
Citation: Engelmann, U.M.; Simsek,

B.; Shalaby, A.; Krause, H.-J. Key

Contributors to Signal Generation in

Frequency Mixing Magnetic Detection

(FMMD): An In Silico Study. Sensors

2024, 24, 1945. https://doi.org/

10.3390/s24061945

Academic Editor: Daniel Ramos

Received: 29 January 2024

Revised: 9 March 2024

Accepted: 15 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Key Contributors to Signal Generation in Frequency Mixing
Magnetic Detection (FMMD): An In Silico Study
Ulrich M. Engelmann 1,* , Beril Simsek 1, Ahmed Shalaby 1 and Hans-Joachim Krause 2,3,*

1 Medical Engineering and Applied Mathematics, FH Aachen University of Applied Sciences,
52428 Jülich, Germany

2 Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich,
52428 Jülich, Germany

3 Institute of Nano- and Biotechnologies (INB), FH Aachen University of Applied Sciences,
52428 Jülich, Germany

* Correspondence: engelmann@fh-aachen.de (U.M.E.); h.j.krause@fz-juelich.de (H.-J.K.)

Abstract: Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to
detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle
relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual
frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and
overall improve its applicability in biosensing, matching combinations of external field parameters
and internal particle properties are being sought to advance FMMD. In this study, we systematically
probe the aforementioned interaction with coupled Néel–Brownian dynamic relaxation simulations
to examine how key MNP properties as well as applied field parameters affect the frequency mix-
ing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic
response, with the strongest contributions from the largest particles. The drive field amplitude domi-
nates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic
size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP
properties and parameters of the setup towards optimal FMMD signal generation, our findings
suggest choosing large particles of core sizes dC > 25 nm with narrow size distributions ( σ < 0.1)
to minimize the required drive field amplitude. This allows potential improvements of FMMD
as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and
magnetic immunoassays.

Keywords: magnetic nanoparticles; micromagnetic simulation; magnetic relaxation; frequency
mixing magnetic detection; coupled Néel–Brownian relaxation dynamics; magnetic biosensing; key
performance indicators

1. Introduction

Magnetic nanoparticles (MNPs) attract wide interest in innovative biomedical appli-
cation [1,2]. They are applied as diagnostic imaging tracers in magnetic particle imaging
(MPI) [3,4], therapeutic heating agents in magnetic fluid hyperthermia (MFH) [5,6] and
flexible sensors in magnetic biosensing [7,8]. While MPI and MFH have been relatively
widespread in global research for the past 15 years, the area of magnetic biosensing us-
ing MNPs is still being established with novel methods being introduced. Among those
promising methods, magnetic frequency mixing detection (FMMD) is becoming increas-
ingly popular, with potential to combine analyte-differentiating biosensing techniques [9],
even with MPI imaging modalities simultaneously [10]. To achieve this, FMMD uses a dual
frequency excitation to drive MNPs through saturation and generate a nonlinear magnetic
response from the particles [11], which is characterized by a multi-faceted intermodulation
signal that allows for multiplex interpretation and consequently high information gain
per measurement [12]. Due to the small nano-sized tracers and high sensitivity, FMMD is
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especially suitable for detection of structures on the micro- and nanoscale, as shown by
its successful application for detection of SARS [13] and influenza viruses [14,15], antibod-
ies [16] and aflatoxin B1 [17] as well as nanoparticle size differentiation [18].

All of the above techniques are based on the magnetic particle dynamic relaxation in
an alternating magnetic field (AFM), either for direct imaging (MPI), direct heat generation
(MFH) or indirectly measured changes in the relaxation state of MNP (FMMD). As such,
the dynamic relaxation process of MNP has been intensively studied theoretically and
via simulations in the past, with successes for both MPI and MFH applications [19–21].
However, such comprehensive simulation-based studies have, to the best of the authors’
knowledge, not yet been carried out for FMMD. Therefore, it is currently unknown what
key contributors rule the FMMD signal overall and how exactly the AFM parameters
(setup) could be matched to the intrinsic particle properties (MNP) to generate an optimum
FMMD signal. Knowledge of such key contributing parameters and the consequent optimal
matching of setup to MNP parameters could provide leverage to position FMMD besides
established biomedical applications such as MPI and MFH, guide synthesis of optimized
MNP [22,23] or introduce FMMD as an adjunct to these for a theranostic platform, as
has been demonstrated for MPI–MFH combinations [24–26]. In the following, we use
coupled Néel–Brownian stochastic magnetic relaxation dynamics simulations to close this
gap, investigating the optimal signal generation in FMMD. The simulation framework
has been successfully applied to MPI [27] and MFH [28], been extended to FMMD and
compared to Langevin theory [29], as well as experimentally validated [30]. Such an in
silico study allows to assess the individual and isolated influence of key contributions to
signal generation over a wide range. The key contributors varied here are particle core size
(i.e., diameter), the hydrodynamic size, the effective magnetic anisotropy and the core-size
distribution width, as well as the frequency and field amplitude.

2. Materials and Methods
2.1. Magnetic Relaxation Theory

The applied alternating magnetic field (AMF) is described by

H(t) = H0 + H1sin(2π f1t) + H2sin(2π f2t) , (1)

where H0 denotes the static magnetic offset field, H1 is the excitation field amplitude at
high frequency f1 and the drive field amplitude H2 at low frequency f2.

The particle relaxation dynamics at such an applied AMF, H, can be described by
combined Néel–Brownian relaxation [31]. The Néel relaxation of a single MNP core, mp, is
given by the Landau–Lifshitz–Gilbert equation (LLG) [32]:

dmp

dt
=

µ0γ

1 + α2 ·
(
Heff × mp + αmp ×

(
Heff × mp

))
(2)

with the permeability of free space, µ0, the electron gyromagnetic ratio, γ, the damping
parameter, α, and the effective field Heff. The Brownian rotation of a single particles easy
axis, n, can be described by a generalized torque (GT), Θ, as follows [33]:

dn
dt

=
Θ

6ηVH
× n (3)

with the carrier matrix viscosity, η, and the MNP hydrodynamic volume, VH = π
6 · d3

h,
in which dH is the hydrodynamic particle size. Néel and Brownian relaxations are both
coupled using particle internal energy:

U = −µ0 · mp
(
mp · H

)
− Keff·Vc

(
mp · n

)2 (4)

where mp =
∣∣mp

∣∣ = Vc · MS gives the magnitude of the MNP magnetic moment, and
Vc =

π
6 · d3

c is the MNP core volume. The first term in Equation (4) represents the Zeeman



Sensors 2024, 24, 1945 3 of 17

energy with the applied AMF, H, while the second term represents the magnetic anisotropy
energy, Keff · Vc, and uses the assumption of uniaxial anisotropy and spherically shaped
particles, approximated by an effective anisotropy constant.

Thermal fluctuations are taken into account by expanding the LLG and GT
(Equations (1) and (2)) with Hth and Θth, which add Gaussian-distributed white noise
with zero mean as follows: ⟨Hi

th(t)⟩ = 0 and ⟨Θi
th(t)⟩ = 0 and variances, respectively:

⟨Hi
th(t)H

j
th(t

′)⟩ =
2kB T·(1+α2)

γmpα·δijδ(t−t′) and ⟨Θi
th(t)Θ

j
th(t

′)⟩ = 12kBTηVH · δijδ(t − t′), where T
represents the global temperature of the entire ensemble. Implementing these fluctuations
changes the effective field and generalized torque as follows:

Heff = − 1
mp · µ0

· ∂U
∂m

+ Hth = H +
2Keff · Vc

mp · µ0
·
(
mp · n

)
n + Hth (5)

Θ =
∂U
∂n

× n + Θth = −2Keff · Vc
(
mp · n

)(
mp × n

)
+ Θth (6)

2.2. Simulation Implementation & Framework

To solve the system of coupled stochastic differential formed by Equations (2)–(6), the
Stratonovich–Heun scheme is applied. Further details on the step-by-step implementation
are found in previous publications [31,34]. The general open-access Python source code is
available as referenced in the Data Availability Statement.

The damping parameter α was set to unity [35]. A total of 1000 particles formed a
simulation ensemble. Each particle was initialized with randomized direction of magneti-
zation and easy axes. The MNP were then thermalized for 1/5 of the total number of time
steps, N, before the AMF was applied. The number of time steps was set to N = 75, 000,
equaling a time step size of approx. 10 ns. Each individually simulated ensemble was
allowed to evolve under the AFM for the duration of two full cycles of the (lower) drive
frequency, f 2, to capture the dynamic magnetization effects. The final magnetization of one
simulation run was averaged over a series of five independently simulated ensembles to
achieve suitable compromise between statistical accuracy and required computation time.
Calculations were carried out on a PC cluster consisting of 2 × Intel Xeon 8168 CPUs with
2.7/3.7 GHz and 24 clusters each and 768 GB RAM at 2666 MHz.

2.3. Simulation Input: Key Parameters Varied

The above mathematical description of the magnetic relaxation process of MNP
(Equations (2)–(6)) directly allows to identify the key contributors to the FMMD signal
as follows:

1. The intrinsic physical properties of the MNP: the particle core size, dC, its size distri-
bution width, σdC , the effective anisotropy constant, Keff, as well as the hydrodynamic
size, dH .

2. The external influences the applied field parameters of the AFM: the excitation fre-
quency, f1, and the drive field amplitude, H2. Note that the drive frequency, f2 = 2
kHz, and excitation field amplitude, H1 = 1.2 mT/µ0, are expected to contribute much
less to the FMMD signal generation as they are at least one order of magnitude lower
than their respective counterparts [36]; therefore, they are fixed for all simulations.

We varied the above-mentioned parameters over the ranges listed in Table 1, reproduc-
ing experimentally reasonable ranges for each specific parameter: e.g., core sizes between
dC = 10 nm and 30 nm with hydrodynamic sizes of up to 200 nm are easily and repro-
ducibly synthesized [37,38] and of main interest for more established medical applications
of MPI and MFH [38–40]. The effective anisotropy values were varied widely below (e.g.,
5 kJ/m3 [41]) and above (e.g., up to 20 kJ/m3 [42]) bulk value (Keff,Fe3O4 = −11 kJ/m3 [43]),
as the exact value for nanostructured magnetite is still of ongoing discussion (see Discus-
sion Section 4.1 for details). The field parameters for H2 and f1 were chosen to match the
typical values of the experimental FMMD setups [44]. For each key contributing parameter
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not varied in a specific simulation run, we fixed the values to standard values commonly
used in our labs, i.e., MNP sizes of dC = 20 nm and dH = 130 nm, (representing Perimag®

available from Micromod Partikeltechnologie GmbH, Rostock, Germany). For effective
anisotropy, we chose the bulk value for magnetite. The size distribution width, however,
was chosen purposefully very low (but still realistic from synthesis [45]), σdc = 0.05, to
suppress overlapping effects of particle core size or, in other words, to allow a mostly
isolated key parameter variation. The reason is that the nonlinear response of the largest
particles is expected to strongly dominate the measured signal [24,28]; therefore, a wide
size distribution would obscure the response of small particles. Field parameters with
H2 = 16 mT/µ0 and f1 = 40 kHz were based on experimental performance of our custom-
build FMMD setup [44]. The following parameters are not varied and fixed at the following
values: the saturation magnetization for magnetite, MS = 476 kA/m [36], the viscosity
of the water, η = 0.89 mPa·s, and the operating temperature, T = 310 K (a typical value
for the temperature inside the measurement head due to resistive heating from the field
coils) [36].

Table 1. Key parameter settings and key parameters varied (bold face) for each simulation run.

Parameter dC [nm] σdC [--] dH [nm] Keff [kJ/m3] H2 [mT/µ0] f1 [kHz]

Core size dC [nm] 10, 12, . . ., 30 0.05 130 −11 16 40

Core-size
distribution

width σdC [--]
20 0.05, 0.1, . . ., 0.5 130 −11 16 40

Anisotropy
constant Keff

[kJ/m3]
20, 28 0.05, 0.3 130 −3, −5, . . . −25 16 40

Hydrodynamic
size dH [nm] 20 0.05 20, 35, . . ., 200 −11 16 40

Drive field
amplitude H2

[mT/µ0]
20 0.05 130 −11 2, 4, . . ., 20 40

Excitation
frequency f1

[kHz]
20 0.05 130 −11 16 16, 18, . . ., 48

Other parameters (fixed): Excitation field amplitude H1 = 1.2 mT/µ0; drive frequency f2 = 2 kHz; saturation
magnetization (bulk Fe3O4) MS = 476 kA/m; viscosity of the water η = 0.89 mPa·s, operating temperature
T = 310 K.

If a parameter is not varied during simulation, it is kept at the following representative
value: core size dC = 20 nm, core-size distribution width σdC = 0.05, hydrodynamic size
dH = 130 nm, effective anisotropy Keff = −11 kJ/m3, drive field amplitude H2 =16 mT/µ0
and excitation frequency f1 = 40 kHz, while excitation field amplitude H1 = 1.2 mT/µ0
and drive frequency f2 = 2 kHz are always kept constant (see Table 1).

Note that special attention was given to the variation of the effective anisotropy
constant, Keff, which was simulated for an additional value of dC = 28 nm besides the
standard value of dC = 20 nm and core-size distribution width σdC = 0.05 and 0.3 (see
also Table 1). These values were chosen to probe maximum impact of Keff-variation on the
FMMD signal. The rationale for this is given by the size-dependency of anisotropy, which
is further elaborated and discussed in Section 4.1

3. Results

In the following, we present the individual effects that each parameter variation has on
the FMMD signal intensities of the components at the mixing frequencies
f1 + n f2 (n = 1, 2, 3, 4) as a function of the static magnetic offset field in the range of
H0 = (0, 1, . . ., 24) mT/µ0. For convenient comparison, the (arbitrary) FMMD signal intensi-
ties (y-axis) are equally scaled for each intermodulation signal ( f1 + n f2), using the same
scaling for all the key parameters being varied.
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3.1. Dependency on Intrinsic Particle Properties: dC, σdC , Ke f f , dH

Figure 1 presents the core-size-dependent FMMD signal intensity as a function of
the static magnetic offset field H0 for particles of different core diameters in the range of
dC = (10, . . . , 30 ) nm. All four simulated frequency mixing components f1 + n f2 show a
steadily increasing signal intensity with increasing core size, in accordance with previous
works [30].
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Figure 1. Core-size (dC)-dependent FMMD signal intensity for mixing frequencies f1 + n · f2 with
n = 1, 2, 3, 4. All input parameters are set according to Table 1.

Particles below dC = 16 nm generate (almost) no signal, while a distinct peak is
noticeable in the mixing component f1 + f2 for dC = 18 nm, which becomes gradually
narrower and more pronounced for larger core sizes. The peak is asymmetrical with a steep
right-hand shoulder, which is becoming steeper with increasing core size.

Figure 2 presents the core-size distribution width-dependent FMMD signal intensities
as a function of the static magnetic offset field H0 for different core-size distribution widths
σdC = (0.05, . . . , 0.50 ) for a mean core size of dC = 20 nm. Three effects are observed,
steadily increasing for increasing distribution width σ:

First, the peak intensities of the mixing terms f1 + f2 and f1 + 2 f 2 increase slightly.
Second, the peak width decreases slightly, especially for higher values of static offset

field, H0, beyond the peak position. This leads to an increasingly asymmetric signal peak,
with a steeper right flank.

And third, the signal intensities overall show more fluctuations, i.e., a less smooth
signal profile. All these effects are attributed to the influence of larger-than-mean core sizes
dC > 20 nm that dominate the signal intensity (see Section 4.1 for detailed discussion).
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Figure 2. Core-size distribution width (σdC)-dependent FMMD signal intensity for mixing frequencies
f1 + n · f2 with n = 1, 2, 3, 4. All input parameters are set according to Table 1.

Figure 3 presents the FMMD signal intensity as a function of the static magnetic offset
field H0 for different effective anisotropy constants Keff = (−3, −5, . . ., −25) kJ/m3 and
for certain combinations of core-size distribution parameters, including dC = (20, 28) nm
and σdC = (0.05, 0.3). It demonstrates a slight decrease in FMMD signal peak intensity for
low Keff-values for mid-size particles, dC = 20 nm. This dependency is more pronounced
for narrow size distributions, σdC = 0.05 (Figure 3a, up to −9 kJ/m3) than for wide ones,
σdC = 0.3 (Figure 3c, up to −5 kJ/m3).

The Impact of effective anisotropy on FMMD signal generation is more prominent for
large particles, dC = 28 nm, which generate up toapprox. 50% higher peak signal intensities
in direct comparison to dC = 20 nm. For these larger particles, a distinct decrease of up
toapprox. 25% is observed for wider size distributions, σdC = 0.3 for Keff-values below
−7 kJ/m3 as well as above −19 kJ/m3. (Figure 3d). The same trend is equally noticeable
but slightly less strong (up to approx. 20%) for narrow size distributions, σdC = 0.05
(Figure 3b). This observation is further elaborated and discussed in Section 4.1.

Figure 4 presents the offset-field-dependent FMMD signal intensity for different
hydrodynamic size of the particles in the range of dH = (20, . . . , 200) nm. Across this
range of dH-values, there is no remarkable change detected in the FMMD signal intensity
profiles of all four intermodulation signals ( f1 + n f2). Thus, the FMMD signal generation
is considered independent of the hydrodynamic size in this range.
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Sensors 2024, 24, 1945 8 of 17

3.2. Dependency on External Applied Field Parameters: H2, f1

Figure 5 presents the drive-offset-field-dependent FMMD signal intensity for different
drive field amplitudes in the range of H2 = (2, . . . , 20) mT/µ0. Two general observations
are made:
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Figure 5. Drive-field-dependent (H2) FMMD signal intensity for mixing frequencies f1 + n · f2 with
n = 1, 2, 3, 4. All input parameters are set according to Table 1.

First, the FMMD signal peak intensity increases between H2 = (2, . . . , 10) mT/µ0
and remains steady for H2 > 10 mT/µ0 in case of the f1 + f2 component, and increases
slightly across the entire range of H2-values for the other three intermodulation signals
with f1 + n f2, n > 1, respectively.

Second, with increasing H2-value, the positions of the (local) intensity extrema and
of the zero crossing(s) of mixing terms ( f1 + n f2, n > 1) both shift continuously towards
larger offset fields, H0. For further discussion, see Section 4.2 below.

Figure 6 presents the excitation-field high-frequency-dependent FMMD signal in-
tensity in the range of f1 = (16, . . . , 48) kHz. Across this range of excitation frequency
values, there is no remarkable change detected in the FMMD signal intensity profiles of all
four intermodulation signals ( f1 + n f2). Thus, the FMMD signal generation is considered
independent of the excitation frequency in this range.
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with n = 1, 2, 3, 4. All input parameters are set according to Table 1.

3.3. Summary of Effects of Key Parameters

The effects on the FMMD signal generation in dependence of the isolated key parame-
ter variation are listed in Table 2 below. It compares the influence on peak signal intensity
value, the peak width and the shape of the intensity profile across all key parameters
varied qualitatively.

Table 2. Qualitative comparison of the dependency on FMMD signal generation on the key parameter
varied. The (suspected) dominating effect across all six key parameters is marked in bold (see
Discussion Section 4 for details).

Parameter ↓ | Effect → Peak Intensity Peak Width Shape of Profile

Core size dC [nm] Strong Strong Moderate

Core-size distribution width σdC [--] Weak Moderate None

Anisotropy constant Keff [kJ/m3] Moderate None None

Hydrodynamic size dH [nm] None None None

Drive field amplitude H2 [mT/µ0] Moderate None Strong

Excitation frequency f1 [kHz] None None None

4. Discussion

Overall, the results of isolated parameter variation of the key contributing parameters
delineate the dominating effect of MNP core size (dC) to FMMD signal generation (see
Table 2). The results will be discussed in detail, following the organization of Section 3: In
Section 4.1, we study them from the perspective of the intrinsic physical properties of MNP,
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and in Section 4.2, we examine the dependence on the external field parameters, and in
Section 4.3, limitations and possible improvements of our simulation method are given.

4.1. FMMD Dependency on Intrinsic Particle Properties: dC, σdC , Ke f f , dH

The strong and dominating dependency of FMMD signal generation on the MNP core
size (Figure 1) is in accordance with the results of the well-established single-frequency
excitation technique of MPI [46–48] and MFH [28,49,50]: all these studies generally agree on
an optimal MNP core size for relaxation-dependent applications with f ∼ (10 − 100) kHz
to be in the twenties of nanometers, around ∼ 25 nm (the exact value may vary due to the
specific MNP properties and excitation setup characteristics).

In stark contrast, the hydrodynamic size showed no impact on the FMMD signal
generation (compare to Figure 4), even though it is considered in the GT expression directly
at the power of three (compare to Equations (3) and (4)). However, Brownian relaxation
(GT) processes have been argued to be mostly relevant for (a) non-interacting, monodis-
perse MNP above dC = 20 nm at frequencies of f ∼ 1 kHz [51] or (b) large particles,
especially agglomerates of sizes above several hundreds of nanometers at frequencies of
f ∼ 100 kHz [52,53]. Therefore, as for all simulations f1 ≫ 1 kHz and non-interacting,

(nearly) monodisperse (σdC = 0.05) particle distributions hold, argumentation (a) confirms
the independence of dH for FMMD signal intensity generation. For future studies, a more
complex address of the dH-dependence by including agglomeration and/or interaction
effects will be discussed as limitations in Section 4.3.

However, all studies mentioned above also address the complex nature of the inter-
play of (core) size distribution and magnetic anisotropy for predicting the ideal signal
generation constituents for any given situation. This will therefore be elaborated further in
the following.

As an increasing core size, dC, distinctively increases the FMMD signal intensity peak
(Figure 1), the slightly increased signal intensity peak for increasing core-size distribution
width, σdC , (Figure 2 for dC = 20 nm) can be explained as follows: as σdC increases,
larger as well as smaller particle sizes are introduced in the ensemble of MNP. While the
smaller particles (dC ≪ 20 nm) are not adding signal contribution (see Figure 1), the larger
particles above dC = 20 are dominating the signal. This causes both the increase in peak
intensity as well as the gradual narrowing of the peak width; however, this effect is less
pronounced than in the isolated core-size variation (Figure 1), since the larger particles
are not numerous (note that the ensemble is limited to 1000 particles per simulation run,
Section 2.2). This knowledge is of practical relevance, since we were able to predict the
core-size distribution of a real system of MNP from experimentally measured FMMD
signals using the presented simulation framework recently [30]. However, the nature of
magnetic anisotropy contributions remains unknown until now. Yet, the present work
with its isolated parameter variations allows us to take these contributions into account
systematically as follows.

The impact of varying Keff is stronger for large-sized MNP. Specifically, the signal
intensity is up to ∼ 50% larger for dC = 28 nm compared to dC = 20 nm (compare to
Figure 3a–d). When varying Keff values between (−3, . . . , −25) kJ/m3, we found for the
strongest impact at dC = 28 nm with a maximum decrease in signal intensity of up to 20%
and 25% for σdC = 0.05 and σdC = 0.3, respectively (Figure 3b,d). To further analyze the
competition between dC and Keff in FMMD signal generation, we compare the maximum
(peak) signal intensity values of the first intermodulation signals ( f1 + f2) for each Keff-
value that was simulated (extracted from Figure 3) for two different core sizes (dC = 20 nm
& 28 nm) and size distributions (σdC =0.05 & 0.3), see Figure 7. From direct comparison of
dC = 20 nm vs. dC = 28 nm (Figure 7a), one sees the larger particles at approx. (80–100)%
while the mid-size particles are almost constant around approx. 50%. This demonstrates
that the size-dependency of FMMD signal generation is clearly dominating the effect of
Keff. Furthermore, the strongest signal for dC = 28 nm is observed for Kmax

eff = −15 kJ/m3,
similarly for both size distribution widths (Figure 7b, peaking at 100% for σdC = 0.3 and
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98.3% for σdC = 0.05). Also, at the extremal values in the variation range (Keff < −5 kJ/m3

and Keff > −20 kJ/m3), a decrease by > 10% is found, as already observed in Section 3.1.
For dC = 20 nm, the maximum signal intensity is generally less dependent on Keff, but
nevertheless does peak at Kmax

eff = −21 kJ/m3 in case of both size distribution widths
(Figure 7c, peaking at 54.0% for σdC = 0.3 and 49.4% for σdC = 0.05).
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Figure 7. Comparison of maximum (peak) signal intensity values for the first intermodulation signal,
f1 + f2, with respect to the effective anisotropy constant. (a) given for dC = 20 nm (open symbols)
and 28 nm (solid symbols) with σdC = 0.05 (solid light line) and σdC = 0.3 (dashed dark line) and
(b,c) showing a zoom for 28 nm and 20 nm, respectively. The magnetite bulk value is marked as a
red dotted line at Kbulk

eff,Fe3O4
= −11 kJ/m3. Values are extracted from Figure 3 and normalized to the

highest signal intensity (dC = 28 nm, σdC = 0.3, Keff = −15 kJ/m3).

Both effects (peak value and drop at extremal values) are slightly more pronounced
for larger size distribution widths, which is attributed to the dominating contribution from
larger-than-mean particles, as discussed in the beginning of this section.

It is insightful to further understand the size-dependent nature of the magnetic
anisotropy under a fundamental framework of anisotropy contributions: The magnetic
anisotropy of a solid may comprise up to four contributions: (bulk) magneto-crystalline
anisotropy (from periodic order in crystal lattice and spin-orbit interactions), KB, shape
anisotropy (from stray-field interactions at the surface of differently shaped bodies), Ksh,
stress anisotropy (from mechanical stress on crystal lattice), Kst, and surface anisotropy
(for nano-sized magnetic objects with a relatively large surface to volume ratio), KS [54,55].
While Ksh and Kst are usually negligible, surface anisotropy KS can noticeably enhance
magneto-crystalline bulk anisotropy, KB, for MNP in the range of dC ∼ 10 nm [56]. Then,
the effective anisotropy becomes core-size-dependent and can be described in first approxi-
mation for spherical MNP as [57]:

Keff(dC) = KB +
6

dC
· KS (7)

Here, both KB and KS are expected to be less than zero for magnetite. Equation (7)
has two important implications: (I) that (the amount of) effective anisotropy increases for
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smaller core size particles, and (II) that nanostructured objects (for which Equation (7)
holds) always have larger-than-bulk effective anisotropy values.

Assuming that maximum signal intensity is a key design criterion for MNP properties,
both assumptions can be applied to our study (compare to Figure 7): For both particle
core sizes at which Keff was varied (dC = 20 nm & dC = 28 nm), the optimal values read∣∣∣Kmax

eff,20nm

∣∣∣=∣∣∣−21 kJ/m3
∣∣∣>∣∣∣Kmax

eff,28nm

∣∣∣=∣∣∣−15 kJ/m3
∣∣∣> Kbulk

eff,Fe3O4
= −11 kJ/m3, complying

with implications (I) and (II). This agreement with Equation (7) confirms the dC-dependency
of the Keff-dependency in FMMD signal generation and shall be considered in future
investigations (see Section 4.3).

4.2. FMMD Dependency on External Applied Field Parameters: H2, f1

Besides optimizing the design rules of MNP applied for FMMD (as discussed in
Section 4.1), which are generally restricted by the practical limitations of particle synthesis,
the subsequent optimization step is the choice of excitation field parameters for these
particles as discussed here. The effect of drive field amplitude (H2) is also important for the
FMMD signal generation, since it governs the evolution of the characteristic shape of the
intermodulation signals profiles ( f1 + n f2) (compare to Section 3.2, especially Figure 5).

For even mixing harmonics ( f1 + n f2, n = 2, 4, . . .), the optimization of the excitation
field is simple since the maximum nonlinear response is obtained at zero offset field, H0 = 0.
The response signal increases with increasing drive field amplitude H2 until it starts to
saturate when it reaches the characteristic field [55]:

µ0H = kB · T
mp

, (8)

where T is the absolute Temperature, kB is Boltzmann’s constant and mp = Msd3
c /6 is the

saturation magnetic moment of a particle with core diameter dc and saturation magnetiza-
tion Ms. For odd mixing harmonics ( f1 + n f2, n = 1, 3, . . .), it is more complicated because
the optimum offset field H0 increases with increasing drive amplitude H2, as depicted in
Figure 5.

To elaborate the influence of H2 further, we extract the offset field values, H0, for which
the FMMD signal profiles show the following characteristics depending on the mixing
harmonics from Figure 5: the maximum (peak) intensity for f1 + f2, the minimum and
zero-crossing for f1 + 2 f2, the maximum and zero-crossing for f1 + 3 f 2 and the minimum
and zero-crossing for f1 + 4 f 2, summarized in Figure 8. As shown there, the offset field
values for both FMMD intensity profile maximum and minimum increase with increasing
the drive field H2. The same trend is observed for the zero crossing offset field amplitude.

A possible explanation could be that the stronger the drive field, the more small
particles contribute to the signal. As the characteristic points of the nonlinear magnetic
response regime of the small particles lie at larger fields, the maximum is shifted in that
direction, when reaching the characteristic field according to Equation (8). In addition,
the optimum excitation field vector (combining H0, H2) is expected to also depend on
the parameters of the lognormal core-size distribution, i.e., median core diameter d0 and
distribution width σ, lognormal as described in Section 4.1 above. In case of median
particle diameter dC = 20 nm and narrow distribution width σ = 0.05, the amplitude H2 of
the low-frequency drive field can be chosen according to the calculated optimum value
depicted in Figure 5. Larger drive field amplitudes H2 require larger offset fields H0, but
similar to the case of even harmonics, saturation is reached when the drive field approaches
the characteristic field. In combination with the result of Section 4.1 that large particles
dominate the FMMD signal, choosing large(r) particles of narrow size distribution can
also optimize the FMMD setup requirements, as lower fields are needed to generate a
contribution to the overall signal.
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the first mixing frequencies f1 + n f2; n = 1, 2, 3, 4. For higher mixing frequencies ( n = 3, 4) the
characteristics are indiscernible from Figure 5 for H2 = 2 mT/µ0.

The fact that the FMMD signal shows negligible excitation frequency ( f1) dependence
is attributed to the fact that for the given parameters (see Table 1), the resonance frequencies
of both Néel ( fN ∼ (100 − 1000) kHz) and Brownian relaxation (below 1 kHz) are well
above or below f 1 [40]. Therefore, the field-dependence of Néel [58] and Brownian [59]
relaxation influences the FMMD signal only weakly, as shown here for commonly used
FMMD field settings. This might change, if FMMD is applied for theranostics by combina-
tion with particle heating that requires higher frequencies of several hundred kilohertz, for
example, for application, the feasibility of which was recently demonstrated for MPI–MFH
combination [60,61]. This, however, is outside the scope of this paper.

4.3. Limitations and Potential Improvements of the Simulation Framework

The present study identifies key input parameters contributing to FMMD signal
generation from isolated parameter variation; however, the following limitations are faced,
which we will directly turn into potential improvements for future investigations:

(1) As identified in Section 4.1 (discussing the dH-dependence), the present simulation
framework does not consider particle agglomeration/clustering. However, it is
becoming more and more evident that agglomerations (or clusters) play a significant
role in MNP systems, either globally (non-directional) [62,63] or as a precondition
by purposeful alignment of MNP [64,65]. Recently, it has been demonstrated that
agglomeration in a similar simulation framework can be included [66]. However,
integration of agglomeration of MNP is indisputably linked to the consideration of
magnetic dipole–dipole interactions [67,68], as well as a (more) complex description
of the hydrodynamic size [52,69]. Even though the present framework is capable
of including magnetic dipole–dipole interactions [27,31], it is not yet sufficiently
optimized to be run time-efficiently, since the incorporation of such interactions
increases computation time exponentially [34].

(2) As identified in Section 4.2, the variation of core size, dC, cannot be separated apart
from that of effective anisotropy, Keff. Therefore, future investigations shall incorpo-
rate Equation (7) in the simulation framework to investigate the core-size dependency
of the anisotropy constant further.

5. Conclusions

In the present study, we studied the dependency of FMMD signal generation via
coupled Néel–Brownian dynamic relaxation simulations. We separately varied the four
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intrinsic particle properties, core size (dC), effective anisotropy (Keff), size distribution width
(σdC) and hydrodynamic size (dH), as well as the external field parameters of excitation
frequency ( f1) and drive field amplitude (H2). In summary, we found the following:

(1) Core-size effects are strongly dominating the FMMD signal generation, above all other
analyzed intrinsic particle properties. This is visible both directly in a steady increase
in FMMD signal intensity with increasing dC, as well as indirectly by increasing the
core-size distribution and thereby introducing dominating contributions from few
large particles.

(2) The effective anisotropy does have a remarkable effect of FMMD signal generation, but
is secondary to that of (larger) core sizes. However, there is evidence that the effective
anisotropy itself is core-size-dependent, such that Keff is increasing for smaller sized
particles, as summarized in Figure 7.

(3) The drive field amplitude is dominating the shape of the FMMD signal profile. For
given magnetic particle ensembles, in case of even mixing terms f1 + 2 f2,
f1 + 4 f2, . . ., the offset field should be zero, and the drive field amplitude should be
turned up to the characteristic field of the ensemble. In case of odd terms f1 + f2,
f1 + 3 f2, . . ., the combination of drive field amplitude and static offset field value
needs to be optimized, as summarized in Figure 8.

(4) The hydrodynamic size, as well as the excitation frequency, does not show any
noticeable effect on FMMD signal generation.

The implications from our simulative study can be conveniently used in MNP design
for FMMD tracers, as well as for FMMD setup design whenever optimal signal generation
abilities are desired. Combining findings (1) and (3) from the above strongly suggests
choosing large(r) particles of dC > 25 nm with narrow size distributions ( σ < 0.1) to
attain optimal signal intensities at comparatively low drive fields. Future studies with
this simulation framework will focus on combining the yet isolated parameter variation
(as performed here) to an ideally unified description of MNP properties. Concretely,
this means integrating core-size-dependent effective anisotropy and magnetic dipole–
sdipole interactions.
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