
GR70013 Heraklion, Greece; zervoudak@ics.forth.gr (P.Z.); nkaram@ics.forth.gr (N.K.);
eleftheria@ics.forth.gr (E.P.); pcharala@ics.forth.gr (P.C.)

2 Department of Computer Science, University of Crete, GR70013 Heraklion, Greece
* Correspondence: alfrag@ics.forth.gr

Abstract: The technology landscape has been dynamically reshaped by the rapid growth of the
Internet of Things, introducing an era where everyday objects, equipped with smart sensors and
connectivity, seamlessly interact to create intelligent ecosystems. IoT devices are highly heterogeneous
in terms of software and hardware, and many of them are severely constrained. This heterogeneity
and potentially constrained nature creates new challenges in terms of security, privacy, and data
management. This work proposes a Monitoring-as-a-Service platform for both monitoring and
management purposes, offering a comprehensive solution for collecting, storing, and processing
monitoring data from heterogeneous IoT networks for the support of diverse IoT-based applications.
To ensure a flexible and scalable solution, we leverage the FIWARE open-source framework, also
incorporating blockchain and smart contract technologies to establish a robust integrity verification
mechanism for aggregated monitoring and management data. Additionally, we apply automated
workflows to filter and label the collected data systematically. Moreover, we provide thorough
evaluation results in terms of CPU and RAM utilization and average service latency.

Keywords: internet of things; blockchain; smart contracts; data integrity; management; monitoring;
FIWARE

1. Introduction

In recent years, the technology landscape has been dynamically reshaped by the
rapid growth of the Internet of Things (IoT), introducing an era where everyday objects,
equipped with smart sensors and connectivity, seamlessly interact to create intelligent
ecosystems. The evolution of the IoT has revolutionized how technology is perceived
and utilized and opened the door for innovative and intelligent applications. From smart
cities [1] and buildings [2], precision agriculture [3], and advanced energy management [4]
to data acquisition and monitoring systems for hydrogen generators [5] and the bioleaching
industry [6], the scope of IoT has expanded, fostering a connected world that leverages
data-driven insights for enhanced efficiency; it is estimated (https://transformainsights.c
om/news/iot-market-24-billion-usd15-trillion-revenue-2030 (accessed on 25 March 2024))
that the number of IoT devices that will be in operation by 2030 will reach 21.1 billion, with
a revenue of USD 1.5 trillion. Moreover, as Industry 4.0 combines traditional industries
with cutting-edge technologies enabling smart processes and product realization, the IoT is
a major driving force for efficient and massive decentralized data collection, supporting a
complex system of diverse systems and devices [7].

The fundamental building blocks of the interconnected IoT network that makes up the
IoT are smart devices and sensors that are equipped with smart communication abilities,
make gathering and sharing data easy, and create a network of remarkable complexity,
in this way necessitating the implementation of (semi-)automatic mechanisms to manage

Sensors 2024, 24, 2208. https://doi.org/10.3390/s24072208 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9945-5042
https://orcid.org/0000-0003-2617-2284
https://orcid.org/0000-0003-2657-9164
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://transformainsights.com/news/iot-market-24-billion-usd15-trillion-revenue-2030
https://doi.org/10.3390/s24072208
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072208?type=check_update&version=2


Sensors 2024, 24, 2208 2 of 28

their diverse components effectively. Moreover, such networks often function in distant
and challenging environments, making sensors susceptible to failures and malfunctions.
Consequently, autonomous monitoring and maintenance are crucial to mitigate the risk of
disruptions and ensure adherence to Service-Level Agreements between IoT application
providers and consumers. Monitoring can follow either a passive or active approach,
encompassing the collection and logging of data from different network subsystems. Data
generated by modern IoT systems are typically stored in cloud storage services (CSSs) for
subsequent processing and analysis tasks, including anomaly detection [8], fault diagno-
sis [9], predictive maintenance [10], and more. Utilizing external CSSs helps to address
the difficulties associated with local storage management; however, it also introduces an
increased risk of data manipulation on remote servers. Unfortunately, such tampering can
reduce the precision and reliability of subsequent processing or analysis, compromising
decision-making effectiveness; thus, data integrity becomes crucial for the efficient cloud
storage of the collected data. IoT devices are highly heterogeneous in terms of software and
hardware (https://datatracker.ietf.org/doc/html/rfc7228 (accessed on 25 March 2024)),
and many of them are severely constrained (processor, memory, storage). This heterogene-
ity and potentially constrained nature creates new challenges in terms of security, privacy,
and data management. Moreover, there is an increase in users’ privacy concerns [11,12] as
personal identifiable information is collected by IoT devices (e.g., wearables) and stored in
cloud locations users are not aware of.

There is a plethora of IoT platforms and protocols ([13]), with their scope falling in
three main categories: (i) those used for pure data collection, (ii) those used for management
purposes, and (iii) hybrid, used for data collection as well as for management. Regarding
data management, the protocols used mainly split into two categories: (i) IoT data collection
protocols and (ii) IoT network management protocols. IoT data collection refers to the proto-
cols and the support mechanisms for collecting IoT sensory data, including everything from
determining the type and format of the data to be collected and deciding how frequently
data should be collected to the methods by which data are transmitted from devices to the
network. Additionally, IoT data collection protocols also encompass the issue of commands
for actuation purposes, such as controlling a valve based on the data collected from the sen-
sors. Several protocols of this type have been developed, such as the COAP [14], LwM2M
(https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m (ac-
cessed on 25 March 2024)), MQTT (https://mqtt.org (accessed on 25 March 2024)), etc. On
the other hand, the IoT network management protocols oversee the status, configuration,
and performance of individual IoT devices on the network, including tasks such as device
provisioning, firmware updates, and error handling. They also focus on the overall health
and performance of the network as a whole, including tasks such as traffic management,
resource allocation, and security. Overall, effective data management protocols are es-
sential for ensuring that IoT devices function properly and that IoT data are collected
and processed in a secure and efficient manner. Popular protocols include SNMP [15],
NETCONF [16], RESTCONF [17], CORECONF [18], etc.

This work proposes EPOPTIS (EPOPTIS is the Greek word for supervisor), a
Monitoring-as-a-Service (MaaS) platform for both monitoring and management purposes,
offering a comprehensive solution for collecting, storing, and processing monitoring data
from heterogeneous IoT networks for the support of diverse IoT-based applications. To
ensure a flexible and scalable solution, we leverage the FIWARE open-source framework
(https://www.fiware.org (accessed on 25 March 2024)), also incorporating blockchain (BC)
and smart contract (SC) technologies to establish a robust integrity verification mechanism
for aggregated monitoring and management data. Additionally, we apply automated
workflows to filter and label the collected data systematically. The existing literature on
data integrity verification for IoT data stored in cloud storage predominantly relies on
encryption techniques, often coupled with the trustworthiness of Third-Party Auditors
(TPAs). In contrast, BC-based data integrity schemes offer a compelling alternative by elim-
inating the need for TPAs, thereby addressing the trust issue. However, they have to face

 https://datatracker.ietf.org/doc/html/rfc7228
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m
https://mqtt.org
https://www.fiware.org


Sensors 2024, 24, 2208 3 of 28

the issues of significant storage overhead, especially when considering the direct storage of
the raw data in a BC ledger. To address the challenges mentioned, our solution adopts a
strategic approach that involves the handling of raw IoT data in distinct time-windows.
For integrity verification purposes, we generate a set of verified tags that are stored in the
BC ledger. This methodology is designed with the goal to minimize the cost associated
with data storage. Our main contributions are summarized as follows: (i) we propose a
Monitoring-as-a-Service platform for IoT applications based on FIWARE, (ii) we utilize
BC and SC technologies for data integrity verification purposes, and (iii) we thoroughly
evaluate the platform in terms of CPU and RAM utilization and average service latency.

The remainder of the paper is organized as follows. Section 2 provides a summary of
related works. In Section 3, we describe the system requirements and logical architecture
of the proposed platform. In Section 4, the implementation details of the platform are
presented. In Section 5, we present and discuss the performance evaluation results, and,
finally, the conclusions and further work appear in Section 6.

2. Related Works

This section presents works related to the proposed platform contributions, which
mainly consist of (i) generic platforms for the support of IoT applications that do not utilize
BC and SC technologies and (ii) platforms that use BC technology to accomplish automatic
data integrity verification.

The authors in [19] propose an IoT platform based on edge computing to support
various types of devices located within cities, introducing a cloud-native environment to
solve operation and maintenance management problems. The proposed platform is divided
into three layers: (i) a Terminal Device Layer, (ii) an Edge Layer, and (iii) a Cloud Layer,
performing tasks such as data collection, pre-processing and partial storage of the incoming
data, etc. The authors also describe a Smooth Weight Round-Robin algorithm for load
balancing. Nevertheless, no evaluation results or details on various fundamental components
of the platform (i.e., identity management and access control) are provided. Article [20]
proposes MEWiN, a platform for precision agriculture that is based on FIWARE, using
components such as the Cosmos Generic Enabler, Orion Context Broker, etc.; however, the
evaluation results presented are limited to the power consumption of the devices, battery
voltage discharge, and specific types of data collection (e.g., water content values). A Cloud-
IoT-based sensing service for health monitoring is presented in [21], which consists of various
layers (data collection, data management, application service), supporting wearables and
smart devices. In [22], the authors propose a FIWARE-based platform for remote patient
monitoring, considering various users such as physicians, medical operators, and patients.
The platform consists of three logic layers: (i) a Front-end Layer that includes all required
components for the interaction with the medical and paramedical staff, (ii) an Elaboration
Layer, which implements the functionalities for health data gathering and storage, and
(iii) a Security Layer that provides access control and identity management; however, no
performance evaluation results are provided. The authors in [23] propose a FIWARE-based
platform for sensor data monitoring in seaports, employing various FIWARE components,
such as the Orion Context Broker, Cosmos, etc. The collection of various types of data,
such as the wave height, ship orientation, etc., is demonstrated but without any evaluation
results to showcase the scalability of the platform. The authors in [24] describe a monitoring
platform for energy management that consists of three layers (acquisition, transmission,
management), using the RS-485 and MODBUS-RTU protocols for the data communication
between the acquisition devices and the data center services. OpenHab [25] is a freeware IoT
platform that implements an open-source solution to the Eclipse SmartHome framework,
using Apache Karaf and Eclipse Equinox runtime [13]. SmartThings [26] is a proprietary
home automation platform developed by Samsung that follows the producer/consumer
paradigm, supporting sensors and actuators. There are various other commercial platforms,
such as the Apple HomeKit [27], Amazon Web Services IoT [28], IBM Watson [29], etc., which
require commercial agreements or subscriptions. All of the aforementioned platforms and



Sensors 2024, 24, 2208 4 of 28

services have two common characteristics: (i) their core operations are centralized and hence
threats that emerge as single-point of failures are possible (also considering the increased
number of cyber-attacks worldwide) (https://www.enisa.europa.eu/publications/enisa-thr
eat-landscape-2023 (accessed on 25 March 2024)), and (ii) they are vertical implementations
having a very narrow scope, servicing only specific applications (e.g., healthcare).

Several other contributions use BC technology to accomplish automatic data integrity
verification. Article [30] presents a BC-based scheme where integrity verification is per-
formed by SCs; however, there are several limitations: (i) this is a standalone service that
has not been evaluated within a complete IoT platform, (ii) third parties need to use a
BC-compliant client in order to communicate with the BC, (iii) fees (Gas) have to be paid
for the services as the Ethereum (https://ethereum.org (accessed on 25 March 2024)) BC
is used, and (iv) there is a significant overhead for data encryption/decryption as the
(hashed and encrypted) data are stored in the public ledger. The authors in [31] propose
a data integrity detection model based on BC, with a process divided into three parts:
data generation, data storage to the BC, and data fetching from the BC. In this work, data
are directly stored in the BC, which is not efficient, and the evaluation is performed in
a simulated environment that is not realistic given the current advances in BC technol-
ogy. The HyperLedger Fabric (https://www.hyperledger.org/projects/fabric (accessed
on 25 March 2024)) BC (HLF) is used in [32] to provide data integrity and storage, also
employing IPFS (https://ipfs.tech/distributedstoragesystem (accessed on 25 March 2024))
for distributed storage. This platform consists of four layers (physical, network, middle,
application), and the authors have demonstrated its scalability in terms of throughput
and transaction time and average latency; however, a limitation is that the integrity ver-
ification process is “hardcoded”, merely based on BC and HLF, as no SCs are employed.
The authors in [33] propose a BC-based data verification scheme that splits into three
stages (setup, processing, verification), using bilinear mapping techniques; however, their
solution has two weaknesses: (i) various cryptographic operations (e.g., digital signatures)
are required by clients that collect data, so it may be infeasible for this scheme to support
constrained IoT devices, and (ii) the BC technology used is not based on a real BC such
as HLF, Ethereum, etc., and rather it has been simulated using the Python programming
language, so its robustness and usage in real environments is questionable. In [34], the
authors present an integrity verification scheme that uses three types of SCs for: (i) checking
data owners’ legitimacy (using the RSA algorithm), (ii) checking data repository’s (cloud
servers) reliability using Merkle hash tree, and (iii) preventing replay attacks using bilinear
mapping. Here, a different approach (as compared to EPOPTIS) is taken as only the data
owners can request their data, so support for third-party applications (e.g., within a smart
city context) cannot be easily supported. The authors have evaluated SC execution in an
Ethereum network, but it is not clear if the core functionalities of the scheme can execute
on Ethereum. The authors in [35] present a BC-based data integrity verification scheme
for smart home applications defining five basic components: smart devices, trusted third
parties, cloud service providers, home gateways, and blockchains. They utilize the home
gateway to aggregate all data information and formulate homomorphic verifiable tags for
verification purposes. However, there are several limitations: (i) limited evaluation results
are provided, (ii) as a private bitcoin network is used, it cannot support a high number
of transactions due to the Proof-of-Work consensus algorithm used, (iii) no flexibility is
provided as SCs are not used, and (iv) the scheme is not integrated or tested within a real
platform. Finally in [36], the authors propose a platform for smart city applications that is
based on two BC levels: (i) private BCs that store the IoT data provided by the various city
organizations (e.g., water management, energy management, etc.) and (ii) a consortium
BC that stores the IoT data provided by the private BCs. The drawbacks of this approach
are that multiple consensus algorithms have to execute prior to persistent IoT data storage,
thus complexity and latency increase, and IoT devices have to send their data through BC
transactions that may not be feasible if the devices are constrained (in terms of memory and
processing). The related contributions that do not utilize BC technology for data integrity

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2023
https://ethereum.org
https://www.hyperledger.org/projects/fabric
https://ipfs.tech/ distributed storage system


Sensors 2024, 24, 2208 5 of 28

verification are shown in Table 1, while those that do utilize it are summarized in Table 2,
along with their limitations.

Table 1. Related contributions that do not utilize BC technology.

Contribution Scope Commercial

City-level IoT [19] Generic No

MEWiN [20] Agricultural water management No

[21] Health monitoring No

[22] Remote patient monitoring No

SmartPort [23] Seaport data monitoring No

[24] Energy management No

Openhab [25] Smart home applications No

SmartThings [26] Smart home applications Yes

Apple HomeKit [27] Smart home applications Yes

Amazon Web Services IoT [28] Generic Yes

IBM Watson [29] Generic Yes

Table 2. Related contributions that utilize BC technology.

Contribution Scope Limitations

[30] Generic

Standalone service not evaluated within a real platform;
BC-compliant client required; fees have to be paid;

significant overhead for encryption/decryption; whole
data records stored in the public ledger

[31] Generic Data stored in BC; simulated evaluation system

[32] Generic Integrity verification process not supported by SCs

[33] Generic Resource-intensive cryptographic operations required
for the clients; simulated BC used

[34] Generic

Gas required for the SC execution; not clear which BC is
used for the core functionalities; only data owners can
retrieve data, thus there is no support for authorized

third-party applications; this a standalone verification
service not integrated within a real platform

[35] Smart homes

Limited evaluation results provided; a private bitcoin
network is used for BC that cannot support a high

number of transactions; no flexibility is provided as SCs
are not used; the scheme is not integrated or tested with

a real platform

[36] Smart cities Increased latency due to multiple consensus algorithms’
execution; IoT devices required to send BC transactions

3. System Requirements and Logical Architecture

This section presents the system requirements and the logical architecture of the
EPOPTIS platform.

3.1. System Requirements

Following the common convention, system requirements are categorized into two types:
functional and non-functional. Functional requirements define specific functions and capabil-
ities that the platform must possess to meet the needs of its users, while the non-functional
ones address constraints and performance characteristics that the system must exhibit to
ensure its overall quality and user experience.



Sensors 2024, 24, 2208 6 of 28

3.1.1. Functional Requirements

• Heterogeneous device support: The platform should consider the inherent hetero-
geneity of native IoT device hardware platforms and ensure seamless integration,
offering flexible enrollment for various device flavors.

• Device virtualization: Physical devices and their resources should be appropriately
virtualized, adhering to a standardized information model that allows easy querying
though common syntax.

• Ubiquitous access and transparent communication: Devices should be accessible
irrespective of constraints imposed by end-node network topology and configuration.
In scenarios where devices do not support IPv6 or are not IPv6 routable, devices
should be accessed though transparent gateways that provide protocol translation or
Network Address Translation.

• Multi-tenancy: Multi-tenancy mechanisms should be supported, providing complete
resource isolation of different tenants and preventing unauthorized access.

• Data processing of large-scale monitoring data: The platform should be able to
process and analyze large amounts of monitoring data and provide useful insights
based on user-defined metrics.

• Visualization of monitoring data: The platform should visualize monitoring data,
data integrity verification, and event-based notifications in a comprehensible and
user-friendly manner (e.g., graphs, labels, etc.).

• Data integrity: The platform should ensure the integrity and consistency of mon-
itoring data throughout its life cycle by developing robust mechanisms to prevent
unauthorized modifications. This enhances the reliability and trustworthiness of the
monitoring data, maintaining its accuracy and validity when visualized.

• Real-time alerting: A robust event-based notification system that operates on pre-
defined rules should be incorporated, promptly alerting users about the violations
of these rules. The platform should be capable of generating real-time alerts, en-
suring timely communication of critical events or sensory data deviations from
predefined rules.

3.1.2. Non-Functional Requirements

• Security and privacy: The platform should integrate robust authentication and au-
thorization mechanisms for users and IoT devices. Control and application data
communication should be encrypted and integrity-protected.

• High availability: The platform should provide high availability of monitoring services
as well as an IoT data storage service, taking into consideration diverse network conditions.

• Fault tolerance: The platform should be resilient and able to recover from faults and
failures on both cloud and IoT devices.

• Scalability: The platform should be capable of handling large volumes of data in
terms of storage, retrieval, and processing capabilities.

• Quality of service (QoS): QoS should be maintained as high as possible in terms
of interactions with cloud services (e.g., low latency of data retrieval, near-real-time
notification mechanism) and IoT devices (e.g., low latency of IoT data updates).

3.2. Logical Architecture

Here, we present the logical architecture of the proposed MaaS platform, with its
components shown in Figure 1.

The service management layer provides appropriate application programming interfaces
(APIs) for the interaction of external applications/users with the services offered by the
platform. It acts as the main endpoint and service orchestrator, handling incoming requests
and discovering and orchestrating all the internal services.



Sensors 2024, 24, 2208 7 of 28

Figure 1. Logical architecture of the EPOPTIS platform.

The visualization management layer provides various mechanisms for visualizing con-
text information pertaining to IoT networks managed by the platform. It encompasses a
variety of functions, including the integration of IoT network status and measurements
in a user-friendly dashboard. Additionally, it provides charts that showcase historical IoT
sensory data and its integrity validity. Moreover, it presents notifications generated by the
platform, ensuring that users are promptly informed about critical events and updates.

The data analytics and monitoring management layer provides a robust mechanism for
processing the monitoring data collected from the IoT networks. The primary goal of
this layer is to provide valuable insights into network performance and the sensory data
collected. Additionally, it supports event-based notifications in response to abnormal
situations or operation errors. Data processing can be performed either (near) real-time, as
context data are collected, or on historical data persistently stored by the platform.

The data storage management layer provides essential functionalities for the secure,
reliable, and persistent storage of context information originating from heterogeneous
IoT networks.

The context data management layer is responsible for managing context information
collected from IoT networks, offering a unified and standardized interface to access this
information. Generally, contextual information is defined as the current state of all enti-
ties across the platform and it is represented in a structured manner using appropriate
data models.



Sensors 2024, 24, 2208 8 of 28

The IoT management layer is an entity responsible for bridging the communication gap
between IoT devices and the context data management layer. Its primary goal is to ensure the
compatibility and availability of these devices on the platform by implementing suitable
protocol/data model translators. Additionally, this entity facilitates the management of
heterogeneous IoT devices, encompassing functionalities such as registration, configuration,
and monitoring.

The devices/data sources layer consists of IoT devices, including end devices equipped
with sensors and/or actuators that enable the monitoring of their operational environment.

The security, privacy, and trust management layer is a cross-layer entity responsible for
all operations, policies, and mechanisms implemented to ensure security, privacy, and trust
in the platform’s pillars (i.e., the cloud services of the platform and the IoT networks). This
entity offers critical security and trust mechanisms for user authentication, authorization,
access control, secure device bootstrapping, and data integrity verification. Security and
system robustness is provided by utilizing the BC and SC technologies as (i) the data
are stored in the immutable ledger (actually stored in replicas in multiple nodes), and
hence data corruption is not feasible as it would require the corruption of the data in all
possible locations and the re-calculation of the cryptographic hashes of all previous block
stores in the ledger; (ii) the consensus algorithm executed by the BC peers guarantees that
no malicious or faulty transactions can be validated within the BC network as long as
the majority of the peers are properly functioning; (iii) SC states are protected through
the immutable ledger and the consensus algorithm and their outputs are valid as long
as the majority of the peers are honest; and (iv) the data producers (e.g., IoT devices)
are authenticated and authorized by utilizing suitable authorization tokens and FIWARE
components such as the Keyrock, while their data are encrypted in transit using transport
layer security (TLS). Privacy preservation can become feasible through the use of ephemeral
bearer authentication tokens that do not reveal user/device identities; moreover, only the
hashed values of the collected data are stored in the ledger, and thus the actual data are
protected in case a compromised BC peer is present.

The configuration and monitoring management layer is also a cross-layer entity respon-
sible for managing and monitoring the configuration parameters of the platform and its
components. This entity allows the definition of specific Key Performance Indicators to
evaluate a platform’s quality of services, reliability, and availability. By managing the
configuration and continuously monitoring parameters, it ensures the system operates
optimally and detects any deviations from normal conditions.

4. Implementation Details of the EPOPTIS Platform

In this section, we detail the system architecture of the proposed MaaS platform, initially,
by defining the data model that describes the contextual information and then presenting its
functional architecture and discussing the functional entities and their interactions.

4.1. Context Information Model

The Context Information Model (CIM) establishes a standardized and structured rep-
resentation of contextual information, facilitating the capture, organization, and sharing
of such information between IoT networks and the monitoring platform. Within the CIM,
context information is represented using entities, attributes, and relationships. Entities
can correspond to conceptual abstractions or physical objects, while attributes describe
the properties or characteristics of the entity. The relationships in this model define the
semantic associations and dependencies between different entities. A CIM representation is
illustrated in Figure 2, appropriately adjusted to align with the NGSI (Next-Generation Ser-
vice Interface) protocol (https://fiware.github.io/specifications/ngsiv2/stable (accessed
on 25 March 2024)). This adjustment ensures that the platform’s entities can efficiently com-
municate and integrate context information, fostering a harmonious and interconnected
monitoring ecosystem. At the core of this data model, the Device entity acts as a fundamen-
tal abstraction, representing a generic device that encompasses essential attributes common

https://fiware.github.io/specifications/ngsiv2/stable


Sensors 2024, 24, 2208 9 of 28

to all devices. Depending on the nature of the physical devices, the Device entity can be
specialized into two other distinct entities, each one tailored to specific characteristics. The
Sensing Device entity represents specialization in sensor-related characteristics, facilitating
the representation of data measurements. Additionally, further specialization for the Sens-
ing Device entity provides a specific representation of air quality measurements, as defined
in the AirQSensor entity. On the other hand, the Gateway entity specializes as a Device,
representing all the characteristics required for a networking device. In this context, each
Device entity can be associated with 0 to n Notification entities, indicating that a Device can
have multiple Notifications related to it. The association between Devices and Notifications
enables the effective monitoring and alerting within the platform, allowing users to receive
timely and relevant information about potential issues or critical events associated with
specific Devices.

Figure 2. Contextual entities and their associations.

4.2. Functional Architecture

In Section 3, we described the logical architecture of the proposed platform (Figure 1),
while, in this section, we present its functional architecture, which comprises three layers,
as depicted in Figure 3. The Application Layer encompasses user interfaces and dashboards
used for visualizing all information collected by the MaaS platform. This layer can also
feed third-party visualization platforms such as Kibana (https://www.elastic.co/kibana
(accessed on 25 March 2024)), Grafana (https://grafana.com (accessed on 25 March 2024)),
ThingSpeak (https://thingspeak.com (accessed on 25 March 2024)), etc. Currently, EPOPTIS
feeds data with the visualization platform presented in [37].

The second layer, the Service Layer, involves various processes that provide critical
functionalities, including identity and authorization management, contextual information
management, historical data management, data integrity verification, and alert-based
notification mechanisms. In this regard, FIWARE offers a set of specifications accessible
through well-defined interfaces and supports a flexible architecture that facilitates the
interconnection of devices with IoT applications. FIWARE’s adoption fits our platform’s

https://www.elastic.co/kibana
https://grafana.com
https://thingspeak.com


Sensors 2024, 24, 2208 10 of 28

needs as it simplifies development by providing a collection of extensible, scalable, and
configurable components that can foster application development.

The third layer, the Infrastructure Layer, offers the necessary hardware and virtualized
resources required to deploy the MaaS platform effectively. By adhering to the requirements
as detailed in Section 3.1, the proposed architecture allows cloud services to interact
seamlessly with IoT Devices, ensuring a robust and efficient MaaS platform.

Figure 3. Functional architecture of the EPOPTIS platform.

4.2.1. Orchestrator

In order to construct a reliable, robust, and secure cloud-based platform, the monitor-
ing, management, and orchestration of a variety of underlying heterogeneous technologies
is required. In the core of the proposed architecture resides the Orchestrator, which serves as
a gateway between our platform and third-party applications or IoT networks that wish to
utilize the underlying provided services. The Orchestrator receives and verifies submitted
requests to the platform, performs the corresponding actions, and finally generates the
appropriate responses. It offers a RESTful API for communication and data exchange,
consisting of two logically separated interfaces: (a) the Northbound Interface, which han-
dles requests from user interfaces and third-party platforms, enabling the data retrieval
of monitoring data and other provided services, and (b) the Southbound Interface, which
handles requests from the IoT networks. The Orchestrator implements a number of soft-
ware modules, named Resource Modules, which are responsible for managing the various
heterogeneous system resources. Upon receiving a request, it communicates with the inter-
nal services, as dictated by the processing workflow, and finally returns the appropriate
response. Below, we provide a description of the Resource Modules :

• Identity Module: This module is responsible for managing information about logical
hierarchical entities on our platform, including virtual representation of human and
non-human users (i.e., IoT users), ecosystems, roles, permissions, and their relevant
connection graphs. The Identity Module utilizes the Identity Management component to
store and associate this type of information in its internal database.

• Device Module: This module is responsible for retrieving information regarding
physical devices and their association with IoT networks, supporting the retrieval of
essential information about both types of physical devices, gateways, and sensing
devices, including their attributes, as described in the contextual model. The Device
Module utilizes the Context Data Broker component to retrieve this kind of information.

• Statistics Module: This module is responsible for retrieving and calculating statistics
about logical entities and their associations. It provides detailed information about
users, devices, and ecosystems, including statistics such as the number of users
within an IoT ecosystem and the assigned role for each user within an IoT network.



Sensors 2024, 24, 2208 11 of 28

The Statistics Module utilizes the Context Data Broker and the Identity Management
components to provide this type of information.

• Notification Module: This module is responsible for the retrieval of information
regarding generating notifications and organizing them in two categories: the IoT
Ecosystem or the Device. The retrieved information includes criticality level, descrip-
tions, and the attribute on which the notification was triggered. Additionally, this
module allows authorized users to manage generated notifications (e.g., appropriately
labeling them once they have been resolved). The Notification Module utilizes the
Context Data Broker to support these operations.

• IoT Module: This module is responsible for registering a new device and updating its
attributes. It receives NGSI payloads from IoT networks and implements mechanisms
for: (i) triggering alert-based notifications according to the SC rules, (ii) caching the
incoming NGSI payloads using a Cache Pool, calculating and storing the appropriate
hash value required for the data integrity verification, and (iii) updating contextual
information in order to support a seamless interaction with the IoT networks. This
module utilizes the Cache Pool, the Context Data Broker, and the BC Service (described
in Section 4.2.6) in order to support all the above operations.

• Query Module: This module is responsible for retrieving historical data and labeling
them utilizing the data integrity verification mechanism. A detailed description
of how this mechanism works is provided in Section 4.3. This module utilizes the
TimeSeries DB service for retrieving historical data and the BC Service to obtain the
appropriate hash value used to label them according to the outcome of the integrity
protection mechanism (i.e., corrupted/not corrupted).

4.2.2. Identity Management and PEP Proxy

These two components are responsible for the authentication and authorization oper-
ations of the platform, which encompass: (i) identity and user management and (ii) user
authorization and access control. The Identity Management component provides the ability
to create, update, and manage user accounts, storing user profile information, authenti-
cation credentials, roles, and permissions. When a request is made to access a protected
resource, the PEP Proxy intercepts it and enforces the access control policies defined in the
Identity Management component. Here, we utilize the FIWARE Keyrock (https://fiware-id
m.readthedocs.io/en/latest (accessed on 25 March 2024)) for identity and user management
and the Wilma PEP Proxy (https://fiware-pep-proxy.readthedocs.io/en/latest (accessed
on 25 March 2024)) for authorization and access control.

4.2.3. Cache Pool

This component acts as in-memory data storage for the NGSI payloads, which are
grouped within specific time intervals before being fed into the caching mechanism. A de-
tailed description of how this mechanism works is provided in Section 4.3. Here, we utilize
Redis (https://github.com/redis/redis (accessed on 25 March 2024)) for the in-memory
data storage.

4.2.4. Context Data Broker

When connecting IoT devices to an IoT platform, the publish/subscribe pattern has
proven to be a suitable method for messaging [38]. To this direction, the Context Data Broker
component achieves the decoupling of producers and consumers of context information,
implementing the Publish/Subscribe design pattern based on the FIWARE Orion Context
Broker (https://fiware-orion.readthedocs.io/en/master (accessed on 25 March 2024)).
Context producers (e.g., IoT ecosystems) publish their data to this component through
the FIWARE NGSI API, without the requirement to know who the consumers of such
data are. Context consumers (e.g., third-party applications, historical databases) do not
need to know the origin of the data but are solely interested in the event itself which is
consuming them. This decoupling mechanism allows context-aware IoT ecosystems to

https://fiware-idm.readthedocs.io/en/latest
https://fiware-idm.readthedocs.io/en/latest
https://fiware-pep-proxy.readthedocs.io/en/latest
https://github.com/redis/redis
https://fiware-orion.readthedocs.io/en/master


Sensors 2024, 24, 2208 12 of 28

interact with the context information in a flexible and scalable manner, enabling seamless
integration and fostering the development of a context-driven approach. The Context Data
Broker supports the querying of the last value referring to the attributes of each context
entity and also provides a subscription mechanism, enabling the persistent storage of the
historical attributes.

4.2.5. TimeSeries DB Service

This is a component based on FIWARE QuantumLeap (https://quantumleap.readth
edocs.io/en/latest (accessed on 25 March 2024)), designed to provide persistent storage of
context information from the Context Data Broker in an external repository by converting
the NGSI structured data into a tabular format and persistently storing context changes in
a high-performance CrateDB database (https://crate.io (accessed on 25 March 2024)). It
also provides an interface for performing complex queries on historical data (e.g., the latest
N samples collected from a specific IoT device, the minimum value over a time period per
hour or month, etc.).

4.2.6. Blockchain Service

Data integrity verification is one of the core functionalities of the proposed platform and
this is utilized through the BC Service, which consists of two discrete components, namely
(i) the BC Network and (ii) the BC Manager. The BC Network maintains a permissioned
decentralized ledger based on HLF that facilitates the process of transaction recording and
asset tracking in an immutable manner. The network structure and data flow are designed
and implemented in order to achieve high service availability and to minimize the risk of
being compromised. The utilization of a private HLF network offers several key advantages,
particularly in terms of high availability and reliability. Using HLF, we have utilized a
network of four organizations (https://hyperledger-fabric.readthedocs.io/en/latest/ne
twork/network.html (accessed on 25 March 2024)), three acting as Peer organizations and
one as Orderer. Each of the Peer organizations operates with two Peer nodes, while the
Orderer organization uses two Orderer nodes. The endorsement policy used assures a high
availability, also requiring the majority of organizations to endorse transactions using at
least one of their Peer nodes. This redundancy ensures that if a Peer node experiences
downtime for any reason, the other Peer nodes within the same organization can seamlessly
take over during transaction validation. Similarly, the presence of two Orderer nodes within
the Orderer organization, guarantees fault tolerance in case a node becomes unavailable.

The BC Manager functions as a client for one of the three peer organizations. A client in
the context of HLF refers to an authorized application that can interact with the BC Network,
essentially acting as an interface (implemented as a REST API with Golang) that links the
HLF network with the Orchestrator.

The BC Service provides two core functionalities:

• Data labeling. SCs are crucial for the automated label compliance assignment of
the collected IoT data. These enforce configurable rules that encompass various
criteria, such as acceptable sensor data ranges, input voltage limits, etc. When data are
submitted to the platform, SCs automatically assign a label based on these predefined
criteria. Therefore, during the data retrieval processes, the historical data are labeled
as compliant or non-compliant (based on the previously reported rules), also feeding
a suitable API for visualization purposes.

• Hash computation and storage: The BC Service is responsible for storing and retrieving
hash values, which are computed by the Orchestrator using the SHA-3 (https://cs
rc.nist.gov/pubs/fips/202/final (accessed on 25 March 2024)) hash algorithm. The
corresponding hashed values are securely stored in the immutable BC ledger in a
key-value format, significantly reducing retrieval times and conserving storage space
within the ledger, while the actual data records are stored in the TimeSeries DB. The
hashed values can be retrieved by the Orchestrator in order to support the data integrity
verification mechanism during historical data retrieval.

https://quantumleap.readthedocs.io/en/latest
https://quantumleap.readthedocs.io/en/latest
https://crate.io
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://hyperledger-fabric.readthedocs.io/en/latest/network/network.html
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/202/final


Sensors 2024, 24, 2208 13 of 28

Overall, the BC Service, with its decentralized nodes, automated recovery mechanisms,
and data validation and storage processes, offers a resilient and reliable foundation for
managing and securing IoT data.

4.3. Interactions of the Functional Components
4.3.1. NGSI Data Persistent Storage

Prior to sending an NGSI payload to the Orchestrator, the IoT Agent (Figure 1) authen-
ticates and obtains an access token with permissions that allow access to the platform’s
internal services. In general, an NGSI request can be of two types: (i) a registration request,
indicating that the NGSI payload is associated with a device that has not been already
defined in the contextual entities (Figure 2), or (ii) an update request, signifying that the
NGSI payload should update an existing contextual entity. After receiving an NGSI request
from an IoT Agent, the Orchestrator manages and orchestrates all internal services for the
(i) creation of the appropriate label for the payload; (ii) update of the relevant Notification
entity to the Context Data Broker, if required; (iii) update of the relevant Device entity to the
Context Data Broker; (iv) trigger of the appropriate broker notification to store the related
attributes persistently in the TimeSeries DB; and (v) support of the mechanism that caches
the incoming payloads and computes the corresponding hash values that are finally stored
in the BC ledger.

In more detail and as shown in Figure 4, the Orchestrator sends a request for the
validation of an NGSI payload (1). The PEP Proxy monitors the request flow and checks
whether or not the request has the permission to access the BC Service’s resources for
validating the payload’s content using the SC-based rules. The Identity Management service
acts as the policy decision point (PDP) and infers if the request should access the specific
resource or not (2, 3). The PEP Proxy enforces PDP’s decision to the BC Service, enabling or
not the validation of the NGSI payload (4). The BC Service responds with an appropriate
label that characterizes the payload’s validity (5).

Subsequently, if the payload does not validate the SC-based rules, the Orchestrator
creates (or updates) the appropriate Notification entity in the Context Data Broker. The PEP
Proxy monitors the request flow and checks whether or not the request has the access
permission to create or update a Notification entity (6) and the PDP infers if the request has
the permission to access the specific resource or not (7, 8). The PEP Proxy enforces PDP’s
decision to Context Data Broker, enabling or not the creation or update of the Notification
entity (9). Once the Notification entity is created or updated, the Context Data Broker stores the
latest value of a notification and then sends the Orchestrator a suitable response message (10).

Additionally, the Orchestrator creates (or updates) the Device entity (11), ensuring that
the contextual entities are kept updated to the latest state. The PEP Proxy enforces access
control to the Context Data Broker (12, 13), triggering the appropriate contextual notifica-
tions (14), persistently storing the historical attributes of the Device entity (15). Once the
payload’s attributes are successfully stored in the TimeSeries DB, the appropriate responses
are generated (16, 17). Moreover, the Orchestrator implements a caching mechanism that
facilitates the calculation of the hash value that for a group of payloads. Upon receiving
NGSI payloads, the Orchestrator caches them in the Cache Pool (18) and awaits the appropri-
ate response (19). Once a predefined volume of payloads has been cached, the Orchestrator
calculates the hash value of this payload group (20) and stores it in the BC ledger (24).
The access to the BC Service requires the access control process enforced by the PEP Proxy
on the BC Service’s resources (21, 22, 23). The hash value is generated using the SHA-3
secure hash algorithm, enabling the immutable storage of an imprint of the data instead
of storing the actual data themselves. This approach provides a more efficient and secure
way to represent the data in the BC Service, reducing storage requirements and ensuring
data integrity.



Sensors 2024, 24, 2208 14 of 28

Figure 4. Functional component interactions for storing NGSI data.

4.3.2. Retrieval of Historical Data

After receiving a retrieval request, the Orchestrator manages and orchestrates all
internal services for (i) retrieving historical data from the TimeSeries DB, (ii) calculating the
hash value of the retrieved data, (iii) fetching the hash value through the BC Service (which
was previously computed during storage), and (iv) comparing the hashes and labeling the
retrieved data, inferring its integrity. All these interactions are depicted in Figure 5. Initially,
the Orchestrator sends a request in order to retrieve historical data (1). The PEP Proxy checks
if access to the resources of the TimeSeries DB Service for retrieving the data is permitted.
The Identity Management service acts as the PDP and infers if the request should access the
specific resource or not (2,3). The PEP Proxy enforces the PDP’s decision to the TimeSeries
DB Service, enabling or not the retrieval of the historical data (4). The TimeSeries DB Service
provides the requested data (5), and then, the Orchestrator calculates the corresponding
hash value (6). Additionally, the Orchestrator retrieves the hash value that was previously
stored by sending a request to the BC Service (7). The access to this service requires the
access control process enforced by the PEP Proxy on the BC Service’s resources (8, 9, 10).
The BC Service responds with the hash value that was previously stored (11). By comparing
this with the hash value calculated for the recently retrieved data (12), any (unauthorized)
modifications of the initial data received from Orchestrator during the storing process can
be detected.



Sensors 2024, 24, 2208 15 of 28

Figure 5. Functional component interactions for retrieving historical data.

5. Performance Evaluation

With the intended goal to act as a multi-tenant solution offering unified monitoring
and management services for heterogeneous IoT networks, the cloud platform presented in
this work needs to efficiently handle a substantially large number of IoT devices pushing
data updates, either directly or through appropriate gateways. Therefore, in this section,
we provide an extensive performance evaluation of a Proof-of-Concept (PoC) deployment
of the proposed platform, under variable workload, and further present and discuss the
results of the evaluation.

5.1. Testbed and Deployment

Our testbed essentially comprises two distinct entities, namely (i) the Load Generator
infrastructure and (ii) the Cloud Infrastructure. The Load Generator (LG) is responsible for
generating configurable workloads (IoT device data updates) for the cloud backend and
collecting appropriate performance metrics. We used Apache JMeter (https://jmeter.apache.
org (accessed on 25 March 2024)) as the specialized software for workload generation and
performance metric collection, which is a mature and industry-grade modular open-source
tool used for the automated performance evaluation of web-based systems through load
and regression tests. Developed in Java, it integrates support for various protocols and
applications (e.g., HTTP(s), REST Webservices, FTP, LDAP, etc.) and supports the creation
and execution of configurable and complex workloads on a web server, collecting and
storing replies, as well as analyzing and presenting aggregate test statistics (e.g., latency,
throughput, response time, etc.).

On the other hand, the Cloud Infrastructure (CI) hosts a complete deployment of our
platform, as depicted in Figure 3. The cloud backend leverages several Generic Enablers
of the FIWARE ecosystem, as described in Section 4.2. Specifically, the Orchestrator is a
web application developed in Python, which is responsible for orchestrating the rest of the
backend services and exposing a unified and comprehensive RESTful API for third-party
applications to consume. Additionally, we developed the BC Manager, named here as Pearl,
which is responsible for the deployment and maintenance of the BC Service, necessary for
the IoT data validation and integrity verification functionalities offered by the platform.
Essentially, it is an application written in the Go programming language that offers a rich
RESTful API for the interaction between the Orchestrator and the BC Service.

Moreover, we used a microservices architecture [39] for the cloud-based deployment
of the platform. In particular, we employed Docker containers operated by the Container
Orchestration Engine, Kubernetes (https://kubernetes.io (accessed on 25 March 2024)),

https://jmeter.apache.org
https://jmeter.apache.org
https://kubernetes.io


Sensors 2024, 24, 2208 16 of 28

which conveniently enables the management of distributed and horizontally scalable cloud-
native applications, with an emphasis on high availability and fault tolerance. We deployed
Kubernetes in a self-managed private cluster that consists of six virtual machines (VMs):
one master node and five worker nodes, one of which exclusively hosts the BC Service, i.e.,
both the BC Manager and the BC Network. Table 3 summarizes the VM specifications used
as LG infrastructure and CI infrastructure for the platform deployment.

Table 3. Specifications of VMs deployed for performance evaluation.

vCPUs RAM Storage Operating System

LG infrastructure 4 8 GB 20 GB HDD Ubuntu 20.04LTS

CI infrastructure—
master node 4 10 GB 30 GB HDD Ubuntu 20.04LTS

CI infrastructure—
worker nodes (4×) 4 10 GB 30 GB HDD/SSD Ubuntu 20.04LTS

CI infrastructure—
worker nodes (BC) 4 16 GB 50 GB SSD Ubuntu 20.04LTS

From a performance point of view, we enabled CPU pinning (tying virtual CPUs to
real physical CPUs of the host) for the VM hosting the CI, with KVM hypervisor set in
“host-passthrough” CPU mode. Preliminary experimentation showed that this configu-
ration offers substantial performance gains compared to different configuration choices.
In addition, we tuned the operating system limits so that our measurements reflect the
capabilities of the applications, instead of the limits enforced by the operating system. Thus,
the user limits for file size, max memory, and CPU time were set to unlimited, and the open
file limit was increased to 64,000.

We used the MicroK8s (https://microk8s.io (accessed on 25 March 2024)) distribution
for installing the Kubernetes cluster, which is maintained by Canonical (https://canonical.
com (accessed on 25 March 2024)) and is provided through the snap package manager. It
offers a lightweight Certified Kubernetes Software Conformance (https://www.cncf.io/traini
ng/certification/software-conformance (accessed on 25 March 2024)) distribution, which
simplifies the selection of several Kubernetes functionalities through easy (de-)activation
of add-ons (e.g., DNS, ingress, metrics-server, etc.). In addition, we utilized the Helm
(https://helm.sh (accessed on 25 March 2024)) package manager for installing and main-
taining the platform services after developing the necessary Helm charts. The interactions
between the deployed components are depicted in Figure 6. It is noted that we used the
Nginx Kubernetes Ingress Controller as a reverse proxy to route incoming traffic towards
the appropriate backend service. Table 4 summarizes the software version as well as the
best-performing configuration for each software component according to our extensive
preliminary experimentation.

Table 4. Software versions and best-performing configuration for each software component.

Software Component Software Version Best Performing Configuration

MicroK8s 1.26.1 -

Orchestrator 0.1.0 • Gunicorn worker type: sync
• Gunicorn workers: 9

Redis 7.0.7 -

Keyrock 8.0.0 -

MySQL 8.0.32 -

Orion 3.6.0 • reqMutexPolicy: none
• reqPool: 4

https://microk8s.io
https://canonical.com
https://canonical.com
https://www.cncf.io/training/certification/software-conformance
https://www.cncf.io/training/certification/software-conformance
https://helm.sh


Sensors 2024, 24, 2208 17 of 28

Table 4. Cont.

Software Component Software Version Best Performing Configuration

MongoDB 4.4.11 -

QuantumLeap 0.8.0 • Gunicorn worker type: gthread
• Gunicorn workers: 9

CrateDB 4.6.7 • Heap size: 2 GB

Wilma 8.0.0 -

Pearl 0.1.0 -

Hyperledger Fabric 2.4 -

Figure 6. Interactions between the deployed platform components.

5.2. Test Plan

In order to quantify the performance of our platform, we measured (i) the latency
of the device data update requests (HTTP PATCH requests—they carry NGSI-based pay-
loads) towards the REST API of the Orchestrator and (ii) the resource utilization (CPU and
RAM utilization) for all platform services under a variable workload. For orchestrating
the experiments, we created 10 different ecosystems and registered 10 IoT devices per
ecosystem. Two different cases were examined, namely (i) ecosystems without IoT data
integrity verification (no use of the BC Service) and (ii) ecosystems with IoT data integrity
verification (use of the BC Service). Each data update request has a payload of 190 bytes.
Furthermore, in order to evaluate the horizontal scalability of the platform, we leveraged
the native Kubernetes horizontal scaling mechanism and created load-balanced replicas for
the most resource-intensive services (Orchestrator, QuantumLeap, and Orion Context Data
Broker), as observed during preliminary experimentation.

5.2.1. Ecosystems without Data Integrity Verification

We initially increased the number of concurrent users (i.e., active JMeter threads) in
a step-wise fashion in order to empirically quantify the maximum rate of requests/s the
corresponding endpoint can successfully serve. This process was repeated independently
for each number of replicas. Subsequently, we configured JMeter so as to generate asyn-
chronous update requests and increase load in a step-wise fashion (step = 10 requests/s, up
to the empirically measured maximum rate. Figure 7 depicts the corresponding test plan



Sensors 2024, 24, 2208 18 of 28

for a single replica per service. We summarize the parameters used in our experiments in
Table 5.

Figure 7. Step-wise increase in IoT data update load (no data integrity verification).

Table 5. Experimental parameters (no data integrity verification).

Parameter Values

Average data update load (Basic scenario—1 replica) 10–150 requests/s (step = 10)

Average data update load (2 replicas) 10–190 requests/s (step = 10)

Average data update load (3 replicas) 10–240 requests/s (step = 10)

Average data update load (4 replicas) 10–260 requests/s (step = 10)

Payload size 190 bytes

5.2.2. Ecosystems with Data Integrity Verification

In this scenario, we utilized the BC Service through the Pearl BC Manager for imple-
menting the IoT data integrity verification mechanism. Following the same strategy as
described above, we initially increased the number of active JMeter threads in a step-wise
fashion in order to empirically quantify the maximum rate of requests/s the corresponding
endpoint can successfully serve. In this case, data update requests are served at a lower
rate, mainly due to the consensus mechanism and the transaction processing overhead
the BC Service introduces. As a result, we configured JMeter to generate asynchronous
update requests by applying increasing load at levels (5–30 requests/s, step = 5), as shown
in Figure 8. Having identified the communication with the BC Service as the bottleneck of
this scenario, we solely use a single replica of any backend service.

Figure 8. Step-wise increase in IoT data update load (with data integrity verification).



Sensors 2024, 24, 2208 19 of 28

5.3. Evaluation Results

In this section, we present the evaluation results for different IoT data update load
levels. We provide the average and standard error (in the form of error bars) for CPU and
RAM utilization of all backend platform services, each one running in separate (possibly
replicated) Kubernetes pods, as well as the latency of IoT data update requests.

5.3.1. Ecosystems without Data Integrity Verification

The average CPU and RAM utilizations of the backend services (each one correspond-
ing to a unique Kubernetes pod replica) when no data integrity verification is applied are
depicted in Figure 9 and Figure 10, respectively. As expected, average CPU utilization in-
creases as data update rate increases for all backend services. Keyrock and MySQL services
have the lowest CPU utilization, which is almost constant irrespective of the number of
requests/s. This happens mainly due to the Wilma PEP Proxy caching of access control deci-
sions that significantly reduces the number of requests towards the PDP resting in Keyrock.
The two backend services with the highest average CPU utilization are the Orchestrator
(3000 millicores for 150 requests/s) and QuantumLeap (1700 millicores fro 150 requests/s),
both of them developed as web services using the Python Flask framework and Gunicorn
WSGI HTTP server. For any service apart from the Orchestrator, CPU utilization increases
less than linearly to the load (in requests/s), illustrating the scalability of the platform.

By carefully inspecting Figure 10, we conclude that most of the backend services have
relatively low RAM requirements. CrateDB is the only service that requires almost 1.8 GB
RAM, allocated as Java heap memory. In addition, there is a negligible increase in RAM
utilization, as load increases. Figure 11 depicts the latency for IoT data update requests
under varying load. We observe that the latency median remains almost constant and
lower than 40ms in any case, except for 150 requests/s, where it is almost 55 ms.

Figure 12 illustrates the average CPU utilization per node of the Kubernetes cluster the
backend services are deployed on for the basic scenario (one replica per service). Observe
that node “worker-ssd-1” utilizes almost 90% of the available CPU, while other worker
nodes are underutilized. Based on this observation, as mentioned before, we leverage the
Kubernetes horizontal pod scaling functionality for horizontally scaling the three most
intensive backend services (Orchestrator, QuantumLeap, and Orion Context Data Broker) in
order to improve utilization of available cluster resources. As shown in Table 5, two replicas
may serve at most 190 requests/s (+27% compared to basic scenario), three replicas at most
240 requests/s (+60% compared to basic scenario), and four replicas at most 260 requests/s
(+73% compared to basic scenario).

Figure 9. Backend service average CPU utilization under variable IoT data update request rate
(basic scenario).



Sensors 2024, 24, 2208 20 of 28

Figure 10. Backend service average RAM utilization under variable IoT data update request rate
(basic scenario).

Figure 11. Latency under variable IoT data update request rate (basic scenario).

Figure 12. Average node CPU utilization under variable IoT data update request rate (basic scenario).

Figure 13 illustrates the average CPU utilization of all backend services when the
three most intensive services, namely Orchestrator, QuantumLeap, and Orion Context Data
Broker, are horizontally scaled (two, three, and four pod replicas per service). For the sake
of clarity, we omit rates lower than 100 requests/s, since average CPU utilization exhibits no
significant differences compared to the basic scenario for these rates. We note that we report
aggregate average CPU utilization per service by calculating the sum of the CPU utilization



Sensors 2024, 24, 2208 21 of 28

of all replicas. As in the basic scenario, average CPU utilization increases with the increase
in the IoT data update rate. This happens in a sub-proportional manner for all services
apart from the Orchestrator, possibly due to the worker model employed by the Gunicorn
(https://gunicorn.org (accessed on 25 March 2024)) WSGI HTTP Server. In any case, the
three backend services that are horizontally scaled remain the most CPU-intensive ones.

(a) Two-pod replicas.

(b) Three-pod replicas.

(c) Four-pod replicas.

Figure 13. Backend services average CPU utilization under variable IoT data update request rate and
horizontal scaling of three most intensive services.

The average RAM utilization for two, three, and four pod replicas of the three most
intensive services is depicted in Figure 14. Similar to the basic scenario, CrateDB exhibits
the highest RAM utilization (around 2.2 GB). RAM utilization for the Orchestrator and
QuantumLeap services increases almost proportionally to the number of replicas. On the
contrary, the Orion Context Data Broker’s RAM utilization is sub-proportional to the load,
possibly due to more efficient memory management (application written in C++).

Table 6 summarizes the results in terms of resource utilization for a data update request
rate of 150 requests/s, which is the maximum rate achieved for the baseline scenario. We
observe small variations in terms of the aggregate CPU utilization for the three most CPU-
intensive backend services. We still observe that the RAM utilization of the Orchestrator
and QuantumLeap services rises nearly proportionally with the number of replicas, while
that of the Orion Context Data Broker does not increase as much with the load, indicating
a more efficient implementation of the latest. As expected, horizontal scaling of the three

https://gunicorn.org


Sensors 2024, 24, 2208 22 of 28

aforementioned backend services does not affect the utilization of any other backend
service. Once more, the results indicate the fact that our system can scale efficiently with
regard to the number of backend service instances.

Table 6. Average CPU (milliCores) and RAM (MBs) utilization for data update request rate of
150 requests/s.

Service
Baseline Two Pods Three Pods Four Pods

CPU RAM CPU RAM CPU RAM CPU RAM

Orchestrator 2999 281 2497 572 2510 850 2593 1144

QuantumLeap 1660 537 1650 1058 1720 1583 1750 2102

Orion 1235 154 1230 167 1320 190 1361 212

MongoDB 352 75 346 80 353 85 367 89

Crate 266 1808 201 2130 215 2201 235 2230

Wilma 147 62 150 62 142 62 146 58

Redis 114 6 119 6 115 7 116 6

MySQL 15 446 14 445 15 446 15 446

Keyrock 2 74 2 75 3 75 3 74

(a) Two-pod replicas.

(b) Three-pod replicas.

(c) Four-pod replicas.

Figure 14. Backend service average RAM utilization under variable IoT data update request rate and
horizontal scaling of three most intensive services.



Sensors 2024, 24, 2208 23 of 28

Finally, Figure 15 illustrates the latency of the IoT data update requests for horizontal
scaling of the three most intensive services. The median latency is lower than 45 ms up
to 150 requests/s but then increases more profoundly with the load increase, indicating
increased pressure on the platform’s endpoint. In any case, the median latency is lower
than 100 ms.

(a) Two-pod replicas.

(b) Three-pod replicas.

(c) Four-pod replicas.

Figure 15. Latency under variable IoT data update request rate and horizontal scaling of the three
most intensive services.



Sensors 2024, 24, 2208 24 of 28

5.3.2. Ecosystems with Data Integrity Verification

Here, we utilize the BC Service for the data integrity verification mechanism. Figure 16
illustrates the average CPU utilization of all backend services under variable IoT data
update load in the case of data integrity verification. CPU utilization increases as the data
update rate increases, up to the value of 20 requests/s. Then, CPU utilization remains
almost constant due to the bottleneck introduced by the consensus mechanism of the BC
Service. As previously, the services with the highest CPU utilization are the Orchestrator
(600 millicores for 30 requests/s), QuantumLeap (170 millicores for 30 requests/s), and
Orion Context Data Broker (105 millicores for 30 requests/s), but CPU utilization is in
general considerably lower when compared to the one without data integrity verification.

Figure 16. Backend service average CPU utilization under variable IoT data update request rate (with
data integrity verification).

The average RAM utilization of the backend services when data integrity verification
takes place is shown in Figure 17. No significant change in RAM utilization is observed as
load varies. CrateDB still has the highest RAM demand (around 1.6 GB). Finally, Figure 18
depicts the latency for IoT data update requests under varying load when data integrity
verification is performed. It is obvious that the median of the latency is significantly higher
compared to the case where no data integrity verification takes place due to the delay of
the consensus and transaction commit mechanisms introduced by the BC Service.

Figure 17. Backend service average RAM utilization under variable IoT data update request rate
(with data integrity verification).



Sensors 2024, 24, 2208 25 of 28

Figure 18. Latency under variable IoT data update request rate (with data integrity verification).

6. Conclusions and Further Work

In this paper, we proposed a Monitoring-as-a-Service platform for IoT applications
based on FIWARE, which utilizes BC and SC technologies for data integrity verification. We
presented the system architecture and thoroughly described the implementation details of
our platform as well as the interactions between the system components. Additionally, we
extensively evaluated a Proof-of-Concept Kubernetes-based deployment of the platform in
terms of resource utilization (CPU, RAM) and latency under a variable rate of incoming
IoT data. Most backend services, deployed as separate pods, have low computational re-
quirements apart from three services that are more CPU intensive. By leveraging the native
Kubernetes horizontal scaling functionality for the most intensive services, we achieve
higher system throughput with a low expense in terms of RAM utilization. The evalu-
ation shows that our platform enjoys scalability, provided that sufficient computational
and memory resources are available. The incorporation of a BC-based data verification
mechanism upheld the integrity of stored IoT data with no significant penalty on CPU and
RAM utilization but at a discernible expense to the overall system throughput. Further
work includes the investigation of Directly Acyclic Graph (DAG) ledgers such as IOTA
(https://www.iota.org (accessed on 25 March 2024)) and NANO (https://nano.org (ac-
cessed on 25 March 2024)), which could support a much higher throughput in decentralized
systems because the transactions can be sent and confirmed in parallel without the necessity
to be grouped into sequential blocks as in traditional BC systems. Moreover, we aim to
decentralize the identity management, authentication, and authorization mechanisms by
substituting FIWARE Keyrock functionalities for corresponding processes that execute
within SCs and use decentralized identifiers (https://www.w3.org/TR/did-core (accessed
on 25 March 2024)) for enhanced privacy.

Author Contributions: Conceptualization, A.F. and P.C.; methodology, P.C., P.Z., E.P. and N.K.;
software, P.Z., E.P., N.K. and P.C.; validation, A.F., P.C., P.Z. and N.K.; formal analysis, P.C., P.Z., E.P.
and N.K.; resources, A.F., P.C. P.Z., E.P. and N.K.; writing—original draft preparation, P.C., P.Z., N.K.
and E.P.; writing—review and editing, A.F. and P.C.; supervision, A.F.; project administration, A.F.
and P.C.; funding acquisition, A.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has been financed by the European Union and Greek national funds through
the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RE-
SEARCH – CREATE – INNOVATE (project code: T1EDK-00070).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

https://www.iota.org
https://nano.org
https://www.w3.org/TR/did-core


Sensors 2024, 24, 2208 26 of 28

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results

Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
BC Blockchain
CI Cloud Infrastructure
CIM Context Information Model
CPU Central Processing Unit
CSS Cloud Storage Service
DNS Domain Name System
FTP File Transfer Protocol
HLF HyperLedger Fabric
HTTP Hypertext Transfer Protocol
IoT Internet of Things
LG Load Generator
MaaS Monitoring as a Service
MQTT Message Queuing Telemetry Transport
NGSI Next-Generation Service Interface
PDP Policy Decision Point
PEP Policy Enforcement Point
RAM Random Access Memory
REST Representational State Transfer
SC Smart Contract
TPA Third-Party Auditor
VM Virtual Machine

References
1. Kalaitzakis, M.; Bouloukakis, M.; Charalampidis, P.; Dimitrakis, M.; Drossis, G.; Fragkiadakis, A.; Fundulaki, I.; Karagiannaki, K.;

Makrogiannakis, A.; Margetis, G.; et al. Building a Smart City Ecosystem for Third Party Innovation in the City of Heraklion.
In Mediterranean Cities and Island Communities: Smart, Sustainable, Inclusive and Resilient; Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; pp. 19–56. [CrossRef]

2. Afonso, J.A.; Monteiro, V.; Afonso, J.L. Internet of Things Systems and Applications for Smart Buildings. Energies 2023, 16, 2757.
[CrossRef]

3. Atalla, S.; Tarapiah, S.; Gawanmeh, A.; Daradkeh, M.; Mukhtar, H.; Himeur, Y.; Mansoor, W.; Hashim, K.F.B.; Daadoo, M.
IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management. Information 2023, 14, 205.
[CrossRef]

4. Ejaz, W.; Naeem, M.; Shahid, A.; Anpalagan, A.; Jo, M. Efficient Energy Management for the Internet of Things in Smart Cities.
IEEE Commun. Mag. 2017, 55, 84–91. [CrossRef]

5. Folgado, F.J.; González, I.; Calderón, A.J. Data acquisition and monitoring system framed in Industrial Internet of Things for
PEM hydrogen generators. Internet Things 2023, 22, 100795. [CrossRef]

6. Tarrés-Puertas, M.I.; Brosa, L.; Comerma, A.; Rossell, J.M.; Dorado, A.D. Architecting an Open-Source IIoT Framework for
Real-Time Control and Monitoring in the Bioleaching Industry. Appl. Sci. 2024, 14, 350. [CrossRef]

7. Lampropoulos, G.; Siakas, K.; Anastasiadis, T. Internet of Things in the Context of Industry 4.0: An Overview. Int. J. Entrep.
Knowl. 2019, 7, 4–19 . [CrossRef]

8. Chatterjee, A.; Ahmed, B.S. IoT anomaly detection methods and applications: A survey. Internet Things 2022, 19, 100568.
[CrossRef]

9. Xenakis, A.; Karageorgos, A.; Lallas, E.; Chis, A.E.; Gonzalez-Velez, H. Towards Distributed IoT/Cloud based Fault Detection
and Maintenance in Industrial Automation. Procedia Comput. Sci. 2019, 151, 683–690. [CrossRef]

10. Passlick, J.; Dreyer, S.; Olivotti, D.; Grutzner, L.; Eilers, D.; Breitner, M. Predictive maintenance as an internet of things enabled
business model: A taxonomy. Electron. Mark. 2021, 31, 67–87. [CrossRef]

http://doi.org/10.1007/978-3-319-99444-4_2
http://dx.doi.org/10.3390/en16062757
http://dx.doi.org/10.3390/info14040205
http://dx.doi.org/10.1109/MCOM.2017.1600218CM
http://dx.doi.org/10.1016/j.iot.2023.100795
http://dx.doi.org/10.3390/app14010350
http://dx.doi.org/10.37335/ijek.v7i1.84
http://dx.doi.org/10.1016/j.iot.2022.100568
http://dx.doi.org/10.1016/j.procs.2019.04.091
http://dx.doi.org/10.1007/s12525-020-00440-5


Sensors 2024, 24, 2208 27 of 28

11. Psychoula, I.; Singh, D.; Chen, L.; Chen, F.; Holzinger, A.; Ning, H. Users’ Privacy Concerns in IoT Based Applications.
In Proceedings of the 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scal-
able Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Guangzhou, China, 8–12 October 2018; pp. 1887–1894. [CrossRef]

12. Jeon, H.; Lee, C. Internet of Things Technology: Balancing privacy concerns with convenience. Telemat. Inform. 2022, 70, 101816.
[CrossRef]

13. Babun, L.; Denney, K.; Celik, Z.B.; McDaniel, P.; Uluagac, A.S. A survey on IoT platforms: Communication, security, and privacy
perspectives. Comput. Netw. 2021, 192, 108040. [CrossRef]

14. Shelby, Z.; Hartke, K.; Bormann, C. RFC 7252—The Constrained Application Protocol (CoAP). Available online: https://datatrac
ker.ietf.org/doc/html/rfc7252 (accessed on 25 March 2024).

15. Fedor, M.; Schoffstall, M.; Davin, J.; Case, J. RFC 1157—Simple Network Management Protocol (SNMP). Available online:
https://datatracker.ietf.org/doc/html/rfc1157 (accessed on 25 March 2024).

16. Enns, R.; Bjorklund, M.; Schoenwaelder, J.; Bierman, A. RFC 6241—Network Configuration Protocol (NETCONF). Available
online: https://datatracker.ietf.org/doc/html/rfc6241 (accessed on 25 March 2024).

17. Bierman, A.; Bjorklund, M.; Watsen, K. RFC 8040—RESTCONF Protocol. Available online: https://datatracker.ietf.org/doc/htm
l/rfc8040 (accessed on 25 March 2024).

18. Veillette, M.; Stok, P.; Pelov, A.; Bierman, A.; Bormann, C. CoAP Management Interface (CORECONF). Available online:
https://datatracker.ietf.org/doc/draft-ietf-core-comi/ (accessed on 25 March 2024).

19. Li, Z.; Xie, Z.; Liu, L.; Wu, Y. Design and Implementation of an Integrated City-Level IoT Platform Based on Edge Computing
and Cloud Native. In Proceedings of the 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control
Conference (IAEAC ), Beijing, China, 3–5 October 2022; pp. 463–467. [CrossRef]

20. Lopez-Riquelme, J.; Pavon-Pulido, N.; Navarro-Hellin, H.; Soto-Valles, F.; Torres-Sanchez, R. A software architecture based on
FIWARE cloud for Precision Agriculture. Agric. Water Manag. 2017, 183, 123–135. [CrossRef]

21. Neagu, G.; Preda, S.; Stanciu, A.; Florian, V. A Cloud-IoT based sensing service for health monitoring. In Proceedings of the 2017
E-Health and Bioengineering Conference (EHB), Sinaia, Romania, 22–24 June 2017, pp. 53–56. [CrossRef]

22. Galán, F.; Fazio, M.; Celesti, A.; Glikson, A.; Villari, M. Exploiting the FIWARE Cloud Platform to Develop a Remote Patient
Monitoring System. In Proceedings of the 2015 IEEE Symposium on Computers and Communication (ISCC), Larnaca, Cyprus,
6–9 July 2015. [CrossRef]

23. Fernández, P.; Santana, J.M.; Ortega, S.; Trujillo, A.; Suárez, J.P.; Domínguez, C.; Santana, J.; Sánchez, A. SmartPort: A Platform
for Sensor Data Monitoring in a Seaport Based on FIWARE. Sensors 2016, 16, 417. [CrossRef] [PubMed]

24. Hui, L.; Gui-rong, W.; Jian-ping, W.; Peiyong, D. Monitoring platform of energy management system for smart community.
In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017;
pp. 1832–1836. [CrossRef]

25. Openhab Smart Home Platform. Available online: https://www.openhab.org (accessed on 22 March 2024).
26. Samsung SmartThings Platform. Available online: https://www.samsung.com/us/smartthings (accessed on 22 March 2024).
27. Apple HomeKit. Available online: https://www.apple.com/shop/accessories/all/homekit (accessed on 22 March 2024).
28. Amazon Web Services IoT. Available online: https://aws.amazon.com/iot (accessed on 22 March 2024).
29. IBM Watson. Available online: https://www.ibm.com/watson (accessed on 22 March 2024).
30. Liu, B.; Yu, X.L.; Chen, S.; Xu, X.; Zhu, L. Blockchain Based Data Integrity Service Framework for IoT Data. In Proceedings of the

2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA, 25–30 June 2017; pp. 468–475. [CrossRef]
31. Wu, X.; Kong, F.; Shi, J.; Bao, L.; Gao, F.; Li, J. A blockchain internet of things data integrity detection model. In Proceedings of

the 1st International Conference on Advanced Information Science and System; Association for Computing Machinery, New
York, NY, USA, 15–17 November 2019; AISS ’19. [CrossRef]

32. Eghmazi, A.; Ataei, M.; Landry, R.J.; Chevrette, G. Enhancing IoT Data Security: Using the Blockchain to Boost Data Integrity and
Privacy. IoT 2024, 5, 20–34. [CrossRef]

33. Chanai, P.; Kakkasageri, M. Blockchain-based data integrity framework for Internet of Things. Int. J. Inf. Secur. 2024, 23, 519–532.
[CrossRef]

34. Zhang, K.; Xiao, H.; Liu, Q. Data Integrity Verification Scheme Based on Blockchain Smart Contract. In Proceedings of the 2022
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), Wuhan, China,
9–11 December 2022; pp. 857–863. [CrossRef]

35. Chen, C.; Wang, L.; Long, Y.; Luo, Y.; Chen, K. A blockchain-based dynamic and traceable data integrity verification scheme for
smart homes. J. Syst. Archit. 2022, 130, 102677. [CrossRef]

36. Rahman, M.S.; Chamikara, M.; Khalil, I.; Bouras, A. Blockchain-of-blockchains: An interoperable blockchain platform for
ensuring IoT data integrity in smart city. J. Ind. Inf. Integr. 2022, 30, 100408. [CrossRef]

37. Doulgeraki, P.; Karuzaki, E.; Sykianaki, E.; Partarakis, N.; Bouhli, M.; Ntoa, S.; Stephanidis, C. Web-Based Management for
Internet of Things Ecosystems. In Proceedings of the HCI International 2023 Posters, Copenhagen, Denmark, 23–28 July 2023;
Stephanidis, C., Antona, M., Ntoa, S., Salvendy, G., Eds.; Springer: Cham, Switzerland, 2023; pp. 475–482.

http://dx.doi.org/10.1109/SmartWorld.2018.00317
http://dx.doi.org/10.1016/j.tele.2022.101816
http://dx.doi.org/10.1016/j.comnet.2021.108040
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc1157
https://datatracker.ietf.org/doc/html/rfc6241
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/html/rfc8040
https://datatracker.ietf.org/doc/draft-ietf-core-comi/
http://dx.doi.org/10.1109/IAEAC54830.2022.9929901
http://dx.doi.org/10.1016/j.agwat.2016.10.020
http://dx.doi.org/10.1109/EHB.2017.7995359
http://dx.doi.org/10.1109/ISCC.2015.7405526
http://dx.doi.org/10.3390/s16030417
http://www.ncbi.nlm.nih.gov/pubmed/27011192
http://dx.doi.org/10.1109/CCDC.2017.7978814
https://www.openhab.org
https://www.samsung.com/us/smartthings
https://www.apple.com/shop/accessories/all/homekit
https://aws.amazon.com/iot
https://www.ibm.com/watson
http://dx.doi.org/10.1109/ICWS.2017.54
http://dx.doi.org/10.1145/3373477.3373498
http://dx.doi.org/10.3390/iot5010002
http://dx.doi.org/10.1007/s10207-023-00719-6
http://dx.doi.org/10.1109/TrustCom56396.2022.00119
http://dx.doi.org/10.1016/j.sysarc.2022.102677
http://dx.doi.org/10.1016/j.jii.2022.100408


Sensors 2024, 24, 2208 28 of 28

38. Domínguez-Bolaño, T.; Campos, O.; Barral, V.; Escudero, C.J.; García-Naya, J.A. An overview of IoT architectures, technologies,
and existing open-source projects. Internet Things 2022, 20, 100626. [CrossRef]

39. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L., Microservices: Yesterday, Today,
and Tomorrow. In Present and Ulterior Software Engineering; Springer International Publishing: Berlin/Heidelberg, Germany, 2017;
pp. 195–216. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.iot.2022.100626
http://dx.doi.org/10.1007/978-3-319-67425-4_12

	Introduction
	Related Works
	System Requirements and Logical Architecture
	System Requirements
	Functional Requirements
	Non-Functional Requirements

	Logical Architecture

	Implementation Details of the EPOPTIS Platform
	Context Information Model
	Functional Architecture
	Orchestrator
	Identity Management and PEP Proxy
	Cache Pool
	Context Data Broker
	TimeSeries DB Service
	Blockchain Service

	Interactions of the Functional Components
	NGSI Data Persistent Storage
	Retrieval of Historical Data


	Performance Evaluation
	Testbed and Deployment
	Test Plan
	Ecosystems without Data Integrity Verification
	Ecosystems with Data Integrity Verification

	Evaluation Results
	Ecosystems without Data Integrity Verification
	Ecosystems with Data Integrity Verification


	Conclusions and Further Work
	References

