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Abstract: Connected Automobile Vehicles (CAVs) enable cooperative driving and traffic manage-
ment by sharing traffic information between them and other vehicles and infrastructures. However,
malicious vehicles create Sybil vehicles by forging multiple identities and sharing false location infor-
mation with CAVs, misleading their decisions and behaviors. The existing work on defending against
Sybil attacks has almost exclusively focused on detecting Sybil vehicles, ignoring the traceability
of malicious vehicles. As a result, they cannot fundamentally alleviate Sybil attacks. In this work,
we focus on tracking the attack source of malicious vehicles by using a novel detection mechanism
that relies on vehicle broadcast beacon packets. Firstly, the roadside units (RSUs) randomly instruct
vehicles to perform customized key broadcasting and listening within communication range. This
allows the vehicle to prove its physical presence by broadcasting. Then, RSU analyzes the beacon
packets listened to by the vehicle and constructs a neighbor graph between the vehicles based on the
customized particular fields in the beacon packets. Finally, the vehicle’s credibility is determined by
calculating the edge success probability of vehicles in the neighbor graph, ultimately achieving the
detection of Sybil vehicles and tracing malicious vehicles. The experimental results demonstrate that
our scheme achieves the real-time detection and tracking of Sybil vehicles, with precision and recall
rates of 98.53% and 95.93%, respectively, solving the challenge of existing detection schemes failing to
combat Sybil attacks from the root.

Keywords: CAVs; Sybil attacks; traceability; attacker; security

1. Introduction

Traffic congestion and accidents are common problems faced in metropolitan areas.
In the United States, according to the statistics of the National Highway Traffic Safety
Administration (NHTSA) [1], billions of traffic waiting times cause the unnecessary con-
sumption of more than 3.1 billion gallons of fuel each year. On the other hand, about
35,000 people are killed, and nearly 4 million people are injured due to traffic accidents,
and the average annual economic loss is more than USD 836 billion. Therefore, governments
and researchers actively seek solutions, such as more intelligent roads and traffic signals.
With the expansion and extension of Internet applications and the support of the new
generation of information technology represented by 5G, CAV technology can effectively
solve the above problems. According to a report by Allied Market Research, the global
self-driving car market is estimated to be USD 54.23 billion in 2019 and is expected to reach
USD 556.67 billion by 2026 [2].

However, as CAVs grow, the cybersecurity risks they face are becoming more pro-
nounced. The Upstream 2022 report shows that over 900 CAV cybersecurity incidents
occurred in 2021 alone [3]. This grim reality has drawn the close attention of many re-
searchers and prompted them to explore in depth the security threats faced by CAVs to
propose effective prevention and response strategies [4–11]. Among the many threats,
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Sybil attacks [12] are particularly challenging. During information sharing and cooperative
driving by CAVs, attackers forge multiple identities or location information and launch
this relatively low-cost attack by broadcasting false data. In this attack mode, a malicious
vehicle can control or influence a large number of normal nodes by using only a small
number of nodes, posing a serious hazard to the CAV system. Therefore, it is considered
one of the top threats in Telematics. In order to deal with the potential threat of Sybil
attacks in CAV networks, we must conduct more in-depth research on attack detection
and countermeasure strategies. Benadla et al. have provided a brief description of the
impact of Sybil attacks on vehicular networks and a detailed categorization of Sybil attack
detection methods in VANETs [13]. These studies provide valuable references but still
need to be further explored in depth in order to establish a more complete and effective
defense mechanism.

During information sharing and cooperative driving between CAVs, an attacker may
create and broadcast false data and thus launch a Sybil attack. In such attacks, attackers aim
to control or influence a large number of normal nodes using only a small number of nodes
by forging multiple identities or location information. In the CAV networks, a malicious
vehicle is a physical vehicle that can obtain multiple legitimate identities illegally, and it
is fully capable of launching Sybil attacks by forging vehicle location information and
simulating the operating characteristics of normal vehicles. As a result, the road condition
monitoring and decision-making of the CAV systems will be easily confused and misled,
causing DOS attacks [14] on the CAV systems, even leading to traffic accidents, casualties,
and property losses. As shown in Figure 1, before the Sybil attack is launched, CAVs
know that the current traffic is relatively smooth through information sharing among them.
As depicted in Figure 2, malicious vehicles broadcast traffic packets with false information
to interfere with the CAV driving status. This leads some vehicles to misinterpret traffic
conditions as being more congested, resulting in reduced speed or lane changes, thus
causing inefficiency in the entire traffic fleet. Once a normal vehicle trusts a Sybil vehicle,
a malicious vehicle can successfully mislead a normal vehicle. Therefore, the detection of
Sybil attacks in CAVs is necessary.

RSU

Normal Car Sybil CarMalicious Car RSU

Lane 1

Lane 2

Lane 3

Traffic direction

Figure 1. Before the Sybil attacks are launched.

RSU

Normal Car Sybil CarMalicious Car RSU

Lane 1

Lane 2

Lane 3

Traffic direction

！

brake

Figure 2. After the Sybil attacks are launched.
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Once the normal vehicles trust the Sybil vehicles, malicious vehicles can successfully
mislead normal vehicles. Therefore, the detection of Sybil attacks in CAVs is necessary.
In addition, the collusion [15] and separation behaviors between malicious and Sybil vehi-
cles make malicious vehicles exhibit similar behavioral characteristics as normal vehicles.
This is the main reason why many mitigation solutions against Sybil attacks can only detect
Sybil vehicles but cannot accurately track malicious vehicles [16–21]. Notably, malicious
vehicles are the source of Sybil attacks. Yang et al. organized Sybil attacks regarding the
traceability of malicious vehicles [22], pointing out that existing schemes have apparent
drawbacks for the traceability of malicious vehicles. This allows malicious vehicles to
continue to exist in the vehicular network and continue Sybil attacks. Zhang et al. [23] also
suggested that accurately tracking malicious vehicles is one of the pressing challenges in
solving Sybil attacks. Currently, most of the schemes rely on RSSI values to accomplish the
detection. Yuan proposed an edge computing-based Sybil detection scheme [24], where the
vehicle sends a control packet to two nearby edge nodes. The nodes use the Jake model
to calculate the RSSI, transmit it to each other, and determine the range of normal RSSI
ratios through multiple rounds of computation to detect malicious vehicles. However,
RSSI values are susceptible to real-world scenario factors such as traffic, attacker density,
etc. Krishnan et al. proposed a collaborative strategy to detect malicious vehicles [25].
Since malicious vehicles need to maintain more Sybil vehicles, they are more likely to have
the longest list of nearest vehicles. However, this scheme mainly targets Sybil attacks in
the presence of a single malicious vehicle, and its detection rate decreases once there is a
conspiracy between malicious vehicles. Rakhi et al. proposed a Sybil detection method
based on LCSS similarity computation and RSSI time-series variation point detection [26].
Without power control, malicious vehicles are detected by finding the similarity of RSSI
nodes. However, when the distance between vehicles is relatively small, RSSI sequences
received from normal and malicious nodes show high similarity, and it is difficult to iden-
tify malicious nodes from normal nodes. To address the single detection factor limitation,
Chen et al. proposed a multi-scale data fusion detection framework for the Sybil attack [27].
By acquiring BSM, map data, and sensor data, the detection of malicious vehicles is ac-
complished using machine learning classification models. However, the limitation is that
the framework can only be used in the exact location where the Sybil attack occurred.
Secondly, the detectors laid on the roads are costly. Finally, since the scheme incorporates
machine learning, when the attack samples in the training dataset with low attack density
are much smaller than normal samples, it will prevent the model from learning the attack
behavior sufficiently, resulting in lower accuracy and recall. While attempting to address
the problem of malicious vehicle tracing, these works have limitations, as they mainly
rely on RSSI values or machine learning that requires extensive training. In contrast, our
research is based on a vehicle broadcast beacon packet detection mechanism that is not
susceptible to traffic and attack density and only requires a few training samples. We can
only stop Sybil attacks from launching Sybil attacks at their source by accurately identifying
malicious vehicles.

We observe that a key feature of Sybil attacks is that Sybil vehicles are essentially
beacon data packets forged by malicious vehicles. These fake vehicles lack the broadcasting
and listening capabilities of real ones and must rely on malicious vehicles to mimic the
behavior of normal ones. Given this, we propose a beacon packet-based detection method
to trace malicious vehicles based on trusted RSUs combined with information interactions
performed between CAVs. Firstly, the roadside unit (RSU) enables vehicles within the
detection range to communicate with each other in a point-to-multipoint (PMP) manner
and exchange a specific field in the beacon data packet to prove their physical existence. We
refer to this specific field in the beacon packet as Key. If the exchange of Key is successful,
it is considered that both communication parties are physical nodes, and we build an
edge for them in the adjacency matrix. Note that since Sybil vehicles do not have actual
broadcasting and listening capabilities, this will result in the inability to establish edges
between Sybil vehicles and normal vehicles. Therefore, we can detect Sybil vehicles simply
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by traversing the neighbor relationships in the adjacency matrix. At this point, the RSU
will assign the Sybil vehicle a Key that identifies its identity, and the Sybil vehicle will share
the Key with the malicious vehicles. In order to maintain the existence of Sybil vehicles,
malicious vehicles will then help broadcast the Key on behalf of Sybil vehicles, making
normal vehicles believe that Sybil vehicles also have the broadcasting capability, mistakenly.
Therefore, we can trace the malicious vehicles based on the Key sharing behavior between
the Sybil vehicles and the malicious vehicles. The traceability of malicious vehicles can
curb the occurrence of Sybil attacks from the source.

After classification using the Sybil vehicle detection algorithm, we perform a fine-
grained classification of “original Sybs” and “original Hons”. First, “original Sybs” are
categorized at a fine-grained level based on the probability of failure to communicate
successfully between Sybil vehicles and normal vehicles. Second, Original Hons are catego-
rized at a fine-grained level based on the key-sharing behavior between Sybil vehicles and
malicious vehicles. The fine-grained classification process accurately identifies malicious
vehicles while improving the detection rate of Sybil vehicles. Our detection mechanism can
detect Sybil vehicles and trace malicious vehicles in real time and efficiently under different
Sybil attack densities, malicious vehicle densities, and vehicle density attacks.

The main contributions of this work are as follows.

• We propose a beacon packet-based scheme to trace malicious vehicles. The F1 of the
malicious vehicle reaches 96.38%, which helps to resist the Sybil attack from its source.

• The detection rate of Sybil vehicles is improved while tracing the malicious vehi-
cles, and the F1 for Sybil vehicles reaches 98.11%, which is 2% higher than in the
literature [17].

• Neighborhood graphs are formed instantaneously and independently without refer-
ence to the vehicles’ historical trust values, reducing the privacy risk associated with
historical data.

The full text of this paper is organized as follows: Section 2 introduces the progress of
related research work; Section 3 elaborates on our threat models; Section 4 introduces our
tracking mechanism for malicious vehicles; Section 5 is our experimental part; Section 6
compares the performance of our proposed method with existing methods; and Section 7 is
the summary and outlook of the full text.

2. Related Work

Much research has recently been conducted on Sybil attacks at home and abroad.
Nonetheless, many schemes have focused only on detecting Sybil vehicles faked by malicious
vehicles. Existing detection schemes for detecting Sybil vehicles can be divided into two
categories: direct identity detection mechanisms and indirect identity detection mechanisms.

2.1. Direct Identity Detection Mechanisms

Direct identity detection mechanisms mainly achieve identity detection through the
authentication of vehicle certificates or keys [28]. Santhosh [29] proposed a hybrid crypto-
graphic management mechanism to detect Sybil vehicles. In this scheme, the base station
generates a public key for the vehicle that wants to enter the network to communicate
and uses the node’s identity to encrypt the public key. Nevertheless, this scheme does
not consider the security threat to the private key during the generation process. In or-
der to solve this problem, Cheng [30] proposed an RSU authentication scheme based on
elliptic curve cryptography, which effectively reduces the security threats of generating
pseudonyms and private keys. Regardless, there are overhead and delay problems when
RSU authenticates a large number of vehicle beacon packets. Although the direct identity
detection schemes [31–33] are the most direct way to verify the identity of illegal vehicles in
real time, they cannot meet the needs of rapid authentication when vehicles are gathered in
a short time or move at high speeds. In addition, since malicious vehicles have legitimate
identities, schemes through direct identity detection fail to detect malicious vehicles.
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2.2. Indirect Identity Detection Mechanisms

Compared with the overhead of direct identity detection mechanisms, indirect identity
detection mechanisms are more lightweight, such as the detection methods based on
vehicle cooperation [18,21,34–36]. Panchal [37] proposed a method of separating Sybil
attacks using adjacent information in VANETs. In this scheme, RSU discovers its neighbor
vehicles through the vehicle ID and then evaluates the trust degree of neighbor vehicles to
detect Sybil attacks. However, this scheme cannot avoid the situation of avoiding detection
due to collusion between Sybil vehicles. It is also impossible to avoid the credibility
evaluation of the vehicle itself. If it is a malicious vehicle, the credibility of its neighbor
vehicle list is unconvincing. In order to solve that reliability problem of the vehicle itself,
Huo [38] designed and implemented an identity authentication mechanism based on
vehicle history information. The vehicle generates the historical message hash value HD1
from the historical message sent by itself and then hashes the message to be sent and the
historical information into HD2 to send to the agent. The agent detects the Sybil vehicle by
comparing HD2 with HD1. However, the historical messages in this scheme have too much
influence on future decision-making, and it is impossible to avoid the long-term latency of
malicious vehicles. To solve the problem of relying on historical messages, Verchok [17]
proposed a scheme for detecting Sybil nodes to verify the existence of each other through
local peer-to-peer communication. In this scheme, the server randomly instructs any pair
of nodes within the communication threshold to perform a customized beacon packet
broadcast and listen. The beacon packet contains a Key that identifies the vehicle’s identity,
and the success or failure edge is established by whether the Key is exchanged successfully.
Finally, a neighbor graph is formed. Due to the unequal information between Sybil nodes
and normal nodes, the formed neighbor graph will make Sybil nodes extreme, and then
Sybil nodes can be detected.

The existing solutions mainly focus on detecting Sybil vehicles because malicious
vehicles in Sybil attacks typically exhibit normal behavior, which increases the difficulty of
detecting malicious vehicles. Angappan [39] proposed a Sybil attack detection scheme that
combines RSSI and neighbor information, detects Sybil attacks by comparing the similarity
of RSSI, and regards the vehicle with the most neighbor entries as a malicious vehicle.
Yet, multiple vehicles may have the same RSSI value only if these vehicles belong to the
same vehicle, which cannot defend against collusion in Sybil attacks. In addition, since
power affects RSSI, this scheme can only detect malicious vehicles without power control
but cannot detect malicious vehicles with transmission power control [40]. Zhang [41]
proposed a detection method based on Basic Safety Message (BSM) packets in 2023, which
mainly detects the detected vehicle by receiving the receiver (Recv) of the BSM message
broadcast by the detected vehicle. The Recv calculates the transmission distance (Td) of
the BSM message according to the sending time and receiving time information of the
BSM message. Next, the distance (DNi) between the surrounding neighbor vehicles (Ni)
and Recv, respectively, is calculated. Finally, we take the Ni with the minimum error
between DNi and Td as Recv predicts the BSM package broadcast source. Finally, an integral
strategy is implemented for all receivers (Recvi) of the BSM message, and the neighbor
vehicle Ni with the highest integral value is selected as the final predicted broadcast
source of the BSM message broadcast by the detected vehicle. Sybil vehicles and malicious
vehicles are detected by comparing whether the predicted broadcast source is consistent
with the broadcast source marked in the BSM message. Regardless, the defect of this
scheme is that the proposed spatio-temporal model is prone to errors when it is affected by
vehicle densities.

In summary, existing Sybil attack detection schemes mainly focus on detecting Sybil
vehicles. However, only by tracing malicious vehicles can Sybil attacks be resisted from
their source. Compared with existing solutions, our proposed traceability mechanism
considers collusive behavior and separation behavior between malicious vehicles. It does
not need to analyze many vehicle trajectories, nor is it affected by vehicle densities to
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complete the detection of Sybil vehicles and trace back to malicious vehicles, resisting
attacks from the source of Sybil attacks.

3. Threat Model and Attack Categories

First, we describe the assumptions on which this study is based. Next, our threat
model is presented. Finally, the attack types of Sybil attacks are explored.

3.1. Assumptions

Our research is based on the following assumptions:

• All actual vehicles are equipped with a high-precision Global Positioning System.
• The RSU has the power to indicate the vehicle’s broadcast or listening status.
• Keys listened to by malicious vehicles can be shared between malicious vehicles,

creating opportunities for other malicious vehicles in a listening state to maintain
Sybil vehicles [17].

• The success rate of communication between the malicious vehicle and the Sybil vehicle
is set to 0.6 [17].

3.2. Threat Model

In order to attack successfully, malicious vehicles usually use illegal means to obtain
legitimate identities. While the literature [20] mentions that malicious attacks by vehicles
with illegal identities can be prevented by Public Key Infrastructure (PKI), vehicles with
legal identities cannot be prevented from broadcasting false information. Our application
scenario is that all vehicles have legitimate identities.

We classify the vehicles into three categories: normal vehicles, malicious vehicles and
Sybil vehicles. The properties of the vehicle are shown in Table 1.

Table 1. Vehicle property table.

Physical Location Legal Identity Broadcast and Listen

Normal Vehicles ✓ ✓ ✓
Malicious Vehicles ✓ ✓ ✓

Sybil Vehicles × ✓ ×

We define a vehicle with a physical location as an actual vehicle. In our research,
normal vehicles only broadcast authentic and credible beacon packets related to themselves.
Although malicious vehicles broadcast authentic and credible beacon packets related
to themselves, in order to control the driving status of normal vehicles, they often also
broadcast some fake beacon packets in the VANETs. These beacon packets are Sybil vehicles.

In this research, we do not need to consider the authentication of illegal vehicle identity
when the vehicle joins the VANETs, and the direct identity detection schemes have already
solved this problem. Instead, our detection mechanism focuses on detecting the Sybil
attacks launched by the attacker by sending false location messages after entering the
VANETs. This kind of internal attack often causes more damage to the VANETs.

The purpose of malicious vehicles launching Sybil attacks is to obtain network re-
sources that are disproportionate to normal vehicles by forging Sybil vehicles. Furthermore,
it is to use a small number of vehicles to control and influence as many normal vehicles in
the VANETs as possible, and finally decide on the control systems. Figure 3 is an example
of an attacker model, where vehicles N1, N2, and N3 are normal vehicles, and M1 is a
malicious vehicle.

As shown in Figure 3, M1 forges a beacon packet at time t1 and broadcasts it to N1, N2,
and N3, where the pseudonym (S1) in the beacon packet is a valid pseudonym obtained
by M1 through illegal means. Pos is the forged position information of M1. When N2
receives the beacon packet, it thinks that the vehicle S1 is also in the same lane. In order to
avoid collision, N2 takes a deceleration or emergency braking operation. After analyzing
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the beacon packets, N1 and N3 find that the road conditions they are on are not affected,
and they continue to drive normally. Finally, M1 successfully interferes with the driving
state of N2 by generating a Sybil vehicle (S1) by forging its location.

RSUTraffic direction

M1

N3

Road 1

Road 2

Road 3

Beacon Packages

Pos:PseudonymID: S1 Key:Time: t1

M1

N3

Road 1

Road 2

Road 3

S1

N1

Impact on Vehicles

N2: brake

N1: keep

N3: keep

N2

Victim Vehicle

N1

N2

Figure 3. The principles and impactions of Sybil attacks.

3.3. Attack Categories

We consider the collusion and separation behaviors of malicious vehicles as different
attack categories.

• Collusion behaviors: Malicious vehicles can share information through particular
internal communication.

(a) Malicious vehicles help Sybil vehicles broadcast. For example, when a Sybil
vehicle is instructed to broadcast by the RSU, in order to reduce the possibility
of the Sybil vehicle being exposed, the nearby malicious vehicle in the listening
state will use the identity of the Sybil vehicle instead of the Sybil vehicle to
perform the Key broadcast so that normal vehicles mistakenly believe that the
Sybil vehicle also has normal communication ability.

(b) Malicious vehicles help Sybil vehicles listen. For example, when the RSU
instructs a Sybil vehicle to listen, the nearby malicious vehicles will share the
listened lists with the Sybil vehicle, making the RSU mistakenly believe that
the Sybil vehicle also can listen.

• Separation behaviors: We consider the separation behavior between malicious vehicles
and Sybil vehicles and set the communication success rate between malicious vehicles
and Sybil vehicles to 0.6 [17], which can reduce the clustering between malicious
vehicles and Sybil vehicles, which is more in line with the selfish behavior of malicious
vehicles in Sybil attacks.

4. Beacon Packet-Based Traceability Mechanism

A beacon packet is a type of data packet used in vehicle-to-vehicle communication
technology. We have customized the format of the beacon packet message as {PseudonymID,
Time, Key, Pos}, where PseudonymID is the pseudonym ID of the vehicle broadcaster; Time
is the sending time of the beacon packet; Key is a particular field allocated by RSU to the
vehicle in the broadcast state, where we believe that the Key is only known by the vehicle
itself and the RSU and cannot be forged; and Pos is the location information when the vehicle
broadcaster broadcasts the beacon packet, which can be forged by malicious vehicles.

In this study, we mainly complete the detection of Sybil attacks based on the location
of the vehicles and further trace the malicious vehicle on this basis. In the first step, we
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apply the Sybil detection algorithm proposed in the literature [17] to the CAVs and achieve
good results. Through a large number of experiments, we find that the detection algorithm
is not sensitive to the detection of malicious vehicles. It means that malicious vehicles can
continue to launch Sybil attacks at the right time, and the security risks to VANETs still
exist. Our research aims to complete the traceability of malicious vehicles and to resist Sybil
attacks from the source to improve vehicle safety and traffic efficiencies.

4.1. Execution of Communication

In order to allow each vehicle to have sufficient opportunities to communicate with
each other, RSU adopts a dichotomy method to assign the broadcast or listen state to the
vehicle (the broadcast state is assigned a Key that can identify the vehicle’s identity, and the
listen state is assigned “listen”). First, the RSU divides the vehicles into approximately
equal broadcast and listen groups. In the first round, half of the vehicles are set to broadcast
and the other half to listen. In the second round, the vehicle status is reversed. After every
two rounds, RSU divides the subgroups divided in the previous round and performs state
distribution so that each vehicle can have a sufficient opportunity to communicate with
other vehicles within the time complexity of log (N). Among them, N is the number of
detected vehicles.

We use an example to explain the process of RSU assigning a broadcast or listen
status to vehicles using the dichotomy method. As shown in Figure 4, the vehicles to be
detected are A, B, C, and D. In the first round, the vehicles to be detected are dichotomized.
The subgroup composed of A and B is set as the broadcast state, the assigned particular
fields are K1 and K2, respectively, and the subgroup composed of C and D is set as the
listening state. In the second round, the vehicle status is reversed. The subgroup composed
of A and B is in the listening state, the subgroup composed of C and D is in the broadcasting
state, and the assigned particular fields are K3 and K4, respectively. In the third round,
the subgroup composed of A and B is dichotomized again, and subgroup A is set to be
in the broadcast state. The particular field assigned is K5, and the subgroup B is in the
listening state. In the fourth round, the vehicle’s status is reversed, subgroup A is in the
listening state, subgroup B is in the broadcasting state, and the assigned particular field is
K7. Similarly, we perform the dichotomy method on the subgroups formed by C and D.

A

B

C

D

A

B

C

D

B

A

D

C

A K1

B K2

C K3

D K4

A K5

C K6

B K7

D K8

Round1 Round2 Round3 Round4

Figure 4. Broadcasting or listening state allocation diagram (each round is executed for T time; T is
the minimum time interval).

4.2. Construction of the Neighborhood Graph

After the communication execution in Section 4.1 is completed, all the vehicles to be
detected report to the RSU the Key lists they have listened to, and the RSU builds neighbor
edges for vehicles according to the Key lists and finally completes the neighbor graph
construction. The neighbor graph comprises all the vehicles (N) to be detected and the
edges E formed between the vehicles, that is, G = (N, E), where N = {N1, N2 . . . , Nn},
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E is the directed edges formed between two vehicles, and E(i,j) represents the directed
edges from Ni to vehicle Nj. If Nj listens to the key of Ni, it means that Ni can form a
successful edge to Nj, that is, E(i,j) = S; otherwise, a failed edge is formed, which is recorded
as E(i,j) = F.

We use an example to describe the process of RSU constructing a neighborhood graph
for a vehicle as shown in Figure 5. Assume that N1 and N2 are normal vehicles, M is a
malicious vehicle, and S is a Sybil vehicle generated by M. With S not maintained by M, its
interactions with N1 and N2 will fail. The failure from N2 to M is due to the communication
failure caused by environmental factors. The success from S to M is the communication
success of the malicious vehicle with a probability of 0.6 to reduce the possibility of Sybil
vehicle exposure. The failure from M to S is a separation behavior between the malicious
vehicle and the Sybil vehicle, and the malicious vehicle fails to communicate with the Sybil
vehicle to reduce the cluster.

N1

N2

M

S

S

S

S

S

SS

FF

F

F
F

F

Figure 5. Neighbor graph.

4.3. Construction of Probabilistic Neighborhood Graph

With Section 4.2, we can now construct a neighbor graph for vehicles. Next, we have to
transform the neighbor graph into a probabilistic neighbor graph, which in turn computes
the vehicle’s confidence level.

4.3.1. Distances and Probabilities Relationships

The traceability mechanism in this article is based on broadcast communication be-
tween vehicles, involving signal attenuation during wireless communication [1]. New-
port [42] proposed that the probability of beacon reception does indeed decay with the
distance between the transmitters and receivers. To explore the relationship between vehi-
cle distances and communication success, we experiment with two cars, A and B. Vehicle A
broadcasts beacon packets at a frequency of 0.05 s in place. In contrast, vehicle B moves at
10 m/s in the opposite direction, allowing us to observe how well vehicle B received these
packets. We consider signal fading caused by paths and obstacles and analyze the packet
loss rate every 50 m. As shown in Figure 6, we find the relationship between the vehicle
distances and the communication success probabilities.
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Figure 6. Distances and Communication Success Probabilities model.
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According to the distances between vehicles, interpolating the distance intervals for
the proposed Distances and Communication Success Probabilities model is the probability
of success of the edges between vehicles.

4.3.2. Probabilistic Neighborhood Graph

Consider that when a vehicle broadcasts, it forms an outgoing edge for itself, and when
it listens, it forms an incoming edge. In each round, the number of outgoing edges formed
as broadcasters is much smaller than that of incoming edges formed as listeners. Therefore,
we analyze the input edge set with more data than the output edge set to reduce the errors.

According to the Distances and Communication Success Probabilities model men-
tioned in Section 4.3.1, we consider the probability of edge success as a function of the
distances between vehicles. Assuming that the vehicle (Nj) listens to the probability of the
vehicle (Ni) broadcasting the beacon packet expressed as P(i,j), the calculation is shown in
Equation (1):

P(i,j) = Prob[dist(E(i,j))] (1)

where E(i,j) represents the incoming edge formed from Ni to Nj, dist() is a function to
calculate the distance between Ni and Nj, and Prob[] is the probability of successful com-
munication based on the distance between vehicles combined with the Distances and
Communication Success Probabilities model in Section 4.3.1. Therefore, the calculation of
the success or failure probability of E(i,j) is shown in Equation (2):

Edge
(

E(i,j)

)
=

{
P(i,j), E(i,j) = S
1− P(i,j), E(i,j) = F

(2)

The total probability product of a vehicle’s incoming edge set during the entire com-
munication process is shown in Equation (3):

PTotal = ∏N
i ̸=jEdge(E(i,j)) (3)

For the convenience of calculation, the logarithm of Ptotal is calculated and recorded as
PPval as shown in Equation (4):

Pval = ln (PTotal) = ∑N
i ̸=j ln (Edge(Ei,j)) (4)

We refer to Pval as the vehicle’s credibility after calculating the credibility of each
vehicle by Equation (4). The neighbor graph in Section 4.2 is transformed into a probabilistic
neighbor graph as shown in Figure 7.

N1

N2

M

S

0.52

0.48

Pval=0.0168

Pval=0.1728

Pval=0.2052

Pval=0.20124

Figure 7. Probabilistic neighbor graph (Pval is the credibility of the vehicle).

It can be seen from Figure 7 that since S itself has no broadcast and listen capabilities,
the possibility of forming a successful edge with N1 or N2 is tiny, which leads to the low
credibility of S. At the same time, since the communication success rate between M and S is
0.6, this will also cause the credibility of M to be affected by S.
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4.4. Traceability Mechanism of Malicious Vehicles

After we apply the Sybil vehicle detection algorithm in [17] to our traceability mecha-
nism, we can divide the vehicles into two categories: the original predicted Sybil vehicle
group (“original Sybs”) and the original predicted normal vehicle group (“original Hons”).
However, after many experiments, we find that there are wrongly predicted vehicles
(such as malicious vehicles or normal vehicles) in “original Sybs”; similarly, there are also
wrongly predicted vehicles (such as malicious vehicles and Sybil vehicles) in “original
Hons”. In addition, we also find that the algorithm has a poor detection rate for malicious
vehicles, which means that malicious vehicles may relaunch Sybil attacks at the right time.
Therefore, it is impossible to eradicate Sybil attacks from the root, which is also our focus:
to detect “original Sybs” and “original Hons” further to detect malicious vehicles and
improve the precision of Sybil vehicles.

Our traceability mechanism is divided into two stages. The first stage subdivides
the “original Sybs”, and the second stage subdivides the “original Hons”. The traceability
mechanism for malicious vehicles is shown in Figure 8:
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Figure 8. Malicious vehicle traceability mechanism diagram.

4.4.1. Subcategory “Original Sybs”

Vehicles misclassified in “original Sybs” may be malicious or normal vehicles. Mali-
cious or normal vehicles have normal broadcast and listening capabilities. For Sybil vehicles,
without the maintenance of malicious vehicles, they will not have normal broadcast and
listening capabilities. Therefore, our strategy is first to screen out vehicles with normal
broadcast and listen capability from “original Sybs” as Predictive Normal and Malicious
Vehicle Groups (PreHon&Mal). The remaining vehicles are classified as Predictive Sybil
Vehicle Group 1 (PreSybs1). Secondly, PreHon&Mal is further subdivided into Predictive
Malicious Vehicle Group 1 (PreMals1) and Predictive Normal Vehicle Group 1 (PreHons1).

Because normal vehicles cannot communicate with Sybil vehicles but they can commu-
nicate with malicious vehicles and normal vehicles, we need to select a certain number of
normal vehicles to screen out Sybil vehicles. According to the Pval mentioned in Section 4.3.2,
the larger the Pval, the more likely the vehicle is a normal vehicle. We use the parameter
αTru-Nodes = 0.1 to select vehicles with higher Pval values, record them as Tru-Nodes, and col-
locate them as listening states. Since setting all “original Sybs” to the broadcast state can
easily raise suspicion of malicious vehicles, we use the dichotomy method mentioned in
Section 4.1 to allocate the communication state of “original Sybs”. Without the malicious
vehicles’ help, Sybil vehicles do not have broadcast capability, and Tru-Nodes cannot listen to
the key broadcast by Sybil vehicles. After sufficient communication between the “original
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Sybs” and Tru-Nodes groups, RSU extracts and analyzes the list of listened-to keys uploaded
by Tru-Nodes to determine the list of vehicles listened to by each trusted vehicle.

Considering that there is a communication failure probability of 0.4 between malicious
vehicles and Sybil vehicles, this may lead to the Pval value of such malicious vehicles
not being affected by Sybil vehicles and then appearing in the selected Tru-Nodes. When
Tru-Nodes fully communicate with the “original Sybs”, there is still a communication
success probability of 0.6 between malicious vehicles and Sybil vehicles, which leads to the
malicious vehicles being able to listen to the majority of Sybil vehicles in the “original Sybs”.
In addition, malicious vehicles in the listening state may also help Sybil broadcast, allowing
normal vehicles to listen to Sybil vehicles, which may cause this part of normal vehicles to
be misclassified as suspiciously malicious. Therefore, we use the parameter βsimilar = 0.9 to
ensure that all extracted Tru-Nodes are normal vehicles as much as possible. If the number
of “original Sybs” listened to by a vehicle in the Tru-Nodes is greater than Len(Original
Sybs)*βsimilar, the vehicle is considered a suspicious mal. The remaining vehicles after these
vehicles are eliminated constitute a SuplsToppval and reassign the communication status
of the SuplsToppval. Otherwise, Tru-Nodes are considered trustworthy vehicles. At this
point, the vehicles listened to by Tru-Nodes are classified as PreHon&Mal, and the remaining
vehicles are PreSybs1. Further classifications of misclassified vehicles can help improve
the accuracy of Sybil vehicles. The process of using Tru-Nodes to screen PreHon&Mal with
broadcast capability is shown in Algorithm 1.

Algorithm 1 Screening vehicles that can broadcast.

DETECTCANBDCASTNODES(nodes, IdToPval)
CanBdcastNodes← []
n← len(IdToPval) ∗ 0.1
For i = 0→ n− 1

TopPvalId← IdToPval[i]
EndFor
NodeSum← nodes + TopPvalId
Rounds← 2 ∗ log2(len(NodeSum))
For i← Rounds

For j← TopPvalId
If CommPlan[j, rnd] ̸= ”listen”

broadkeys.APPEND(ConnSim[j, rnd])
Else

ListenedKeys.APPEND(ConnSim[j, rnd])
EndIf

EndFor
EndFor
ListenedKeys.REMOVE(broadkeys)
For i← ListenedKeys

CanBdcastNodes.APPEND(KeyToId[i])
EndFor
CleanNodes← nodes.REMOVE(CanBdcastNodes)
Return CanBdcastNodes, CleanNodes

Next, we need to classify PreHon&Mal further. Considering the malicious vehicles
and Sybil vehicles have a success rate of 0.6, while the probability of communication
between normal vehicles and Sybil vehicles is 0, we further classify PreHon&Mal through
Sybil vehicles.

The environment easily influences vehicle communication. Despite using the di-
chotomy method in Section 4.1 to ensure effective communication, a few normal or ma-
licious vehicles may fail to connect with Tru-Nodes in each round. These vehicles might
be wrongly categorized in PreSybs1. To reduce the impact of these vehicles on subsequent
detection, we use the parameter γsyb = 0.1 to select the vehicle with a lower Pval value
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in PreSybs1 and record them as PreSybs1’. We use PreSybs1’ to assist in the classification
of PreHon&Mal.

We first assign the communication status to PreSybs1’ through the dichotomy method
in Section 4.1 and broadcast status to PreHon&Mal. Then, after sufficient communication
between PreSybs1’ and PreHon&Mal, the RSU extracts the listened lists of PreSybs1’. Be-
cause there are Sybil vehicles in PreSybs1’ in the broadcast state, this means that they have
Keys. Therefore, we need to remove the keys in this section from the listened lists and
use the remaining keys to search for the corresponding vehicles, categorizing the listened
vehicles as PreMals1, and the remaining vehicles as PreHons1, which achieves fine-grained
classifications of “original Sybs”.

4.4.2. Subcategory “Original Hons”

We analyze that misclassified vehicles in “original Hons” may be malicious or Sybil
vehicles in Section 4.1. Their characteristic is that there is a possibility of successful commu-
nication with Sybil vehicles, while the probability of successful communication between
normal vehicles and Sybil vehicles is 0. Therefore, our strategy is to first screen out the vehi-
cles in “original Hons” that can interact with Sybil vehicles and set them as predicted Sybil
vehicles and malicious vehicle group (PreSyb&Mal), and the remaining vehicles are classi-
fied as predicted normal vehicle group2 (PreHons2). Secondly, PreSyb&Mal is subdivided
into predicted malicious vehicle group2 (PreMals2) and Sybil vehicle group2 (PreSybs2).

Because Sybil vehicles can communicate with malicious or Sybil vehicles but cannot
communicate with normal vehicles, we use PreSybs1’ in Section 4.1 to assist in classification.
We still allocate the status of PreSybs1’ through the dichotomy method and set “original
Hons” to the broadcast status. After sufficient communication between the “original Hons”
and PreSybs1’, we collect and analyze the keys listened by PreSybs1’. We remove the keys
assigned to PreSybs1’ from the listened lists and use the remaining keys to search for vehicles.
These vehicles are classified as PreSyb&Mal, and the remaining vehicles are classified as
PreHons2. The process of screening out PreSyb&Mal by PreSybs1’ is shown in Algorithm 2:

Algorithm 2 Screening vehicles that can be listened to.

DETECTCANBELISDNODES(nodes, PreCleanSybs)
CanBeLisdNodes← []
NodeSum← nodes + PreCleanSybs
Rounds← 2 ∗ log2(len(NodeSum))
For i← Rounds

For j← PreCleanSybs
If CommPlan[j, rnd] ̸= ”listen”

broadkeys.APPEND(ConnSim[j, rnd])
Else

ListenedKeys.APPEND(ConnSim[j, rnd])
EndIf

EndFor
EndFor
ListenedKeys.REMOVE(broadkeys)
For i← ListenedKeys

CanBeLisdNodes.APPEND(KeyToId[i])
EndFor
CleanNodes← nodes.REMOVE(CanBeLisdNodes)
Return CanBeLisdNodes, CleanNodes

Next, we will further classify PreSyb&Mal. Considering the possibility of successful
communication between malicious vehicles and normal vehicles, while the probability
of communication between Sybil vehicles and normal vehicles is 0, our goal is to extract
vehicles as close as possible to Hon to assist in verification. Therefore, after updating the
Pval value of PreHons2, we extract the vehicles with the top 0.1 Pval values and mark them
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as Tru-Nodes” (based on the experience of extracting Tru-Nodes in Section 4.4.1). And set we
Tru-Nodes” to the listening state and PreSyb&Mal to the broadcasting state. After sufficient
communication between these two groups, we extract the listening list of Tru-Nodes”,
and classify the monitored vehicles as PreMals2 and the remaining vehicles as PreSybs2,
thereby completing the fine-grained classification of “Original Hons”.

According to Sections 4.4.1 and 4.4.2, our detection results for Sybil vehicles are com-
posed of PreSybs1 and PreSybs2, the detection results for malicious vehicles are composed
of PreMals1 and PreMals2, and the detection results for normal vehicles are composed of
PreHons1 and PreHons2. Our goal is to trace malicious vehicles and improve the precision
of Sybil vehicles.

4.4.3. Update Of Pval Value

In order to reduce the impact of Sybil vehicles or malicious vehicles on the Pval of
normal vehicles, when there is a suspicious vehicle, we ignore the edge formed by the
suspicious vehicle and use Equation (4) to recalculate the vehicle’s credibility. In this way,
reducing the impact of suspicious vehicles on the Pval of normal vehicles can also make
the Pval of suspicious vehicles increasingly extreme. The algorithm for updating Pval is
shown in Algorithm 3.

Algorithm 3 Updating the Pvals.

RECALCUPVAL(Suspinodes, nodes)
IdtoPval ← []
If nodes /∈ Suspinodes

idtoPval ← nodePval(idtoEdges(nodes),Suspinodes)
EndIf
Return idtoPval

5. Experiments

We conduct simulation experiments to verify the effectiveness of our proposed scheme.
We evaluate the proposed scheme under different Sybil attack densities, malicious vehicle
densities, and vehicle density attack scenarios.

In designing our detection mechanism, we realize the importance of scalability to
ensure the long-term effectiveness of the system and to adapt to future changes. Sybil
Vehicle Detection and Malicious Vehicle Traceability adopt a modular design ideology,
allowing each functional module to operate independently and flexibly expand and com-
bine to meet the needs of CAV systems of varying sizes and complexities. Regarding Sybil
vehicle detection, when a vehicle executes the broadcast of a beacon packet, the module
analyzes the key list reported by the vehicle to identify potential Sybil vehicles accurately.
Regarding tracing malicious vehicles, the detected Sybil vehicles are assigned states and
traced based on their collusive behavior. Our scheme also has good openness. If a better
Sybil vehicle detection algorithm appears, we can easily replace the existing detection
module without making large-scale changes to the system. The information table of our
experimental equipment is shown in Table 2.

Table 2. Experimental equipment information.

Device Detail

CPU Intel® Core™ i7-10750H CPU @ 2.60GHz
OS Debian GNU/Linux 11 (bullseye)

OS Type 64-bit
Memory 3.8 GB
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5.1. Simulation Design

Sybil attacks have a greater impact on areas with high traffic densities, such as being
more likely to cause vehicle collisions. Therefore, we analyze urban areas with higher
traffic densities. Veins [43] is an open-source framework for vehicle network simulation.
We use the Veins simulator to simulate the running state of the car, which is based on the
road traffic simulator SUMO and the event network simulator OMNeT++. As shown in
Figure 9, we select a route map for some areas of Haidian Island through OpenStreetMap
and use SUMO traffic scenarios to describe vehicle trajectories. Our simulation parameters
are shown in Table 3.

Figure 9. Haidian Island area.

Table 3. Simulation parameter settings.

Parameter Value

Simulation Time 100 s
Attack Probability 5%, 10%, 20%, 30%, 40%
Simulation Area 400 m × 400 m

Obstacle Shadowing Simple Path Loss Model
MAC Implementation IEEE 802.11p

Minimum Receive Power −110 dBm
Carrier Frequency 5.9 GHz

Noise Floor −98 dBm
Antenna Height 1.895 m

Simulator Veins
Path loss index 2

Obstacle loss index 0.4

We randomly select a circle with a center position and radius R as our detection range.
Vehicles in the range are to be detected. According to the Distances and Communication
Success Probabilities model in Section 4.3.2, to ensure that the vehicle is within a high
probability of communication success, we set R to 200 m. This allows vehicles to prove
their physical presence by broadcasting. When a Sybil vehicle is instructed to broadcast,
a malicious vehicle in a listening state replaces the Sybil vehicle for broadcasting. When a
Sybil vehicle is instructed to listen, the malicious vehicle in an actual listening state shares
the listened key with the Sybil vehicle.

5.2. Evaluation Metrics

We evaluate the performance of our detection mechanism using three indicators:
precision, recall, and F1-score (F1). Precision is the ratio of correctly predicted positive
samples to the total number of predicted positive samples, recall is the ratio of predicted
positive samples among actually positive samples, and the F1-score is the harmonic mean
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of precision and recall rates. The precision and recall calculation formulas for Sybil vehicles
are represented by Equations (5) and (6), respectively:

Ps =
TPs

TPs + FPs
(5)

Rs =
TPs

TPs + FNs
(6)

The precision and recall calculation formulas for malicious vehicles are expressed as
Equations (7) and (8), respectively:

Pm =
TPm

TPm + FPm
(7)

Rm =
TPm

TPm + FNm
(8)

The F1 calculation formulas for Sybil vehicles and malicious vehicles are represented
by Equations (9) and (10), respectively:

F1s =
2×Ps×Rs

Ps + Rs
(9)

F1m =
2×Pm×Rm

Pm + Rm
(10)

The overall precision calculation formula for Sybil vehicles and malicious vehicles is
as follows (11):

Ps&m =
TPs + TPm

TPs + FPs + TPm + FPm
(11)

The overall recall calculation formula for Sybil vehicles and malicious vehicles is
Equation (12):

Rs&m =
TPs + TPm

TPs + FNs + TPm + FNm
(12)

The overall F1 calculation formula for Sybil vehicles and malicious vehicles is
Equation (13):

F1s&m =
2×Ps&m×Rs&m

Ps&m + Rs&m
(13)

Note: The Hunting scheme [17] does not classify malicious vehicles. We select ma-
licious vehicles from “original Sybs” as the predicted malicious vehicles in the Hunt-
ing scheme.

6. Performance Evaluation

In order to reduce the situation where normal vehicles cannot generally run due to
detection errors, our goal is to increase the recall as much as possible while ensuring preci-
sion. Our comparative schemes are the Hunting scheme [17] and the Eliminate scheme [41].
The Hunting scheme [17] is chosen due to its graph-based detection mechanism. This mech-
anism avoids the need for extensive data training like machine learning-based schemes. It
offers efficient detection and a high detection rate for Sybil vehicles. Our work is based on
the Hunting scheme [17] to trace malicious vehicles and has improved the detection rate of
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Sybil vehicles compared to this scheme. On the other hand, the Eliminate scheme [41] is
chosen because although both this scheme and our proposed traceability mechanism are
based on beacon packet analysis, this scheme utilizes the unique signal source of beacon
packets to trace malicious vehicles. In contrast, our traceability mechanism traces malicious
vehicles through the possibility of successful communication between Sybil vehicles and
malicious vehicles. We mainly evaluate the solution’s performance from Sybil vehicle
proportions, malicious vehicle proportions, and vehicle densities.

6.1. Increasing the Proportion of Sybil Vehicles

We use different attack densities of Sybil vehicles to verify the effectiveness of the
schemes. The normal and malicious vehicles ratio is 5:1, with 25 and 5 vehicles, respectively.
The Sybil vehicle ratios are 5%, 10%, 20%, 30%, and 40% for performance verifications.

As the proportion of Sybil vehicles increases, malicious vehicles cannot continuously
maintain a large number of Sybil vehicles, making them more susceptible to exposure.
Therefore, all three schemes can stably detect Sybil vehicles.

As shown in Figure 10, on the detection rate of Sybil vehicles, the graphs Ps, Rs, F1s
reflect the precision rate, recall rate, and F1 value of the three schemes for Sybil vehi-
cle detection under different Sybil vehicle attack densities, respectively. Among them,
the Hunting [17] scheme has a stable overall performance in the three metrics. This is
because as the number of Sybil vehicles increases, the malicious vehicles cannot maintain
the gradually increasing number of Sybil vehicles, resulting in a decrease in the likelihood
of them successfully establishing connections with normal vehicles. This makes the trust-
worthiness of Sybil vehicles behave more extremely in the neighbor graph. As a result,
there is a slight upward trend in the three metrics of the scheme for different Sybil vehicle
attack densities. It also reveals that the Hunting scheme can maintain a relatively stable
performance when dealing with different densities of Sybil vehicles. The point strategy
of the Eliminate scheme [41] depends on the designation of neighboring vehicles. As the
density of Sybil vehicles increases, the probability that neighboring vehicles will be mixed
with Sybil vehicles increases. However, since a Sybil vehicle is just a beacon packet, it
needs to depend on the maintenance of malicious vehicles to impact the decision of the
points strategy. Therefore, this scheme performs more consistently in the three metrics
for detecting Sybil vehicles. Our Trace scheme is based on the Hunting scheme for the
fine-grained classification of predicted Sybil vehicles. Even when the density of Sybil
vehicles is low, our scheme maintains a high detection rate compared to the other two,
suggesting that it is more sensitive to stealthy attacks. For F1s, our scheme also improves
by 0.9% and 3% over the Hunting and Eliminate schemes, respectively, further proving its
superiority in Sybil vehicle detection.

On the detection rate of malicious vehicles, Figures Pm, Rm, F1m then reflect the pre-
cision rate, recall rate, and F1 value of the three schemes for malicious vehicle detection,
respectively. The Hunting [17] scheme takes into account both the selfish behavior of mali-
cious vehicles, prioritizing their broadcasting tasks to avoid exposure, and the clustering
tendency between malicious and Sybil vehicles, resulting in reduced interaction between
them. However, with the increase in Sybil vehicles, malicious vehicles still need to maintain
more Sybil vehicles, so the detection rate of malicious vehicles in this scheme is on the rise.
Nevertheless, the selfish behavior of malicious vehicles leads to a poor overall detection
rate. Furthermore, because the Hunting scheme has a good detection rate for Sybil vehicles,
the Ps in Figure 10 is close to 1. Nevertheless, the screening rate of malicious vehicles from
the “original Sybs” is very low, which leads to approaching 0. We use max(x,1) to treat the
denominator non-0, so the calculated Pm approaches 0 and Ps&m approaches Ps.
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Figure 10. Performance comparisons under different Sybil attack densities.

In the Eliminate [41] scheme, which utilizes suspicious Sybil vehicles to locate the
source of packets that are further sent as malicious vehicles, the detection rate of malicious
vehicles remains stable, as the overall detection rate of Sybil vehicles remains stable. How-
ever, after detecting Sybil vehicles, our scheme leverages the conspiracy between Sybil
vehicles and malicious vehicles to trace the malicious vehicles. This is despite the malicious
vehicle randomly reducing its interactions with the Sybil vehicle while maintaining the
Sybil vehicle to reduce the risk of being detected. The communication state and number of
rounds we set in Sections 4.4.1 and 4.4.2 provide ample opportunities for their interactions.
For F1m, our traceability mechanism is improved by 93.9% and 4.3% compared to the Hunt-
ing [17] and Eliminate [41] schemes, respectively. The effectiveness of using the conspiracy
behavior between Sybil and malicious vehicles to trace malicious vehicles is demonstrated.

Figures Ps&m, Rs&m, and F1s&m comprehensively present the three schemes’ precision,
recall, and F1 values regarding the overall detection of Sybil vehicles and malicious vehicles.
Our scheme performs well in both Sybil vehicle detection and malicious vehicle tracing.
This result is the uniqueness of our use of fine-grained classification. Regarding detecting
Sybil vehicles, the Trace scheme and Hunting scheme perform better than the Eliminate
scheme. This is mainly due to their use of constructed graphs, which are more accurate
than distance-dependent detection. The communication relationship between nodes is con-
structed as a graph, which enables more accurate identification of Sybil vehicles. However,
distance-based detection is more susceptible to interference from various factors, such as
the environment and communication delays, which can decrease precision.
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6.2. Increasing the Proportion of Malicious Vehicles

Due to the fact that Sybil vehicles are only beacon packets, they need to be maintained
by a malicious vehicle in order to exhibit the characteristics of a normal vehicle. Therefore,
we want to verify whether an increase in the proportion of malicious vehicles will affect the
detection rate of Sybil and malicious vehicles. Therefore, we adopt a ratio of 5:1 for normal
vehicles and Sybil vehicles, with 25 and 5 vehicles, respectively, and 5%, 10%, 20%, 30%,
and 40% for malicious vehicles, respectively.

As shown in Figure 11, the graphs Ps, Rs, and F1s reflect the precision rate, recall rate,
and F1 value of the three schemes for Sybil vehicle detection under different malicious
vehicle attack densities, respectively. As the proportion of malicious vehicles increases,
the detection rate of the Hunting scheme on Sybil vehicles shows a significant decreasing
trend. The reason is that the increase in the density of malicious vehicles enables more
malicious vehicles to help Sybil vehicles broadcast, which makes Sybil vehicles maintain a
high level of confidence in the neighbor graph. As a result, the Hunting scheme increases
the likelihood of misclassifying this number of Sybil vehicles into normal vehicles, leading
to a decrease in the detection rate of Sybil vehicles. In the Eliminate [41] scheme, as the
proportion of malicious vehicles increases, the voting probability of malicious vehicles
participating in the integral strategy will fluctuate, resulting in a slight fluctuation in the
detection rate of Sybil vehicles in this scheme. Although our scheme has a fluctuating
trend, overall, it maintains a high detection rate. That is because as the proportion of
malicious vehicles increases, it increases the probability of malicious vehicles maintaining
Sybil vehicles continuously, making a small number of Sybil vehicles behave less extremely.
Our strategy for less extreme Sybil vehicles is to extract trusted groups with higher Pval
in through Section 4.4.2 instead of directly using and then further classify PreSyb&Mal.
The advantage of this approach is that it can reduce the impact of Sybil vehicles successfully
disguised by malicious vehicles, as their Pval is difficult to exceed the Pval of normal
vehicles. However, we also know the limitations, where malicious vehicles may appear in
trusted groups when they do not maintain Sybil vehicles. In the future, we will consider
implementing additional authentication mechanisms, such as private key authentication,
on the extracted trusted groups to ensure they contain only normal vehicles. For F1s, our
traceability mechanism has improved by 2.3% and 3.47% compared to the Hunting [17]
and Eliminate [41] schemes, respectively.

In terms of the detection rate of malicious vehicles, as the proportion of malicious
vehicles increases, more malicious vehicles in the Hunting [17] scheme can maintain Sybil
vehicles, increasing their interaction. Therefore, there is an overall upward trend. However,
due to the selfish behavior of malicious vehicles, this scheme only affects the credibility
of malicious vehicles through Sybil vehicles, which is far from achieving a high detection
rate for malicious vehicles. For F1m, our traceability mechanism is increased by 91.87% and
3.52% compared to the Hunting [17] and Eliminate [41] schemes, respectively. All three
scenarios show a decreasing trend when the percentage of malicious vehicles increases.
This is mainly due to the disadvantage of relying on detecting neighboring vehicles, which
are prone to vote manipulation by malicious vehicles.

6.3. Increasing the Vehicles Density

Since our proposed traceability mechanism is based on vehicle location information,
we would like to verify whether the detection rate of Sybil vehicles and malicious vehicles
is affected when the vehicle density increases. Therefore, we adopt ratios of 5:1 between
normal and malicious vehicles, with Sybil vehicles accounting for 20% of both.
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Figure 11. Performance comparisons under different attack densities of malicious vehicles.

As shown in Figure 12, graphs Ps, Rs, and F1s reflect the precision rate, recall rate,
and F1 value of the three schemes for Sybil vehicle detection, respectively. Figures Pm, Rm,
and F1m reflect the precision rate, recall rate and F1 value of the three schemes for malicious
vehicle detection, respectively. And Figures Ps&m, Rs&m, and F1s&m combine the precision,
recall, and F1 values of the three schemes for Sybil vehicles and malicious vehicles in
general. Among them, the Eliminate [41] scheme is most affected by vehicle density and
shows a decreasing trend overall. This is mainly due to the fact that the spatio-temporal
model adopted by the Eliminate scheme is easily affected by signal transmission. When
the vehicle density increases, the complexity and interference of signal transmission also
increase, leading to a decrease in the accuracy of the spatio-temporal model. To compensate
for this shortcoming, the authors propose an integration strategy that attempts to reduce the
error through the information of neighboring vehicles. However, this integration strategy
is more sensitive to vehicle density and is prone to false alarms in the case of high vehicle
density. When detecting Sybil vehicles, if the theoretical distance between the Sybil vehicles
and the vehicles to be detected has the minimum error compared to the spatio-temporal
model distance, the Sybil vehicle will be mistaken for the source of the beacon packet
and classified into normal vehicles. In this case, Sybil vehicles and malicious vehicles
cannot be detected. In addition, when there is a suspicious Sybil vehicle to search for
the source of the beacon packet, if the theoretical distance between the normal vehicle
and the vehicle to be detected has the minimum error compared to the spatio-temporal
model distance, the normal vehicle will be mistaken for the source of the Sybil vehicle
and classified as a malicious vehicle. Our traceability mechanism focuses on proving the
physical existence between vehicles through broadcasting keys. The greater the density
of vehicles, the lesser the possibility that successful communication between the vehicles
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is affected by the distance, and the more advantageous our mechanism. Our traceability
mechanism is increased by 0.4% and 3.22%, respectively, compared to the Hunting [17]
and Eliminate [41] schemes in F1s, and by 95.39% and 3.29% respectively compared to the
Hunting [17] and Eliminate [41] schemes in F1m.
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Figure 12. Performance comparisons under different vehicle densities.

Due to our traceability mechanism’s focus on tracing malicious vehicles in Sybil
attacks, we compare the detection rates of three schemes for malicious vehicles using a
table as shown in Table 4. Under the three attack densities of Sybil vehicle proportions,
malicious vehicle proportions, and vehicle densities, the arithmetic mean of Pm, Rm, and
F1m is calculated respectively and expressed with AvgPm, AvgRm, and AvgF1m.

Table 4. Comparisons of three schemes for detecting malicious vehicles.

AvgPm AvgRm AvgF1m

Trace (ours) 0.9853 0.9593 0.9638
Hunting [17] 0.0591 0.015 0.3637
Eliminate [41] 0.9345 0.927 0.9264

Table 4 shows that the precision of our proposed scheme for malicious vehicles is
as high as 98.53%. This excellent performance is mainly attributed to the stability of our
scheme, which is not easily affected by the fluctuation of vehicle density. Meanwhile, when
the number of malicious vehicles increases, we effectively reduce the risk of being disguised
as Sybil vehicles by malicious vehicles by extracting trusted groups, thus ensuring efficient
detection of malicious vehicles. In contrast, the Hunting scheme has a lower detection rate
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for malicious vehicles and is still deficient in malicious vehicle tracing. The detection rate of
the Eliminate scheme is slightly lower than that of the Trace scheme because the proposed
spatio-temporal model is easily affected by environmental disturbances and vehicle density.

In order to evaluate the overall performance of the three schemes, we calculate the
arithmetic mean values of Ps&m, Rs&m, and F1s&m under the proposed three attack densities.
Then, we express them in AvgPs&m, AvgRs&m, and AvgF1s&m. A comparison of the overall
performance and detection time of the three schemes is shown in Table 5.

Table 5. Overall performance and detection time comparison of three schemes.

AvgPs&m AvgRs&m AvgF1s&m Time

Trace (ours) 0.9879 0.9601 0.9725 1.35 s
Hunting [17] 0.9371 0.5685 0.2578 0.86 s
Eliminate [41] 0.9376 0.9402 0.9385 34.59 s

The comprehensive analysis of the experimental results shows that our proposed
traceability mechanism exhibits good classification performance results in detecting Sybil
vehicles and malicious vehicles under three attack densities, and our scheme is not easily
affected by vehicle density. The average precision of Sybil and malicious vehicles is as high
as 98.79%, which is about 5% higher than the two comparative schemes. Our scheme also
exceeds 96% in terms of overall average recall and F1, which proves that our traceability
mechanism is feasible for detecting Sybil vehicles and tracing malicious vehicles. In terms
of running time, our scheme takes only 1.35 s to achieve more than 95% of the F1 value,
which can satisfy the demand for real-time detection. In contrast, the Eliminate scheme is
time-consuming because it needs first to analyze the packets broadcasted by all neighboring
vehicles, calculate a broadcaster with the smallest distance error as the source of suspicious
packets, and then make a collective decision to detect Sybil vehicles through the integral
strategy. This complex processing flow poses a considerable challenge to the real-time
nature of Sybil attack detection. Our scheme shows obvious advantages in detection rate,
accuracy, and running time and provides a practical solution for Sybil vehicle detection
and malicious vehicle tracing.

6.4. Threshold Analysis

We conduct an in-depth experimental analysis of the introduced thresholds, aiming
to find the optimal threshold setting through data validation to improve the precision of
malicious vehicle tracing further. Figure 13a demonstrates the change in the extraction
probability of honest vehicles for different values of αTru-Nodes. Figure 13b reflects the change
in the extraction probability of honest vehicles for different values of βsimilar. Figure 13c
depicts explicitly the effect of different values of γsyb on the extraction probability of
Sybil vehicles.
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Figure 13. Threshold analysis. (a) αTru-Nodes. (b) βsimilar. (c) γsyb.
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6.4.1. αTru-Nodes

According to the Pval value mentioned in Section 4.3.2, the higher the Pval value,
the greater the likelihood that the vehicle is normal. The αTru-Nodes value affects the accuracy
of Tru-Nodes, which is crucial for the algorithm’s performance. Therefore, this section
conducts an experimental analysis on the threshold of αTru-Nodes at different levels. We take
the value of each probability at intervals of 0.1 and conduct 100 independent repeated
experiments. The results are shown in Figure 13a. It can be seen that with the increase in the
αTru-Nodes value, the probability that the vehicle is normal is lower. This is because malicious
vehicles will randomly maintain Sybil vehicles, and the Pval value of such malicious
vehicles will be affected by Sybil vehicles, resulting in a lower ranking. However, when
αTru-Nodes is less than 0.1, an effective number of vehicles will not be selected. To ensure the
stability of the algorithm, the αTru-Nodes value starts from 0.1. When αTru-Nodes value = 0.1,
the probability of Hon extraction is the best. So, our αTru-Nodes value is set to 0.1.

6.4.2. βsimilar

In the algorithm, a parameter βsimilar is designed to ensure that the extracted Tru-Nodes
are all normal vehicles as much as possible, and the remaining vehicles after elimination by
βsimilar constitute the SuplsToppval. In order to evaluate the effect of leaving as many normal
vehicles as possible in the SuplsToppval as well as the malicious vehicles culling effect, ProA
and ProB are introduced, respectively. The formulas are as in (14):

ProA =
SuplsToppval∩TruHons

Tru-Nodes

ProB =
SuplsToppval∩TruHons

SuplsToppval

(14)

where TruHons are actual hon vehicles. Ultimately, the credibility of Tru-Nodes is as in
Equation (15):

CredTru-Nodes =
ProA + ProB

2
(15)

As shown in Figure 13b, the higher the βsimilar, the higher the confidence of Tru-Nodes.
This is because by eliminating suspicious malicious vehicles in Tru-Nodes, the probability
that malicious vehicles can maintain the normal broadcast of Sybil vehicles is lower. Thus,
the probability that normal vehicles can listen to Sybil vehicles is negligible. That is, with
the lower probability that normal vehicles are affected by malicious vehicles, an upward
trend is shown. Hence, our βsimilar is set to 0.9.

6.4.3. γsyb

According to the Pval value mentioned in Section 4.3.2, it can be seen that the smaller
the Pval value, the higher the probability that the vehicle is a Sybil vehicle, and the γsyb
value designed in the algorithm affects the accuracy of PreSybs1’. We choose to take values
for each probability at intervals of 0.1 and perform 100 independent repetitions of the
experiment. We want to extract vehicles more likely to be Sybil vehicles, so the γsyb value is
set to 0.1. However, a slight decrease in the γsyb value after 0.8 can be seen from Figure 13c,
which means that the parameter is not very sensitive to the algorithm. Consequently, this
parameter’s influence on the algorithm is not critical.

7. Conclusions and Future Work

Existing detection mechanisms only detect Sybil vehicles and cannot trace malicious
vehicles. We propose a scheme to trace malicious vehicles based on vehicle broadcast
beacon packets by analyzing the differences between Sybil vehicles, malicious vehicles,
and normal vehicles. The experimental results show that under three attack densities,
namely, increasing the Sybil proportion, malicious vehicle proportion, and vehicle density,
the traceability mechanism achieves an average checking accuracy and completeness of
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98.53% and 95.93%, respectively. Our traceability mechanism performs better than the
latest solution for tracking malicious vehicles, particularly showing a more stable detection
rate under high vehicle density. This implies enhanced defense against Sybil attacks
from initiators, which is crucial for improving the security and reliability of intelligent
transportation systems.

The malicious vehicle-tracing mechanism proposed in this paper demonstrates supe-
rior accuracy and stability in experimental comparisons with other schemes. However, it
also exhibits limitations and shortcomings.

• During detection, we discovered that neighbor-based collective witnessing reduces
errors from a few vehicles but is vulnerable to manipulation by malicious vehicles.
Future research will focus on a detection scheme independent of neighboring vehicles,
necessitating significantly enhancing individual vehicles’ detection capabilities. This
implies stronger data processing and analysis for each vehicle to independently assess
its surroundings, posing algorithm design and performance challenges. It necessitates
deeper research and meticulous debugging to address diverse scenarios and attacks.

• The proposed mechanism depends on trusted RSUs for key management in vehicle
broadcasting, making it vulnerable to single-point failure. Once the RSU is attacked
or malfunctions, it is easy to cause the entire detection mechanism to malfunction.
Decentralization is a promising approach to alleviating this problem. It distributes
key distribution and management tasks across multiple nodes, minimizing the impact
of a single point of failure.

• Current research focuses on simulations and lacks real-world validation. This hinders
the mechanism’s feasibility and reliability in practical settings. Future studies should
incorporate real data and scenario testing to ensure the mechanism’s effectiveness in
real environments.
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