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Abstract: Through-wall radar human body pose recognition technology has broad applications
in both military and civilian sectors. Identifying the current pose of targets behind walls and
predicting subsequent pose changes are significant challenges. Conventional methods typically
utilize radar information along with machine learning algorithms such as SVM and random forests
to aid in recognition. However, these approaches have limitations, particularly in complex scenarios.
In response to this challenge, this paper proposes a cross-modal supervised through-wall radar
human body pose recognition method. By integrating information from both cameras and radar, a
cross-modal dataset was constructed, and a corresponding deep learning network architecture was
designed. During training, the network effectively learned the pose features of targets obscured
by walls, enabling accurate pose recognition (e.g., standing, crouching) in scenarios with unknown
wall obstructions. The experimental results demonstrated the superiority of the proposed method
over traditional approaches, offering an effective and innovative solution for practical through-wall
radar applications. The contribution of this study lies in the integration of deep learning with cross-
modal supervision, providing new perspectives for enhancing the robustness and accuracy of target
pose recognition.

Keywords: through-wall radar; target pose recognition; deep learning; cross-modal supervision;
machine learning

1. Introduction

Traditional through-wall radar methods for target pose recognition primarily rely on
directly extracting target pose information from radar echo signals. However, this approach
is plagued by issues such as information loss, difficulty in capturing pose diversity, complex
feature engineering, and inadequacy in adapting to complex scenarios. In the field of
computer vision, the estimation of human body pose is commonly categorized into two
approaches: top-down and bottom-up. The top-down approach involves initially detecting
each person in the image and then applying a single-person pose estimator to extract
keypoint information, as evidenced by prior works [1–4]. In contrast, the bottom-up
approach, as demonstrated in previous studies [5–7], first detects all keypoints in the image
and then associates keypoints of the same target through a post-processing procedure.
Radar echo images often struggle with clear target identification but can provide limited
information about the positions of target keypoints. Furthermore, compared to traditional
RGB-D sensors and external sensors like Vicon [8,9], radar signals have the advantage of
being less susceptible to interference from walls and other opaque structures.
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In this study, a bottom-up approach is adopted, building upon existing methods, with
a focus on cross-modal and multimodal modeling to explore complementary information
matching or cross-modal information transfer. By integrating camera and radar information
and leveraging deep learning frameworks, this paper achieves more accurate and robust
through-wall radar target pose recognition. The objective of this innovative approach is to
overcome the limitations of traditional methods, comprehensively utilizing multimodal
information to enhance target pose recognition performance in complex environments.

Recent academic research in the field of human pose recognition has predominantly
concentrated on overall body position localization, monitoring walking speed, tracking
chest movements to extract respiratory and heartbeat information, and tracking arm move-
ments for specific gesture recognition. Systems such as the RF-Capture designed by
Adib et al. [10] offer a rough description of a person’s position behind a wall based on
signals detected at multiple time points from different body parts. However, previous
research showed limitations in accurately estimating body poses or precisely locating vari-
ous key body parts, thereby falling short of achieving comprehensive and accurate human
pose estimation.

This study aimed to bridge this research gap by achieving comprehensive and pre-
cise estimation of human body pose through the integrated consideration of information
from multiple body parts. To effectively separate reflection signals from different objects,
advanced waveform modulation techniques such as FMCW (frequency-modulated contin-
uous wave) and SFCW (step frequency continuous wave) are commonly employed. FMCW
technology modulates the frequency of the transmitted signal, enabling the calculation
of the target’s distance by measuring the frequency difference in the returned signal. In
FMCW radar, the frequency of the continuous wave signal changes linearly or nonlinearly,
typically increasing over time. When this signal is mixed with the signal reflected from the
target, the distance to the target can be determined by measuring the frequency difference.
SFCW radar, on the other hand, transmits a series of continuous wave signals with discrete
frequency steps and then measures the phase and amplitude of the returned signal to
obtain target information.

In recent years, alongside research focusing on Doppler-based human motion detection
in indoor environments [11], there have also been studies on describing human representa-
tion information through SAR imaging [12]. However, these studies primarily focused on
human detection. The core method proposed in this paper still lies in the three-dimensional
imaging of human targets, followed by gesture recognition, as three-dimensional results
offer richer and more intuitive information.

This study drew inspiration from the approach presented in the relevant literature [13,14]
to construct a radar system. The system generates SFCW signals and is equipped with a
two-dimensional antenna array. The input data of the system are presented in the form of a
two-dimensional heatmap, comprising horizontal and vertical heatmaps. The horizontal
heatmap represents the projection of signals on a plane parallel to the ground, while the
vertical heatmap represents the projection of signals on a plane perpendicular to the ground,
with red indicating higher values and blue indicating lower values, as illustrated in Figure 1.
Since radar signals are in complex in form, each pixel in the heatmap contains both real and
imaginary parts. Thirty pairs of such heatmaps can be generated per second, providing a
rich data foundation for subsequent pose estimation.
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Figure 1. Radar heatmaps and camera RGB images.

2. Preprocessing of Target Signals behind Walls

Through-wall radar for human body pose recognition represents a critical application
within radar systems, offering extensive integration opportunities with computer vision
technology in areas such as surveillance, behavior recognition, and disaster rescue. The
process of human body pose recognition primarily focuses on identifying crucial joint
locations (e.g., arms, legs) and key points (e.g., head, torso). Unlike cameras, radar en-
counters challenges with occlusion, particularly when obstructed by walls. Many existing
studies addressing occlusion relied on deep learning for target generation. However, due
to the inherent uncertainty associated with human body poses, this approach is susceptible
to errors. With advancements in sensor technologies, the fusion of data from multiple
sensors has emerged as a promising direction to mitigate occlusion-related challenges in
pose recognition. The method studied for human body pose estimation using through-wall
radar, as explored in this paper, holds relevance for potential applications in other visual
recognition scenarios [15–17].

2.1. Radar Antenna Parameter Design

This section details the design of the antenna unit, rooted in radar array design theory
and adopting the virtual aperture planar array format to achieve the UWB radar signal
transmitting and receiving functions. In this study, adjustments were made to the number
and geometry of the transmitting and receiving antennas to evaluate the impact of various
array configurations on the 3D imaging performance. This process aimed to offer robust
insights into determining the ultimate configuration of the virtual aperture planar array.

In examining UWB antenna forms, various common types were explored, encom-
passing monopole antennas, dual-cone dipole antennas, wide-slot antennas, logarithmic
spiral antennas, and logarithmic periodic antennas, with an analysis of their respective
characteristics. These antennas are adept at emitting broadband RF signals and exhibit
distinct attributes. Notably, in the realm of through-wall radar system equipment devel-
opment, the aspect of weight is often underestimated. When selecting antenna materials,
it becomes imperative to consider the physical properties of the cables, including their
volume, cross-sectional area, and weight. With these considerations in mind, this study
opted for microstrip patch antennas as the foundational material. Furthermore, in de-
signing antenna units, it becomes paramount to address both wideband performance and
electrical properties, while ensuring applicability across various scenarios. To this end, the
proposed solution involves employing microstrip butterfly-shaped antennas with a back
cavity design.

Antenna Performance Parameters:
Operating frequency range: 1.9 GHz–2.9 GHz; antenna type: microstrip butterfly-

shaped resonator antenna; VSWR (voltage standing wave ratio): <2; Gain: ≥5 dBi;
front-to-back ratio: ≥10 dB; beamwidth: Azimuth ≥ 60◦, Elevation ≥ 45◦; unit size:
≤7.5 × 7.5 × 6.5 cm; array scale: T10R10.
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The simulation model for the wideband butterfly-shaped resonator antenna is illus-
trated in Figure 2.

From the Figure 3, it can be observed that the return loss (S11) of the antenna remained
below −10 dB (equivalent to VSWR < 2) across the frequency range of 1.7 GHz to 2.85 GHz.
As indicated in Figure 4 below, the designed antenna exhibited characteristics such as gain
and 3 dB beamwidth.

Figure 2. Antenna simulation model.

Figure 3. Simulation results for antenna return loss (S11).

Figure 4. Simulation results at typical frequency points for the antenna.

The radar system adopted a stepped-frequency continuous-wave signal regime, rep-
resenting a novel radar approach based on through-wall radar three-dimensional imag-
ing technology. Compared to traditional pulse radar systems, the stepped-frequency
continuous-wave signal regime offers a higher signal-to-noise ratio and lower power con-
sumption. Additionally, this paper leveraged ultra-wideband (UWB) technology, where the



Sensors 2024, 24, 2207 5 of 30

antenna unit boasts a wide bandwidth, enabling higher resolution and finer imaging effects.
To meet the integration demands of the radar system, a planar structure was utilized in the
antenna design. Compared to traditional three-dimensional antennas, planar antennas offer
lower manufacturing costs, a simpler structure, and a smaller size, thus enhancing the radar
system’s integration. Moreover, the radiation characteristics of planar antennas and the
design of antenna arrays meet the system’s requirements for high resolution and low side
lobes. In summary, the design of the stepped-frequency continuous-wave signal regime
and UWB antenna based on through-wall radar three-dimensional imaging technology
achieved higher imaging accuracy and a smaller system size, showcasing superior practical
performance and promising broad application prospects.

2.2. Radar Array Structure Configuration
2.2.1. Antenna Array Configuration Platform

This section explores the design of the antenna array configuration platform, aiming
to utilize a two-dimensional sparse planar array based on multi-transmitter multi-receiver
technology to achieve three-dimensional imaging. Various factors such as imaging quality
and system complexity were taken into account during the design process. The primary
focus regarding imaging quality lay in achieving optimal focusing quality and positioning
accuracy. System complexity was comprehensively considered by imposing constraints on
the number of elements, aperture size, and minimum element spacing, while employing
traditional sparse array design methods.

To establish a mathematical relationship model between aperture parameters and
image parameters, optimization procedures involving aperture shape, size, element spacing,
number of elements, and aperture formation time were carried out. This optimization
design endeavored to attain high-quality imaging, while maintaining reasonable control
over system complexity to meet the practical application requirements. To validate the
effectiveness of the antenna array topology, a virtual aperture sparse array was formed by
extracting certain transmit-receive antenna units based on the virtual dense aperture array.
During the evaluation of the different extraction schemes for obtaining multi-baseline or
single-baseline three-dimensional imaging performance, consideration was also given to
the system weight. Figure 5 illustrates an approach for obtaining validation data based
on a virtual dense aperture array, where the black circles, green circles, and white circles
represent the transmit element, receive element, and idle element, respectively.

(a) (b) (c)

Figure 5. Virtual aperture planar array structure. (a) crowded face mask (math.). (b) Multi-baseline
sparse surface array. (c) Single-baseline sparse surface array.

2.2.2. Switch Matrix Module Design

The switch matrix encompasses two integral components: the transmission switch
matrix and the reception switch matrix, each characterized by specific metrics:

Transmission switch matrix metrics and Reception switch matrix metrics:

(1) Operating frequency range: 1.9 GHz–2.9 GHz;
(2) channel selection paths: 1 out of 10;
(3) channel isolation: ≥45 dB.
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The antenna array comprised 10 transmit and 10 receive channels, with operational
procedures involving sequential switching from channel 1 to channel 10 for both trans-
mission and reception. Upon completion of all 10 channel switches, the transmit channel
transitions to channel 2, while the receive channels sequentially shift from channel 1 to
channel 10. This iterative process results in a total of 100 channel switches.

In the design of the switch matrix, two considerations were paramount: the switch
switching speed and switch isolation. Swift transitions of the switch are crucial to ensure
brief durations at each frequency point, thereby facilitating a high scanning refresh rate. The
designated switch switching speed was confined within a stringent timeframe of 100 ns.
Simultaneously, switch isolation safeguards against unwanted inter-channel crosstalk
during the reception of echoes, ensuring the fidelity of the resultant image.

Given the tenfold nature of both transmit and receive channels, and recognizing the
inadequacy of a singular switch chip for simultaneously fulfilling all channel switching
requisites while maintaining requisite isolation, the design adopted a judicious two-stage
cascaded switch architecture, as depicted in Figure 6. Specifically, the transmit switch
and receive switch designs remained aligned. However, before ingress into each receive
switch, an essential low-noise amplifier (LNA) stage is incorporated. This augmentation
ensures that the switch’s introduction exerts minimal impact on the overall system noise
level. This strategic design approach harmonized switch array performance and isolation
efficacy, ultimately achieving superlative radar image quality, while optimizing system
noise control. The multi-baseline surface array method of acquisition was selected, and the
wall material was a 12 cm brick wall (the actual thickness was 11.5 cm).

Four-choice

switch

Four-choice 

switch

Four-choice 

switch

Four-choice 

switch

Figure 6. Switch matrix topology diagram.

2.3. Preprocessing and RF Front-End Design
2.3.1. Data Acquisition and Preprocessing Section

The data acquisition and preprocessing module are primarily responsible for collecting
and preprocessing radar echo signals, encompassing tasks such as digital down-conversion,
digital filtering, inter-channel calibration, pulse compression, and more. Once the data
undergo preprocessing, they are uploaded to both the upper computer and the image
processing module for further analysis.

Technical specifications of the data acquisition and preprocessing module:

(1) Sampling rate: ≥20 MHz;
(2) intermediate frequency: 15 MHz;
(3) A/D quantization bits: 16 bits.

Control commands and operational parameters of the system are transmitted from the
signal processing unit to the RF front-end preprocessing board. For the downstream data
flow: Initially, radar control commands and operational parameters are transmitted via
Ethernet using the TCP protocol from the display control software, running on the display
control computer, to the information processing unit. Upon receiving these commands and
parameters from the display control, the information processing unit verifies and adjusts
them as necessary before relaying corresponding instructions to the RF front-end prepro-
cessing unit via USB. These instructions specify the working modes, frequency steps, and
bandwidth steps. The RF front-end promptly confirms receipt of the command information.
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For the upstream data flow: In sending data upstream, the RF front-end transfers echo
data to the information processing unit via USB. Subsequently, the information processing
unit forwards operational parameters and echo data to the display control and data storage
unit through Ethernet.

The RF front-end module comprises three components: a frequency synthesizer,
transmitter, and receiver. The technical specifications of the RF front-end section are
as follows:

(1) Operating frequency range: covering 1.9 GHz–2.9 GHz;
(2) transmitter output power: +20 dBm;
(3) frequency step: 4 MHz/2 MHz;
(4) receiver intermediate frequency: 15 MHz.

2.3.2. RF Front-End Module Section

The frequency synthesizer and transmitter are pivotal components of this system. The
frequency synthesizer’s primary role is to generate the SFCW local oscillator signal, while
the transmitter is responsible for tasks such as quadrature upconversion, filtering, and
amplification. To optimize the overall size and power consumption, this paper integrated
the design of the frequency synthesizer and transmitter. The frequency synthesizer and
transmitter comprise a crystal oscillator (serving as a common source for splitting), filters, a
quadrature modulator, 1 × 2 RF switch (for toggling between calibration and transmission
channels), digital attenuator, power amplifier, and more, as depicted in Figure 7.

PLL Splitter
IQ

MD
SW DVGA PA

Crystal

RF transmitting unit

OSC

RX-physics RX-calibration

15M

IF signal DC
Control 

signal

Output

Figure 7. Block diagram of frequency synthesizer and transmitter design.

The receiver is mainly composed of a low-noise amplifier, RF AGC, switch, mixer, IF
AGC, digital gain amplifier, and bandpass filter, as shown in Figure 8 below.

DV

GA
IF output

RF receiver unit

RX-physics RX-calibration

Control signal DC

receive inputBWF AGC MIX SW AGC LNA

Figure 8. Receiver design schematic diagram.
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The structure of through-wall radar receivers generally falls into two categories: zero-
IF (intermediate frequency) receivers and fixed-IF receivers. Zero-IF receivers are capable
of generating two signals: the in-phase signal and the quadrature signal. To tackle the
challenge of image interference in zero-IF receivers, the receiver’s frequency can be set
to zero. However, this introduces issues such as DC divergence and nonlinear effects in
the digital domain, rendering target detection relatively challenging. Therefore, this paper
adopted a fixed-IF receiver approach, as depicted in the schematic diagram in Figure 9. The
fixed-IF receiver helps alleviate noise interference associated with zero-IF receivers.

frequency 
synthesis

bandpass 
�ltering

logical 
control

IF quadrature 
demodulation

Reception
ampli�er

Transmitter 
ampli�er

physics

transmitter 
signal

echo signal

LOf

RFf

IFf

RFf LOf IFf= +

Figure 9. Schematic diagram of fixed-IF receiver.

The intermediate frequency (IF) quadrature demodulation is implemented in the
digital domain, typically without the need for an external frequency synthesizer to provide
the IF local oscillator signal. This approach is common in many radar receivers.

2.4. Imaging System Design

The information processing unit is responsible for collecting, storing, and processing
the radar echoes received by the receiver, including tasks such as three-dimensional imaging
and clutter suppression. The data processing flow is illustrated in Figure 10.

Radar
echo data

data
preprocessing

System calibration &
distance focusing

Azimuthal Focusing &
Clutter Suppression

Height 
information 
extraction

3D imaging

Figure 10. Three-dimensional through-wall imaging radar data processing flowchart.

(1) Two-dimensional imaging processing:

To accomplish range and azimuth focusing, this study primarily explored time-domain
imaging algorithms (such as backprojection algorithms) and frequency-domain imaging
algorithms (like range migration algorithms). Time-domain imaging algorithms can accom-
modate arbitrary array topologies but come with high computational complexity. On the
other hand, frequency-domain imaging algorithms offer lower computational complexity
but are usually confined to handling uniform arrays. Moreover, during data processing,
attention was directed towards electromagnetic wave refraction and dispersion result-
ing from wall penetration, with the objective of enhancing the focusing quality and
localization accuracy.

(2) Clutter suppression:

To achieve high signal-to-noise ratio radar images, methods for wall clutter suppres-
sion and ghost clutter suppression are studied. Wall clutter suppression methods include
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spatial filtering and singular value decomposition. Ghost clutter suppression methods
involve frequency response enhancement and spatial position correlation.

During actual data processing, a flexible combination of the above imaging algorithms,
height information extraction methods, and clutter suppression methods was determined
based on real-world conditions. This ensured the final measured data imaging processing
flow produced high-quality results. Furthermore, the effectiveness of each method could be
verified through actual data imaging processing, laying the foundation for the subsequent
research on three-dimensional through-wall imaging radar. The specific imaging system
will be detailed in the following two sections.

(3) Height information extraction:

Height information is extracted to differentiate individuals with different postures.
Multiple baseline tomography and single baseline interferometry methods are employed
for height information extraction. Tomography methods use multiple virtual line arrays
distributed in the height direction to extract target height information, while interferometry
uses two virtual line arrays for angle interferometry, and subsequently obtains height
information. Tomography has a stronger robustness but requires more antenna units and
higher computational complexity. Interferometry is easier to implement for lightweight
systems and may have larger errors when dealing with low signal-to-noise ratios and
complex targets.

3. Modeling of Through-The-Wall Radar Imaging Systems
3.1. Imaging System Model

When radar signals propagate and encounter obstacles, the inhomogeneity of the
medium causes the signals to reflect, refract, and scatter as the electromagnetic waves
pass through the interface separating the two media. This results in the obtained sensor
signal being less favorable for research and complicates the model simplification process.
Therefore, when selecting an imaging algorithm, it is crucial to consider the refractive
properties of electromagnetic waves between different media. Generally, the backprojection
(BP) algorithm is chosen to process the signal and compensate for the signal refraction loss
between different media. At the core of this algorithm lies the computation of delayed-
superposition summation for each imaging point in the imaging region, which necessitates
extensive data computation in the final 3D reconstruction process.

As depicted in Figure 11, a wall-penetrating radar emits electromagnetic wave signals
from a transmitter Tm towards the wall. Upon encountering a target object, the signal
reflects within a certain angle, forming an echo signal. This echo signal penetrates the wall
again and is received by the receiving end, Rn, where it undergoes coherent superposition.
A data space is defined in this space, and coherent focusing is applied to each data point
within the data control, to accomplish 3D image reconstruction. The current challenges in
through-wall radar imaging often revolve around three main points: (1) low resolution
of imaging results due to limitations of the signal model; (2) the slow operational speed
of the system stemming from the core principle of BP imaging; and (3) the interference
of wall clutter, multipath clutter, and other noises, leading to poor robustness of the
imaging process.

The system in this paper utilizes multiple transceiver units arrayed using SFCW
signals with continuously adjustable segmentation frequency. Switches are employed for
time-division control of the antennas. Compared to SAR radar, the acquisition system
presented herein boasts advantages such as a rapid acquisition time and unrestricted
motion space, thereby rendering the system size and cost more manageable. An imaging
diagram of the MIMO radar array is illustrated in Figure 12 below:
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Target

Wall

Air

Figure 11. Schematic diagram of through-wall radar system.

Wall

Target

Depth

Pitch

(a)

Transmitter

Receiver  

(b)

Figure 12. MIMO radar array imaging geometry. (a) left view. (b) front view.

(a) is the left view and (b) is the main view. The entire imaging radar system contains
M transmitting antennas and N receiving antennas. The mth transmitting antenna Tm and
the nth receiving antenna Rn are located at (xm, ym, 0), (xn, yn, 0), where m = 1, 2, . . . , M ,
n = 1, 2, . . . , N . The form of the SFCW signal transmitted by the radar can be expressed as

ST(t) =
Q

∑
q=1

e−j2π( f0+(q−1)∆ f )trect(t/T − q) (1)

∆ f is the step size of the SFCW radar, Q is the number of radar frequency points,
and T denotes the time in each frequency band. At this time, the point (xo, yo, zo) is set in
space, and for the mth transmitting antenna Tm , the nth receiving antenna Rn, and the qth
frequency point fq = f0 + (q − 1)∆ f , the echo signal of the target body can be written as

Sm,n,q = α exp(−j2π fqτmn) (2)

where τmn = (
√
(xo − xm)

2 + (yo − ym)
2 + z2

o +
√
(xo − xn)

2 + (yo − yn)
2 + z2

o)/c is the
time delay of the received signal, c is the speed of light, and α is the target reflection
coefficient. For a distributed target, the expression for the received signal can be expressed
as the following equation:
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Sm,n,q =
∫∫∫

xoyozo

α(xo, yo, zo)e−j2π fqτmn dxodyodzo (3)

For the SFCW-MIMO system within a sampling period, there are a total of M × N
channels in the frequency domain echo data, which contain the amplitude and phase
information and constitute the imaging data space. In this part of data control, at any point
(x, y, z), the echo signal is given by Equation (3), and the signal pixel values in its space are
given by Equation (4):

I(x, y, z) =
Q

∑
q=1

M

∑
m=1

N

∑
n=1

Sm,n,qe+j2π fqτ∗mn , (4)

where the time delay of the pixel points divided by the imaging area is τ∗
mn:

τ∗
mn = (

√
(x − xm)

2 + (y − ym)
2 + z2 +

√
(x − xn)

2 + (y − yn)
2 + z2)/c. (5)

The relative scattering intensity value of the received signal can be obtained according
to τ∗

mn. For distributed targets, the coefficient of each pixel point in the reconstructed region
can be expressed as Equation (6):

I(x, y, z) =
∫∫∫

x0y0z0

α(x0, y0, z0)
Q

∑
q=1

M

∑
m=1

N

∑
n=1

ej2π fq(τ∗mn−τmn)dx0dy0dz0. (6)

The equation above defines a pixel’s value in a data grid, enabling the creation of
a 3D focus map by aggregating grid points. Closer alignment of the target with the
pixel coordinates results in clearer imaging. To enhance a wall-penetrating radar’s range
resolution and penetration, signal regimes often shift to SFCW and utilize BP imaging in
the frequency domain for increased dynamic range and power.

The Nyquist theorem stipulates a sampling frequency exceeding twice the signal
bandwidth, to prevent information loss in uniform sampling. However, for sparse signals,
compressed sensing theory offers a novel sampling method using random matrices, achiev-
ing accurate signal reconstruction with minimal data. This theory finds wide application in
signal sampling, image processing, radar imaging, and channel coding, relying on linear
projection for precise reconstruction.

Traditional through-wall radar employs time-domain sampling, necessitating higher
speeds and storage due to signal complexity. Thus, frequency domain compressed sensing
has gained traction, compressing data by extracting sub-bands, significantly reducing
sampling rates, storage needs, and costs compared to time sampling.

In through-wall radar, frequency domain compressed sensing reduces data acquisition
and processing costs, while enhancing imaging resolution and target detection depth.
Careful parameter selection mitigates information loss, as spectral aliasing effects may
occur due to discrete sub-band extraction. Future advancements in technology will likely
broaden the application of frequency domain compressed sensing in through-wall radar,
further improving efficiency and accuracy.

In the practical engineering application of through-wall radar imaging, other RF signal
interferences cannot be avoided in the space, and the sampling data of certain frequency
points are difficult to obtain, i.e., the frequency signal of the target is also sparse in the space.
Therefore, the selection of the measurement frequency points should include randomly
selected geographic locations in the target area, which can enhance the diversity of the data
and obtain more target information. Random measurements are used to select random
frequency data at random aperture locations to enhance the robustness of the reconstruction
results, and the case of joint compression in the spatial and frequency domains is used in
the construction process of the measurement matrix Φ. The value of Φp changes with the
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value of p, i.e., measurements are performed at different aperture locations and different
frequency points. The model is illustrated in Figure 13 below.

(a) (b)

Figure 13. Schematic diagram of random measurement of frequency points. (a) Antenna measurement
position. (b) Frequency measurement position.

3.2. Through-Wall Radar Clutter Suppression Techniques
UWB Virtual Aperture Imaging Method

Clutter suppression techniques in through-wall radar systems play a pivotal role in
enhancing imaging quality. Among these, synthetic aperture radar (SAR) stands out as
a rapidly evolving radar technology capable of achieving high-resolution 2D imaging by
transmitting broadband signals, while forming arrays in the azimuthal direction. How-
ever, SAR radar encounters several practical constraints, including challenges in achieving
forward-looking imaging and accurately focusing on stationary and moving targets simul-
taneously. Although some researchers have proposed methods like dual-base station SAR
radar for forward-looking imaging, extensive research is required to address the many
potential issues.

In numerous application scenarios, there is an urgent need for perspective imaging
of static and moving targets, or even simultaneous imaging. For instance, in self-driving
vehicles, real-time assessment of obstacles ahead such as rocks or deep holes is crucial.
Similarly, in military operations, visual detection of objects behind walls and the movement
of personnel is essential. However, conventional SAR radars face limitations such as the
large number of arrays, heavy weight, large size, and system complexity inherent in real
aperture imaging. To tackle these challenges, virtual aperture imaging has emerged as a
promising solution strategy. Virtual aperture imaging relies on multiple transmitters and
receivers, constructing a virtual array between each pair of transceiver antennas to achieve
target imaging. This method circumvents many limitations of traditional real aperture
imaging and provides an effective means of meeting diverse imaging requirements.

In multi-transmitter-multi-receiver arrays with transceiver split mode, the conven-
tional SAR imaging method becomes inapplicable, and the Backprojection (BP) algorithm
is employed to achieve virtual aperture imaging. However, due to the limited number of
actual ultra-wideband (UWB) antenna units, sparsity in virtual aperture imaging can lead
to increased image sidelobes. To address this issue, the coherence factor method is em-
ployed for sidelobe suppression. The coherence factor method is a commonly used image
processing technique aimed at suppressing sidelobes in an image, and it is computed using
the following formula: coherence factor = actual imaging data/estimated imaging data.
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CF(x, y) =

∣∣∣∣∫∫ h(x, y)s1(t, xA)σ(t − 2
√
(x − xR)

2 + (y − yR)
2/c)dxAdt

∣∣∣∣2
NA

∫∫ ∣∣∣∣h(x, y)s1(t, xA)σ(t − 2
√
(x − xR)

2 + (y − yR)
2/c)

∣∣∣∣2dxAdt

(7)

where CF(x, y) is the value of the coherence factor at position (x, y). NA is the signal
amplitude, denoting the signal strength. dxA denotes the signal space, and dt denotes the
temporal resolution, which denote spatial minutiae and temporal minutiae, respectively.
The coherence factor is calculated using the energy of the signal divided by the product of
the spatial and temporal minutiae of resolution, describing the coherence of the signal over
a specific spatial and temporal range.

This section explores coherence factor weighting as a means for processing imaging
results effectively, aiming to suppress the generation of sidelobes. In virtual aperture
imaging, the utilization of an ultra-wideband (UWB) virtual aperture surface array deviates
from the traditional virtual aperture line array. To address this variation, this paper further
explores the backprojection (BP) algorithm based on the UWB virtual aperture surface array
and its sidelobe suppression method. Through experiments, the influence of sidelobes
in virtual aperture linear array imaging was effectively mitigated by comparing actual
imaging data with estimated imaging data after coherence factor weighting, consequently
leading to a significant enhancement in imaging quality.

The coherence factor-weighted virtual aperture imaging method successfully miti-
gated the sparsity issue stemming from the limited number of actual UWB antenna units
and efficiently suppressed sidelobes in the image. Implementing this method aided in
enhancing the resolution and accuracy of virtual aperture imaging, thus furnishing a more
dependable foundation for subsequent data analysis and target attitude recognition. The
imaging results of the virtual aperture line array are depicted in Figure 14.

(a) (b)

(c) (d)

Figure 14. Virtual aperture line array imaging results. (a) Test scenarios. (b) Target photo. (c) Imaging
results. (d) Clutter suppression results.
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Comparison between actual imaging data and estimated imaging data weighted by
the coherence factor was conducted to evaluate the efficacy of this method. This research
represents a significant advancement in virtual aperture imaging techniques, particularly
in scenarios with a restricted number of ultra-wideband (UWB) antenna units, aiming
to enhance imaging quality and contribute to the advancement of clutter suppression
techniques for through-the-wall radar systems.

4. Methodology for Through-Wall Radar Human Body Pose Estimation

Utilizing radar signals to delineate the pose of a human body target generates a
heatmap, as depicted in Figure 15, which only vaguely outlines the human silhouette. For
such datasets, viable approaches include semi-supervised learning and transfer learning.
Semi-supervised learning entails training with a small labeled dataset augmented by
a large unlabeled dataset. On the other hand, transfer learning leverages labeled data
from an established domain, employing them in a new domain through transfer learning
mechanisms, thereby mitigating the necessity for extensive labeling in the new domain.

Figure 15. Radar heatmap.

This paper introduces a transfer learning-based methodology for through-wall radar
human target pose recognition, designed to be adaptable across various visual recognition
scenarios and serving as the foundational framework for an integrated radar system.
This system enables posture analysis behind walls by decoding the spatial propagation
characteristics of emitted radar radio frequency signals and extracting distinctive features
of human subjects.

Utilizing cross-modal supervision, the model initially learns posture estimation tasks
in the source domain of camera information and subsequently transfers this acquired
knowledge to the target domain of radar information. By leveraging supervised learning on
camera data, the model captures posture-relevant features and representations, effectively
applying them to radar-related tasks. The key advantage lies in utilizing labeled camera
data to obviate the need for direct training on unlabeled radar data, thus mitigating the
necessity for annotated radar data.

This cross-modal supervision approach maximizes shared information between radar
and camera modalities, allowing knowledge acquired in the camera modality to positively
influence radar modality tasks. As a result, it enhances posture recognition performance
in the context of through-wall radar information processing, providing a more effective
solution for handling multi-modal data in through-wall radar applications.

4.1. Cross-Modal Supervision Method

Estimating human body poses behind walls using radar signals poses a significant
challenge due to the absence of annotated data. Annotating human poses directly from
radar signals is inherently difficult. To tackle this challenge, this study employed a linear
regression approach based on a visual model trained to predict human poses from through-
wall radar image data.
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This research leveraged a cross-modal teacher–student network [18–20] to transfer
learned knowledge between the two distinct modalities of the camera dataset and radar
dataset. This approach facilitates comprehensive knowledge transfer, including insights
into dense keypoint confidence maps [21,22]. The network structure encompasses two
pivotal roles: the teacher network and the student network, as depicted in Figure 16. The
teacher network is trained on the image modality, while the student network assimilates
knowledge transferred from the teacher network regarding radar signals. In the through-
wall radar target pose estimation process, dense keypoint confidence maps represent the
reliability or confidence of predicted keypoints at each pixel position in the image. Through
the cross-modal teacher-student network, more detailed and dense knowledge transfer
can be achieved. This methodology is anticipated to enhance the model’s performance
across different modalities, enabling a more comprehensive utilization of multi-modal data
information in complex tasks such as pose estimation.

＋

...

...

...

...

supervision

Teacher Network T

Student Neetwork S

Vertical RF Encoder Ev

Horizontal RF Encoder Eh

Pose Decoder D

Keypoint Con�dence Maps
from Visinal Inputs

Keypoint Con�dence Maps
from RF Signals

RCB Frances

Vertical Heatmaps

Horizontal Heatmaps

Figure 16. Cross-modal supervision method structure diagram.

This diagram depicts a process divided into two key components. The top process
represents the teacher network, which provides cross-modal supervision to the student
network in the bottom process, enabling human body pose recognition based on radar
signals. The entire network utilizes concurrently acquired images and radar signals as a
bridge to transfer visual knowledge of human poses.

In the synchronized images and radar signals for Infrared (I, R), R represents the
combination of vertical and horizontal heatmaps, while ‘I’ corresponds to the respective
camera image. The teacher network T(·) taking the camera image ‘I’ as input, provides
cross-modal supervision to the student network S(·) by predicting the keypoint confidence
map T(I). These predicted maps serve as the basis for the student network to learn,
enabling it to predict keypoint confidence maps from radar signals. Specifically, a 2D pose
estimation network was chosen as the Teacher network in this paper, and the student
network focuses on inferring 14 keypoint confidence maps related to the head, neck,
shoulders, elbows, wrists, hips, knees, and ankles from radar signals.

The student network S(·) training objective is to minimize the difference between its
predictions S(R) and the teacher network’s predictions T(I).

min
S

∑
(I,R)

L(T(I), S(R)) (8)

Define the loss as the sum of binary cross-entropy losses for each pixel in the confi-
dence map:

L(T, S) = −∑
c

∑
i,j

Sc
ij log Tc

ij + (1 − Sc
ij) log(1 − Tc

ij) (9)
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where Tc
ij and Sc

ij are the confidence scores predicted by the teacher network and student
network, respectively, for the (i, j) pixel on the confidence map c.

This network design has the advantage of transferring the knowledge of the teacher
network in the image modality to the network handling radar signals. Through this cross-
modal supervision, the model can better understand and leverage information shared
between the two modalities. This approach utilizes the existing annotations in camera data
during training, thereby circumventing the challenges of direct training on unlabeled radar
data and effectively reducing the demand for labeled data.

4.2. Human Body Pose Key Point Collection and Input

Given the challenge of acquiring features for posture recognition of targets behind
walls, this paper proposed leveraging Kinect in the system to capture individual charac-
teristics in the scene and generate posture information, which can be applied to various
recognition tasks. Dynamic models of human body posture naturally represent a series of
joint positions over time, expressed in two- or three-dimensional coordinates. Through
in-depth analysis of their motion patterns, effective recognition and classification of human
posture can be achieved.

Early action-recognition methods primarily formed feature vectors by utilizing joint
coordinates at a single time step, followed by temporal analysis of these feature vectors.
However, these methods had limited effectiveness, as they did not explicitly consider
the spatial relationships between joints, crucial for understanding human behavior. Sub-
sequently, some new methods considering joint connections emerged, showing certain
improvements. However, most still relied on manually designed rules for analysis, making
them less generalizable [23,24].

This subsection considers the problem of continuous action recognition and introduces
a technique based on keypoint estimation and spatiotemporal graph convolution. The
core idea of this technique is to establish spatial representations of actions in a continu-
ous sequence by accurately estimating keypoints. Subsequently, through multiple layers
of spatiotemporal graph convolution operations, spatial representations are fused with
temporal information to generate more advanced spatiotemporal feature maps. Finally,
using a standard Softmax classifier, the generated feature maps are precisely classified
into corresponding action categories. The uniqueness of this method lies in its ability
to effectively capture dynamic information in continuous sequences and accurately clas-
sify action categories, having broad prospects for application in the field of continuous
action recognition.

4.2.1. Spatiotemporal Graph Convolution

In the graph convolution operation on a single image, under the assumption of a
convolution operation with a stride of 1 and appropriate padding, given a convolutional
operator of size K × K and an input feature map fin with a channel number of c, the output
value of a single channel at spatial position x can be expressed as

fout(x) =
K

∑
h=1

K

∑
ω=1

fin(p(x, h, ω)) · w(h, ω) (10)

In the graph convolution operation on a single image, assuming a convolutional stride
of 1 and appropriate padding, given a convolutional operator of size K × K and an input
feature map with a channel number of C, the output value of a single channel at spatial
position x can be expressed as follows: where the sampling function p is used to enumerate
the neighborhood of position x, and the weight function ω is utilized to calculate the
inner product with the sampled c-dimensional channel input feature vector. The adopted
formulaic structure is derived from variational convolution. Extending the above equation
to the case where the input feature map is represented as a spatial graph Vt defines the
convolution operation on the graph.
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In images, the sampling function refers to the neighboring pixels relative to the central
position x, representing a region around the central x with the size of the convolution
kernel. In graph convolution, a similar definition can be applied to the sampling function
for the set of neighboring nodes B(vti) = {vtj|d(vtj, vti) ≤ D} with respect to the node
vti, where d(vti, vtj) represents the minimum length (minimum hop count) from vtj to vti.
Therefore, the sampling function p : B(vti) → V can be expressed as

P(vti, vtj) = vtj (11)

By setting D = 1, denoting the consideration of nearest neighbors in the context
of graph convolution, the sampling function p is defined to enumerate the immediate
neighboring nodes on the graph, where dtitj represents the minimum hop count from vtj
to vti.

In two-dimensional convolution, the spatial order of adjacent pixels is fixed, allowing
the weight function to establish indices based on spatial order for element-wise multi-
plication. In this paper, the spatial order of neighboring nodes is proposed to be de-
termined by a graph labeling process in the neighborhood graph around the root node.
This process involves partitioning the neighbor set B(vti) of a certain node vti into a
fixed number of K subsets, where each subset shares a common label. Thus, a mapping
lti : B(vti) → {0, . . . , K − 1} is defined, which maps nodes in the neighborhood to their
subset labels. The weight function w(vtj, vti) can then be obtained by indexing a (c, K)-
dimensional tensor or by:

w(vti, vtj) = w′(lti(vtj)) (12)

By utilizing the improved sampling function and weight function as described above,
fout(vti) can be rewritten in the form of graph convolution:

fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin(p(vti, vtj)) · w(vti, vtj) (13)

where the normalization term Zti(vtj) =
∣∣{vtk|lti(vtk) = lti(vtj)

}∣∣ is equal to the cardinality
of the corresponding subset. This term is introduced to balance the contributions of the
different subsets to the output. From the above equation, it follows that

fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin(vtj) · w(lti(vtj)) (14)

It is worth noting that this formula can be made analogous to standard 2D convolution
if the image is considered as a regular 2D grid. For example, to resemble 3 ∗ 3 convolution
operations, there is a neighborhood of 9 pixels in a grid of 3 ∗ 3 centered on one pixel. The
set of neighbors is then divided into 9 subsets, each with one pixel.

4.2.2. Space-Time Modeling

After constructing the graph convolution, it becomes imperative to model the spatio-
temporal dynamics inherent in the pose sequence. In the graph construction phase, we
introduce the temporal dimension by linking corresponding nodes across successive frames.
This straightforward strategy extends the spatial graph convolutional neural network into
the spatio-temporal domain by connecting identical nodes across consecutive frames,
thereby incorporating temporal relationships. Consequently, the neighborhood concept is
expanded to encompass joints interconnected across the temporal domain:

B(vti) =

{
vqj|d(vtj, vti) ≤ K, |q − t| ≤ Γ

2

}
(15)

The parameter Γ controls the time horizon that is included in the neighborhood graph
and can therefore be referred to as the temporal convolution kernel size. In order to realize
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the convolution operation on the spatio-temporal graph, the sampling function (as in
the case of considering only the space) and the weighting function are also needed, in
particular the labeled mapping function lST , which makes it straightforward to modify
the labeled mapping lST to the spatio-temporal domain of the root node vti considering
that the temporal axes are ordered, where lti is the labeled mapping on a single frame, as
described before:

lST(vqj) = lti(vtj) + (q − t +
Γ
2
)× K (16)

4.2.3. Implementation of Spatiotemporal Graph Convolutional Networks

The internal connections of the joints in a single frame are represented by the adjacency
matrix A and the unit matrix I representing the self-connections. In the single-frame case,
the spatio-temporal graph convolutional network with the first partitioning strategy can be
realized by the following equation:

fout = Λ− 1
2 (A + I)Λ− 1

2 finW (17)

where Λii = ∑j (Aij + Iij), the weight vectors of multiple output channels are here super-
imposed to form a weight matrix W.

In practice, considering the spatio-temporal dimension, the input feature map can
be represented as a (C, V, T) dimension, and the map convolution operation is realized
by performing a standard two-dimensional convolution with a convolution kernel size of
1 ∗ Γ. The tensor obtained is then multiplied by the normalized neighborhood matrix in
the second dimension and multiplying the resulting tensor with the normalized adjacency
matrix Λ−1/2(A + I)Λ−1/2 in the second dimension.

For partitioning strategies containing multiple subsets, such as the above distance
partitioning and spatial structure partitioning strategies, the above equation is slightly
modified, at which time the adjacency matrix is decomposed into multiple matrices, where
A + I = ∑j Aj, for example, in the distance partitioning strategy, satisfies both A0 = I and
A1 = A . Then, the above equation is transformed into

fout = ∑
j

Λ− 1
2

j AjΛ
− 1

2
j finWj (18)

where Λii = ∑k (Aik
j ) + α, here making α = 0.001, avoids blank lines in Aj. To comprehen-

sively evaluate the efficacy of our proposed method, we conducted a series of corresponding
experiments. These experiments encompassed identity recognition tasks performed by
multiple subjects across two distinct environments: an open setting where subjects and the
radar device shared the same room, and a closed setting with physical barriers separating
them. In both environments, subjects were allowed to move freely within the radar’s
coverage area, contributing to the dataset utilized for both training and testing purposes.

Upon completing the model training phase, our observations underscored the system’s
adeptness in accurately identifying individuals based on continuous sequences of 50 frames
of pose heatmaps. It is worth noting that the pose estimation dataset utilized in our study
was distinct and separate from the dataset used for identity recognition, ensuring no overlap
between the two. For each scenario, a standard CNN model comprising 10 layers was
employed for person identification. This deliberate design choice was aimed at bolstering
the method’s versatility, thereby ensuring robust and accurate person identification across
a spectrum of real-world scenarios.

4.3. Keypoint Association and Data Fusion

In the realm of cross-modal supervised human pose recognition, this study diverged
from the conventional use of the Euclidean distance metric and instead adopted the Haus-
dorff distance. This alternative metric was chosen due to its nuanced ability to assess the
similarity between captured targets and annotated targets. By leveraging the Hausdorff
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distance matching algorithm, the system can discern whether the targets depict identi-
cal states, thereby enabling precise alignment of human body outlines. This pivotal step
aimed to accurately delineate the region of interest, furnishing highly precise matching
information for subsequent processing.

While radar reflectograms can provide some degree of through-wall perception for
target trajectory localization, the resultant radar imaging often contains significant noise,
rendering it unsuitable for trajectory tracking. To address this challenge, this paper intro-
duced a trajectory fitting model that combines keypoints for target trajectory tracking. Ad-
ditionally, algorithms such as the locally weighted regression smoothing method (Lowess)
were employed to smooth the output trajectory from the model.

In terms of keypoint association, our method relies on the keypoint confidence maps
generated by the student network for all individuals in the scene, mapping these keypoints
onto a skeletal structure. Initially, non-maximum suppression is applied to the keypoint
confidence maps to obtain discrete peaks, treated as candidate keypoints. To achieve
keypoint association across different individuals, we employed the relaxation method
proposed by Cao et al [25], where the Hausdorff distance is used as the weight between two
candidate keypoints. The learned keypoint confidence maps are utilized for frame-by-frame
association [26,27].

For synchronized data acquisition, we conducted collaborative collection of radar and
visual data. Cameras were set up in the system, ensuring an average synchronization error
not exceeding 10 ms between images and RF data. The radar transmit pattern needed to
acquire target information through CNN. Due to the diversity in orientation and position
of targets in space, even under the same pose, radar reflection patterns for different targets
may exhibit significant differences [28,29]. Therefore, to extract features related to a specific
pose of the target and achieve accurate recognition of target pose information, it was
necessary to fuse the radar transmit pattern with the human keypoint map, as shown
in Figure 17.

Figure 17. Attitude recognition network model diagram.

The Lowess based algorithm is able to smooth the non-hopping signals, effectively.
Therefore, this method was used to filter the recognition results of the network model. For
a generic dataset X, suppose its i input vector is xi = {x0

i , x1
i , . . . , xn

i }, where n is the data
dimension, and the output corresponding to this vector is yi, and the number of frames is
m. For general linear regression, the appropriate weighting parameter, θ, will be chosen so
that the loss function is minimized:

min
m

∑
i=0

(yi − θTxi)
2

(19)
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Unlike focusing on all the data, the locally weighted regression smoothing method
focuses more on the distribution of the data near the current prediction point, thus effec-
tively reducing the interference of data far away from the prediction point in the smoothing
process. By adding weights ωi to the loss function, the optimization objective becomes

min
m

∑
i=0

ωi(yi − θTxi)
2

(20)

By adding the weighting information, the loss weights of signals that are farther away
from the current position are made lower, thus reducing the impact of the farther away
data on the current data. The commonly used weights parameter is

ωi = exp(−∥xi − x∥2
2

2σ2 ) (21)

The outputs generated by the deep learning fusion network model, which combines
convolutional neural networks with the Lowess smoothing method, could be experimen-
tally compared with traditional filtering algorithms such as the mean filter, median filter,
and Kalman filter. This comparative analysis aimed to assess the performance of the deep
learning fusion model in trajectory tracking tasks, seeking more precise and dependable
trajectory tracking outcomes. Through this comparison with traditional filtering algorithms,
we could gain a more comprehensive understanding of the potential advantages offered by
the deep learning model in trajectory analysis. This empirical evaluation provided robust
support for its effectiveness in real-world applications.

5. Experimental Design
5.1. Comparative Experiments on Clutter Suppression
5.1.1. Experimental Environment Setup

In this section, experiments were conducted to evaluate the denoising performance of
the radar system described in this paper, utilizing SFCW radar signals. The data were pro-
cessed through individual channels, with a start frequency of 1.9 GHz, an end frequency of
2.9 GHz, a frequency step of 4 MHz, a pulse repetition frequency of 18 Hz, an intermediate
frequency (IF) sampling rate of 2 GHz, 1024 points for the inverse fast Fourier transform
(IFFT), and a total of 10 × 10 transceiver channels. The system employed a microstrip
butterfly oscillator antenna with a back cavity design, which exhibits negligible radiation
effects on the human body, as indicated by its parametric specifications.

The experiments were conducted in a customized microwave darkroom featuring a
12 cm brick wall, ensuring minimal external interference. The radar penetration surface was
positioned without any obstruction on PUF foam, further minimizing noise interference.
The darkroom environment provided optimal conditions for the experimental observations.
The experimental setup is depicted in Figure 18 below.

(a) (b) (c)

Figure 18. Scene diagram of through-wall radar experiment. (a) experimental scenario. (b) attitude
of personnel. (b) radar placement.
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5.1.2. Comparative Experiments on Clutter Suppression

Experiments were conducted to image stationary human targets. Initially, a denoising
comparison process was performed using a single channel, focusing on a selected set of
stationary human targets, as illustrated in Figure 19 below. The experimental results vividly
demonstrated that, following the denoising process, these human targets exhibited clear
imaging at a distance of 5 m. In contrast, without the denoising process, the targets were
barely discernible in the images.

(a) (b)

Figure 19. Before and after denoising of stationary human targets: (a) original; (b) denoising.

A group of human targets in longitudinal motion were subsequently chosen for
imaging and denoising, as depicted in Figure 20 below. As evident from the figure, at a
distance of 5 m, the denoised target imaging demonstrated superior clarity and legibility
compared to the non-denoised scenario.

(a) (b)

Figure 20. Comparison before and after denoising of sports human targets: (a) original; (b) denoising.

The experimental results after denoising were processed using the BP algorithm for
2D to 3D reconstruction. Through this process, this paper successfully realized three-
dimensional motion visualization of the target, so that the human naked eye could clearly
distinguish these motion trajectories. The results of the human 3D motion experiment are
shown in Figure 21 below.
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(a) (b)

(c) (d)

Figure 21. Three-dimensional result map of the moving human target. (a) Target movement to (0, 5)
in three dimensions. (b) Target movement to (0, 4) in three dimensions. (c) Target movement to (0, 5)
in two-dimensions. (d) Target movement to (0, 4) in two-dimensions.

Based on the 3D result map, it is evident that the human target’s contour is remarkably
clear in the image. Notably, wall clutter and ghost clutter were effectively filtered out,
allowing for a distinct visualization of the target in the top view. Furthermore, the target’s
movement from a distance of 5 m to 4 m was accurately captured and depicted. This
observation aligns with the 2D distance information provided in Figure 20, underscoring
the reliability and precision of the proposed method, particularly in multi-dimensional
data processing and target tracking.

5.2. Cross-Modal Target Attitude Recognition Experiment
5.2.1. Data Creation

This section outlines the methodology for constructing the essential data samples re-
quired for the four-dimensional information denoising technique in through-the-wall radar
applications. This encompasses the design of diverse experimental scenarios spanning var-
ious through-the-wall radar application contexts and environmental settings, both indoor
and outdoor, and involving a wide array of materials and obstacle types. This diversity
ensured a thorough evaluation of the algorithm’s efficacy across different scenarios.

Subsequently, the through-wall radar devices were strategically positioned at varied
locations and angles to facilitate comprehensive data collection. Through extensive radar
imaging, a substantial volume of radar data containing signals from target objects behind
obstacles was acquired.
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To augment the realism of the target data, a camera was deployed to capture images
of the targets. The camera was carefully aligned with the radar equipment to maintain
consistent views and positions. Manual labeling of target objects in the camera images,
including their position, pose, and key point information, was conducted to provide
authentic ground truth data for validating and assessing algorithm accuracy.

During the dataset construction phase, diverse target objects, actions, and poses
were selected for experimentation, and data collection was conducted under various
environmental conditions to ensure data diversity and richness. Additionally, to simulate
real-world application challenges, the dataset was deliberately infused with a range of
noises and disturbances.

Following data collection, meticulous organization and labeling were carried out to
ensure data consistency and usability. Each data sample was annotated with relevant
labels and metadata, facilitating subsequent research and analysis. Through this rigorous
data collection and organization process, a high-quality through-the-wall radar 4-D infor-
mation denoising dataset was successfully curated and made available as open-source.
This dataset comprises a wealth of scenarios and target samples, serving as a valuable
resource for researchers to investigate and evaluate through-the-wall radar information
denoising techniques.

5.2.2. Experimental Environment

The real test experiment used a 10-transmitter and 10-receiver through-the-wall radar
front-end unit, arranged in an ordinary empty room in 6 m ∗ 6 m. The through-wall radar
was placed on the outside of the room close to the wall, the specific arrangement is shown
in Figure 22 below. There was no obstructions between the target and the wall. It was
sufficient for the target to make the prescribed required movements at a distance of 2 m
from the wall.

X

Y

Antenna
Kinect

Figure 22. Radar acquisition schematic diagram.

We collected a large amount of static data for three behaviors: standing, sitting, and
lying. The data were precisely annotated to the second by personnel for subsequent pose
detection. Three sets of typical radar 3D images were selected for comparison. Depth
images captured using a Kinect device indoors were used for visual comparison. The
images for identification are shown in Figure 23.
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(a) (b)

(c) (d)

(e) (f)

Figure 23. Multiple pose imaging comparison diagram. (a,b) Standing pose imaging comparison diagram.
(c,d) Sitting pose imaging comparison diagram. (e,f) Lying pose imaging comparison diagram.

Each set of data was as follows: 1000 frames of data were collected for each of the
standing pose (a), sitting pose (b), lying pose (c), and background, and a total of 4386 frames
were collected. At the same time, supervised data modeling was performed, and a vector
of size 4386 ∗ 1 was constructed as the supervised labels, with the standing pose labeled 0,
the sitting pose 1, the lying pose 2, and the blank background 3. A total of 300 G of data
points were subsequently collected according to this type of scenarios, respectively, for the
single-person target, the two-person target, the single-person-plus-interference target, and
the action target, and the data have been made available open-source.
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5.2.3. Experimental Results

The experiments first trained and detected using traditional machine learning models,
and then CNN networks were used for the recognition of static poses, with 5-fold cross-
validation, and the evaluation criterion was classification accuracy. Classification accuracy
is defined as

classi f ication accuracy = number o f correctly classi f ied samples/number o f all samples (22)

Meanwhile, a confusion matrix was used in the experiments to evaluate the accuracy
of the model in classifying different label types. The traditional machine learning methods
of SVM, decision tree, random forest, and Adaboost were used to complete the classification
experiments for static pose recognition in the room. Finally, a CNN network was used to
construct a static pose recognition network for pose recognition. The specific experimental
results are shown below:

SVM is a classical supervised machine learning modeling method, which treats the
N-dimensional feature vector to be classified as a point in an N-dimensional space, and the
goal is to find an optimal N-1 dimensional hyperplane such that the hyperplane can linearly
segment N-dimensional feature vectors with different labels.The optimization objective
function of SVM is [

1
n

n

∑
i=1

max(0, 1 − yi(ω⃗ · x⃗i − b))

]
+ λ∥ω⃗∥2 (23)

where yi and xi are the supervised labels and feature vectors, respectively, ω and b are the
weights and biases of the SVM classifier, and λ are the hyperparameters. In this experiment,
an SVM classifier based on the RBF kernel function was used. The inner product of vectors
in this vector space is defined as

k(x⃗i, x⃗j) = exp(−γ
∥∥x⃗i − x⃗j

∥∥2
) (24)

The SVM identification confusion matrix is shown below in Figure 24:

Figure 24. Confusion matrix for SVM recognition.

The recognition accuracy using SVM is shown in Table 1 below:

Table 1. SVM recognition accuracy.

Test Set 1 2 3 4 5 Average

Accuracy 0.95 0.98 0.92 0.98 0.90 0.94

Decision trees are a common method in data mining and machine learning. For a given
training set, a decision tree is constructed in such a way that the training set is partitioned
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into subsets based on specific metrics. The commonly used metric is Gini impurity. Gini
impurity is defined as follows:

IG(p) =
J

∑
i=1

(pi ∑
k ̸=i

pk) =
J

∑
i=1

pi(1 − pi) =
J

∑
i=1

(pi − p2
i ) =

J

∑
i=1

pi −
J

∑
i=1

p2
i = 1 −

J

∑
i=1

p2
i (25)

where J represents the number of classes, i ∈ {1, 2, . . . , J}, and pi denote the proportion of
samples in the set that belong to the i-th class. The decision tree identification confusion
matrix is shown below in Figure 25:

Figure 25. Confusion matrix for decision tree recognition.

The decision tree recognition accuracy is shown in Table 2 below:

Table 2. Decision tree recognition accuracy.

Test Set 1 2 3 4 5 Average

Accuracy 0.93 0.91 0.92 0.95 0.91 0.92

In this experiment, the average accuracy of machine learning using decision trees
to build machine learning reached 0.92. The accuracy of the standing posture was lower,
at 0.86. The recognition accuracy of the sitting posture, squatting posture, and empty
background reached 0.91, 0.93, and 1, respectively.

Random forest is a machine learning method based on integrated learning. The basic
idea is to construct a large number of decision trees during training and use the average of
the output decisions of all the decision trees during decision-making. The biggest advantage
of random forest over ordinary decision trees is that it can improve the overfitting tendency
of decision trees.

The random forest identification confusion matrix is shown in Figure 26 below:

Figure 26. Confusion matrix for random forest recognition.
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The random forest recognition accuracy is shown in Table 3 below:

Table 3. Random forest recognition accuracy.

Test Set 1 2 3 4 5 Average

Accuracy 0.99 0.98 0.99 1.00 0.92 0.98

In this experiment, the random forest method not only improved the performance
compared to decision trees, but also demonstrated performance advantages compared to
all other methods. Its classification accuracy reached 0.98 on average, with standing, sitting,
squatting, and background reaching 1, 0.92, 0.99, and 1, respectively.

Adaboost is another integrated learning method, whose basic idea is similar to that
of random forest—constructing a large number of weak classifiers and combining them
into a stronger classifier. And it can be shown that the upper bound on the training loss of
Adaboost can be decreased exponentially.

The Adaboost recognition confusion matrix is shown in Figure 27 below:

Figure 27. Confusion matrix for Adaboost recognition.

The Adaboost recognition accuracy is shown in Table 4 below:

Table 4. Adaboost recognition accuracy.

Test Set 1 2 3 4 5 Average

Accuracy 0.98 0.76 0.94 0.74 0.72 0.83

In this experiment, the Adaboost method had a low classification accuracy of 0.39 for
standing postures. From the confusion matrix, Adaboost had difficulties in distinguishing
between standing and sitting postures. From the results of cross-validation, the classifica-
tion performance of Adaboost was not stable, which suggests that the Adaboost method
may have undergone overfitting on the dataset of this test.

NN is one of the most basic and also popular neural network models in the current
deep learning field. In this experiment, the convolutional neural network we constructed
included a convolutional layer, a pooling layer, and a fully connected layer. The convolu-
tional layer was mainly used for feature extraction, while the fully connected layer was
used to perform classification tasks. CNN training was performed using a 8:1:1 train-
ing:validation:test set size division. There were 50 epochs of training, a SGD optimizer with
a learning rate of 1× 10−6 and cross-entropy loss function.

The confusion matrix recognized by the CNN network is shown in Figure 28 below:
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Figure 28. Confusion matrix for recognition by CNN network.

The convolutional neural network achieved an accuracy of 0.93 on the test set. It
is worth noting that the convolutional neural network achieved better results for the
recognition of the sitting posture, squatting posture, and empty background. However, it
often recognized the standing posture as the sitting posture.

The variation in training set loss and validation set loss of CNN network is shown in
Figure 29 below. This figure shows that the training of the convolutional neural network
did not suffer from overfitting.

Figure 29. Graph showing the training and validation set losses during CNN network training.

It can be seen that the convolutional neural network approach likewise showed
superior potential. Since convolutional neural networks do not require hand-designed
feature extraction, this will make it advantageous for classification on larger datasets with
unknown features afterwards. In this section, a machine learning approach was proposed
to accomplish target attitude detection in MIMO-SFCW radar, and by comparing several
traditional machine learning methods, it was demonstrated that it is completely feasible to
accomplish multi-dimensional target attitude detection with machine learning.

6. Discussion

In this paper, we explored human pose recognition technology under cross-modal su-
pervision and its application to a wall-penetrating radar system. We introduced the theoret-
ical framework for target pose recognition and matching behind a wall using through-wall
radar, exploring algorithms for human pose estimation and matching. By amalgamating
existing techniques and methodologies and leveraging the unique characteristics of MIMO
array wall-penetrating radar, we proposed a cross-modal supervision-based human pose
recognition technique tailored for wall-penetrating radar systems. This technique employs
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deep neural networks to extract high-dimensional features from imaging results, enabling
key point detection, attitude recognition, and positional trajectory tracking of the target.
The radar’s 3D reflection map and human body key point map are harnessed for target
identification and matching. Through an analysis of structural features in the RF signals,
we conducted pose segment training to facilitate the recognition of diverse individual
body structures. The experimental findings demonstrated that the classifier achieved a
recognition rate exceeding 83% for individuals in both visible and through-wall scenarios,
with the available data being open-sourced for further research and development.

7. Conclusions

The primary focus of this paper revolved around recognizing human body postures
concealed behind a wall, leveraging the capabilities of an MIMO array radar system. This
study integrates MIMO radar array imaging techniques with deep learning methodologies
to address the challenge posed by traditional radar systems, which often struggle to identify
human targets due to reflection interference when penetrating walls. By gathering real-
world data in wall-penetrating scenarios and utilizing radar 3D reflectograms obtained
in previous chapters, a deep learning network was deployed to extract pertinent signals
and feature information from noisy 3D reflectograms. These extracted features were
then matched with key points on the human body target, enabling the detection of key
points, attitude recognition, and trajectory tracking, despite the obstacles presented by
wall penetration.
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