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Abstract: Accurate paranasal sinus segmentation is essential for reducing surgical complications
through surgical guidance systems. This study introduces a multiclass Convolutional Neural Network
(CNN) segmentation model by comparing four 3D U-Net variations—normal, residual, dense, and
residual-dense. Data normalization and training were conducted on a 40-patient test set (20 normal,
20 abnormal) using 5-fold cross-validation. The normal 3D U-Net demonstrated superior performance
with an F1 score of 84.29% on the normal test set and 79.32% on the abnormal set, exhibiting higher
true positive rates for the sphenoid and maxillary sinus in both sets. Despite effective segmentation
in clear sinuses, limitations were observed in mucosal inflammation. Nevertheless, the algorithm’s
enhanced segmentation of abnormal sinuses suggests potential clinical applications, with ongoing
refinements expected for broader utility.

Keywords: paranasal sinuses; chronic sinusitis; Convolutional Neural Network (CNN); multiclass
segmentation

1. Introduction

In 1994, around 200,000 sinus surgeries were conducted in the United States [1]. By
1996, 12 percent of Americans under the age of 45 reported symptoms indicative of chronic
sinusitis [2]. This widespread condition imposes a substantial societal burden, manifest-
ing in frequent office visits, absenteeism from work, and missed school days [1]. When
medicinal treatments fail to alleviate the condition, patients are often referred for sinus
surgery. Many physicians refer to Computed Tomography (CT) scans when evaluating pa-
tients referred for sinus surgery [1,3]. Radiologists report anatomic variants, that can affect
operative techniques, and critical variants, that can complicate surgery [4]. Identification
of these anatomical variants affords the opportunity to avoid surgical complications [5].
Segmentation data can be used for the diagnosis, surgical planning, or workspace defi-
nition of robot-assisted systems. However, manual and semiautomatic segmentation of
the paranasal sinuses has been evaluated as impractical in clinical settings because of the
amount of time required for both systems [6,7]. The application of machine learning in this
process warrants attention due to its potential to substantially mitigate the time and labor
costs associated with manual segmentation. Ultimately, this holds promise for making the
segmentation process feasible and practical in clinical settings.
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Artificial intelligence is gaining popularity in the medical imaging field for devel-
oping models that produce human-interpretable results [8–10]. Because of the clustered
arrangement of regions, including the frontal, ethmoid, and sphenoid sinuses, developing
models that can produce practical results for the paranasal sinuses is an ongoing chal-
lenge. Two published studies focused on processing cone-beam computed tomography
images to achieve segmentation of the maxillary sinus. In 2022, Choi et al. [11] trained
a U-Net model to segment maxillary sinuses. The segmented results were refined using
post-processing techniques to isolate and remove disconnected false positives. The trained
model made predictions with a Dice similarity coefficient (DSC) value of 0.90 ± 0.19 before
post-processing and 0.90 ± 0.19 after post-processing. Morgan et al. [12] trained two U-Net
models to segment the maxillary sinus. The first model suggested crop boxes in the original
image of the maxillary sinus, which were used to train the second part of the model to
produce high-resolution segmentation results. The final segmentation results achieved
a DSC score of 0.98 for the first model and 0.99 for the second model. Kuo et al. [13]
proposed a 6-class segmentation model that segmented four different areas of the paranasal
sinuses, treating the ethmoid sinus as two different areas: the anterior and posterior eth-
moid sinus. A secondary model was trained to generate pseudo-labels on the unlabeled
datasets. The model used in this study was an adaptation of the U-Net model [14] with
the addition of depth-wise separable convolution, squeeze-and-excitation networks, and
residual connections. The model was able to make predictions with a DSC value of 0.90.
The approaches proposed by Choi et al. [11] and Morgan et al. [12] exhibited performance
adequate for clinical applications. However, the aim of both studies was limited to the
binary segmentation of the maxillary sinus.

We proposed a 5-class segmentation model for the four regions of the paranasal
sinus: frontal sinus, ethmoid sinus, sphenoid sinus, and maxillary sinus. Training and
validation were conducted on clinical-level CT scans sourced from patients exhibiting
high degrees of genetic and biological variations. The objective was to develop a model
capable of generating clinical data with sufficient accuracy to be practically applicable in
clinical settings.

2. Materials and Methods

This study was approved by the Institutional Review Board (IRB) of Gachon University
Gil Medical Center (GAIRB2022-182) and was conducted in accordance with the relevant
guidelines and ethical regulations.

A total of 39,605 paranasal CT scans were collected from 201 patients with varying de-
grees of chronic sinusitis, including 3821 images from 20 patients without sinusitis. A total
of 40 datasets were randomly selected as the hold-out test set, with 20 datasets originating
from the patient group without sinusitis. These subsets were then labeled as “normal” and
“abnormal” to reflect the respective patient group characteristics. Training was performed
on the remaining 161 datasets with 5-fold cross validation, where 128 datasets were used
for training and 33 for validation. In summary, the dataset was divided into sets comprising
128 patients for training, 33 patients for validation, and 40 patients for testing. Demographic
information of the participating patients is summarized in Table 1.

Table 1. Patient distribution by age group and gender.

Age Group Male Gender Ratio Female Gender Ratio Total Ratio by Age

10–20 6 40.00% 9 60.00% 15 7.58%

20–30 15 68.18% 7 31.82% 22 11.11%

30–40 21 84.00% 4 16.00% 25 12.63%

40–50 14 63.64% 8 36.36% 22 11.11%

50–60 34 62.96% 20 37.04% 54 27.27%
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Table 1. Cont.

Age Group Male Gender Ratio Female Gender Ratio Total Ratio by Age

60–70 32 71.11% 13 28.89% 45 22.73%

70–80 8 72.73% 3 27.27% 11 5.56%

80– 2 50.00% 2 50.00% 4 2.02%

Total 132 66.67% 66 33.33% 198 100%

Data collection and storage were performed using Excel (version 16.83, Microsoft,
Redmond, WA, USA) and statistical analyses were performed using MedCalc (version 22,
MedCalc Software Ltd., Ostend, Belgium). Training was performed on an Ubuntu server
(version 20.04.6 LTS) with four Nvidia A100 80Gb GPUs (NVIDIA, Santa Clara, CA, USA),
an AMD EPYC 7452 32-Core Processor (AMD, Santa Clara, CA, USA), and 1,031,900 Mb
of RAM. The following libraries were used for training: Python (version 3.7), TensorFlow
(version 2.6.0), and Keras (version 2.6.0).

Using the collected sinus data, we meticulously curated a ground truth dataset by
labeling the sinus region for each patient. The oversight and guidance of two experienced
otorhinolaryngologists was integral to this process, ensuring the utmost quality and accu-
racy of the dataset. The final ground truth data were congregated through a consensus
between the two physicians. The ground truth was labeled along the axial, sagittal, and
coronal axes, as visually depicted in Figure 1. The volumetric reconstruction (Figure 1d)
presents the data in its authentic form, providing insight into how it is inputted into the
deep learning model. The axial view (Figure 1a) shows the maxillary and sphenoid si-
nuses beneath the ethmoid sinuses. The sagittal view (Figure 1b) shows the left maxillary
sinus and part of the sphenoid sinus. The coronal view (Figure 1c) shows the frontal and
maxillary sinuses surrounding the ocular area.
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Figure 1. CT image of the paranasal sinuses with ground truth data overlayed. (a) Axial view,
(b) sagittal view, (c) coronal view, and (d) volumetric reconstruction.

To facilitate the extraction of features within the CT scans, the datasets underwent
several enhancements (Figure 2A), including window setting adjustments, isotropic voxel
reconstruction, contrast-limited adaptive histogram equalization (CLAHE), and region of
interest (ROI) cropping. The preprocessed images were used to train the segmentation
model (Figure 2B) to produce segmentation results (Figure 2C). The overall training process
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is presented in Figure 2. A bone window with a width of 2,000 and a level of 0 was set and
converted into 8-bit encoding. This setting has been established as the imaging technique
of choice for examining patients before functional endoscopic sinus surgery [15,16].
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Figure 2. Flowchart of the multiclass sinus segmentation training process.

Depending on the acquisition process, CT images can have varying slice thickness
and pixel spacing within the protocol range [17,18]. The acquired images exhibited a
consistent 1 mm slice thickness but varying pixel spacings, resulting in the disproportionate
volumetric ratio of planar CT images. To eliminate unwanted ratio variations among
the dataset, an isotropic voxel reconstruction algorithm was applied across the dataset to
equalize the slice thickness to pixel spacing ratio. The ratio of slice thickness to pixel spacing
was calculated to downsample the images accordingly using cubic spline interpolation [19]
such that the volumetry of the resized images matched real proportions.

Adaptive histogram algorithms are commonly used in medical imaging to create
images with equal intensity levels, thereby generating an image with an increased dynamic
range, leading to an increase in contrast [20,21]. CLAHE [22,23] was employed in this study
to restrict amplification and prevent overamplification of noise in areas with relatively
homogeneous contrast.

To equalize the image dimensions for training, a cropping algorithm was used to crop
images based on the region of interest. To guarantee the comprehensive inclusion of the
region of interest, specific dimensions were set, with a target depth of 192, a height of 128,
and a width of 128. The dimensions were chosen based on an analysis of the ground truth
data in the entire dataset. The algorithm used in the analysis calculated the 3-dimensional
coordinates of the edges for the largest ground truth data. As the voxel reconstruction
algorithm resized the CT scans in accordance with the actual proportions of the paranasal
sinuses, a greater amount of ground truth data became available along the depth axis.

The U-Net architecture is commonly used for medical image segmentation models
because of its reliable performance on medical images [24–26]. Furthermore, its utilization
of depth-wise 3D convolution operations allows for the simultaneous extraction of features
along the 3 axes: axial, sagittal, and coronal. Three variants of the 3D U-Net architecture,
each deeper than the last, were trained and compared: 3D U-Net with residual connec-
tions [27], 3D U-Net with dense blocks [28], and 3D U-Net with dense blocks and residual
connections [29]. The 3D U-Net architecture, which served as the basis for constructing our
model, is presented in Figure 3.
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Figure 3. Architecture of the 3D U-Net.

The 3D U-Net used in this study comprised 18 convolutional layers with 5,644,981 train-
able parameters. The residual 3D U-Net comprised 63 convolutional layers and
2,350,989 trainable parameters. The dense 3D U-Net comprised 28 convolutional layers and
10,960,437 trainable parameters. The residual dense 3D U-Net comprised 34 convolutional
layers and 47,078,117 trainable parameters. A summary of the parameter and layer
counts for each model is provided in Table 2, along with the kernel-wise feature map
details summarized in Table 3. All models were trained on the same hyperparameters.
The Adam [30] optimizer was used with an initial learning rate of 0.0001. Categorical
cross-entropy loss was used to monitor validation loss, and accuracy was used as the
evaluation metric. Learning rates on plateaus, early stoppers, and model checkpoints
were used to prevent issues such as overfitting and plateauing. The tolerance for learning
rate reduction was configured to 20 epochs, while the early stopper tolerance was set at
30 epochs.

Table 2. Parameter and layer count by model.

3D U-Net Residual Dense Residual-Dense

Count Parameter Layer Parameter Layer Parameter Layer Parameter Layer

block 1 7376 4 4456 13 42,352 10 84,480 17

block 2 41,536 4 19,840 13 125,088 9 388,416 17

block 3 166,016 4 78,592 13 499,008 9 1,550,976 17

block 4 663,808 4 312,832 13 1,993,344 9 6,198,528 17

block 5 2,654,720 3 1,248,256 12 2,657,664 8 24,783,360 16

block 6 1,589,632 4 517,632 13 4,117,504 9 10,622,208 18

block 7 397,504 4 129,792 13 1,063,424 9 2,656,896 18

block 8 99,424 4 32,640 13 266,496 9 664,896 18

block 9 24,880 4 8256 13 73,872 9 138,624 18

Output 85 1 165 1 85 1 4325 1

Total 5,644,981 36 2,352,461 117 10,838,837 82 47,092,709 157
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Table 3. Layer-by-layer kernel-wise details of each model. The 3D U-Net and dense 3D U-Net models
share feature map details, while the residual 3D U-Net and residual-dense 3D U-Net models also
share feature map details.

3D U-Net/Dense 3D U-Net Residual 3D U-Net/Residual-Dense 3D U-Net

Name Feat Maps (Input) Feat Maps (Output) Feat Maps (Input) Feat Maps (Output)

Encoding path

conv3d_block_1 192 × 128 × 128 × 1 192 × 128 × 128 × 16 192 × 128 × 128 × 1 192 × 128 × 128 × 32
maxpool3d_1 192 × 128 × 128 × 16 96 × 64 × 64 × 16 192 × 128 × 128 × 32 96 × 64 × 64 × 32
conv3d_block_2 96 × 64 × 64 × 16 96 × 64 × 64 × 32 96 × 64 × 64 × 32 96 × 64 × 64 × 64
maxpool3d_2 96 × 64 × 64 × 32 48 × 32 × 32 × 32 96 × 64 × 64 × 64 48 × 32 × 32 × 64
conv3d_block_3 48 × 32 × 32 × 32 48 × 32 × 32 × 64 48 × 32 × 32 × 64 48 × 32 × 32 × 128
maxpool3d_3 48 × 32 × 32 × 64 24 × 16 × 16 × 64 48 × 32 × 32 × 128 24 × 16 × 16 × 128
conv3d_block_4 24 × 16 × 16 × 64 24 × 16 × 16 × 128 24 × 16 × 16 × 128 24 × 16 × 16 × 256
maxpool3d_4 24 × 16 × 16 × 128 12 × 8 × 8 × 128 24 × 16 × 16 × 256 12 × 8 × 8 × 256

Bridge 12 × 8 × 8 × 128 12 × 8 × 8 × 256 12 × 8 × 8 × 256 12 × 8 × 8 × 512

Decoding path

conv3d_trans_1 12 × 8 × 8 × 256 24 × 16 × 16 × 128 12 × 8 × 8 × 512 24 × 16 × 16 × 256
conv3d_block_5 24 × 16 × 16 × 128 24 × 16 × 16 × 128 24 × 16 × 16 × 256 24 × 16 × 16 × 256
conv3d_trans_2 24 × 16 × 16 × 128 48 × 32 × 32 × 64 24 × 16 × 16 × 256 48 × 32 × 32 × 128
conv3d_block_6 48 × 32 × 32 × 64 48 × 32 × 32 × 64 48 × 32 × 32 × 128 48 × 32 × 32 × 128
conv3d_trans_3 48 × 32 × 32 × 64 96 × 64 × 64 × 32 48 × 32 × 32 × 128 96 × 64 × 64 × 64
conv3d_block_7 96 × 64 × 64 × 32 96 × 64 × 64 × 32 96 × 64 × 64 × 64 96 × 64 × 64 × 64
conv3d_trans_4 96 × 64 × 64 × 32 192 × 128 × 128 × 16 96 × 64 × 64 × 64 192 × 128 × 128 × 32
conv3d_block_8 192 × 128 × 128 × 16 192 × 128 × 128 × 5 192 × 128 × 128 × 32 192 × 128 × 128 × 5

3. Results

Each model was tested against the hold-out test set to generate segmentation results.
The segmentation results were evaluated using the following five performance metrics:
intersection over union (IoU), accuracy, recall, precision, and F1 score. The results are
expressed as the mean ± 95% confidence interval, with statistical significance set at p < 0.05.

The segmentation results from the normal test set were evaluated using the per-
formance metrics and summarized in Table 4. Overall, the models were able to make
predictions with an F1 score in the range of 0.843–0.785, of which the 3D U-Net model
achieved the highest F1 score with a value of 0.843. Conversely, the residual 3D U-Net
model recorded the lowest F1 score, standing at 0.785.

Table 4. Prediction results obtained on the normal test set, reported in performance metrics per model.

Metrics Base Residual Dense Residual-Dense

F1 score 0.843 ± 0.699 0.785 ± 0.066 0.790 ± 0.073 0.802 ± 0.093

Accuracy 0.995 ± 0.003 0.992 ± 0.001 0.993 ± 0.002 0.993 ± 0.003

Precision 0.857 ± 0.056 0.789 ± 0.059 0.801 ± 0.060 0.822 ± 0.073

Recall 0.854 ± 0.064 0.821 ± 0.060 0.822 ± 0.068 0.836 ± 0.078

Mean IoU 0.787 ± 0.071 0.703 ± 0.067 0.714 ± 0.074 0.742 ± 0.092

The segmentation results from the abnormal test set are summarized in Table 5. In
the abnormal test set, the segmentation results were evaluated to record a lower overall F1
score in the range of 0.793–0.740. The 3D U-Net model made predictions with the highest
F1 score of 0.793, whereas the predictions made by the residual-dense 3D U-Net model
recorded the lowest F1 score of 0.741.

A comparative plot of IoU values across the models in the normal and abnormal test
set is presented in Figure 4. The average IoU difference across the models was 0.082 ± 0.034
(mean ± 95% confidence interval). Paired t-tests of the IoU across the models showed
statistically insignificant differences in IoU values between the four models (p < 0.05). The
average F1 score difference, encompassing both test sets, between the 3D U-Net and the
other three models were as follows: 0.067 ± 0.016 for the residual model, 0.069 ± 0.028
for the dense model, and 0.082 ± 0.037 for the residual-dense 3D U-Net. Paired t-tests
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of the F1 scores between the models showed statistically insignificant F1 score variation
across the models (p < 0.05). The average differences in F1 scores between the two test
sets (normal and abnormal) were as follows: 0.170 ± 0.067 for the 3D U-Net, 0.188 ± 0.064
for the residual 3D U-Net, 0.206 ± 0.072 for the dense 3D U-Net, and 0.257 ± 0.099 for
the residual-dense 3D U-Net. Statistical analysis using paired t-tests showed a statistically
significant difference in the F1 scores between the normal and abnormal test sets (p > 0.05).

Table 5. Prediction results obtained on the abnormal test set, reported in performance metrics per model.

Metrics Base Residual Dense Residual-Dense

F1 score 0.793 ± 0.063 0.741 ± 0.069 0.747 ± 0.074 0.740 ± 0.095

Accuracy 0.994 ± 0.002 0.991 ± 0.002 0.992 ± 0.002 0.991 ± 0.003

Precision 0.839 ± 0.057 0.779 ± 0.067 0.785 ± 0.071 0.793 ± 0.089

Recall 0.785 ± 0.067 0.755 ± 0.076 0.756 ± 0.068 0.745 ± 0.092

Mean IoU 0.717 ± 0.061 0.653 ± 0.063 0.666 ± 0.074 0.670 ± 0.089
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Visual overviews of the segmentation results for the normal and abnormal test sets
are shown in Figures 5 and 6, respectively. The figures show the segmentation results for
the ethmoid sinus, maxillary sinus, and sphenoid sinus; each area is color-coded for better
visual representation. The images were chosen randomly from the fold with the best mIoU
score. Each row represents predictions from different models. From left to right, the three
columns represent the ground truth, prediction, and overlay comparison of the ground
truth and prediction.
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Normalized true positive (TP) distribution per class as a heatmap for the 3D U-Net is
shown in Figure 6. For the normal dataset, the sphenoid sinus showed the highest TP rate
of 0.95, whereas the ethmoid sinus showed the lowest at 0.82. For the abnormal dataset,
the sphenoid sinus reported the highest TP rate at 0.88, and the lowest for the frontal sinus
at 0.67.
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4. Discussion

In this study, a 3D segmentation model for the four areas of the paranasal sinus based
on CT images was developed and evaluated. Four models based on the 3D U-Net were
trained and evaluated on a hold-out test set of 40 datasets, comprising 20 datasets from
patients without sinusitis and 20 datasets from patients with sinusitis. Prediction results
were further validated using 5-fold cross validation. In the normal test set, the models
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showed performances in the range of 0.843–0.785 with an average F1 score of 0.805. In the
abnormal test set, the models performed in the range of 0.793–0.740 with an average F1 score
of 0.755. In both test sets, the base 3D U-Net was able to make predictions with the highest
F1 score of 0.843, and 0.793, respectively, in the normal test set and the abnormal test set.
Statistical analysis of performance metrics was performed across the four models between
normal and abnormal test sets with statistical significance set at p = 0.05. Performance
metrics across the models exhibited statistically insignificant variations. However, mucosal
inflammation had a greater impact on the performance metrics across the models.

The method proposed by Choi et al. [11] reported an F1 score of 0.972 in normal sinuses
and 0.912 in sinuses with mucosal inflammation. Morgan et al. [12] reported an F1 score
of 0.984 and 0.996, respectively, for normal and abnormal sinuses. Note that these studies
were limited to binary segmentation of the maxillary sinus, manifesting in the higher F1
score. The study by Kuo et al. [13] trained multiple models with the aim of multi-class
segmentation of the sinus, in which the U-Net model reported an average F1 score of 0.896.
This is within 6.2% of the highest performing model in our study, the base 3D U-Net.

We performed a thorough analysis of prediction accuracy for the 3D U-Net model
across the four main sinus regions, focusing on true positive rates. The outcomes un-
derscored notable limitations in the precise prediction of the frontal and ethmoid sinus
regions. The abnormal test set showed lower prediction metrics, overall, in comparison to
the normal test set. The frontal and ethmoid sinuses showed particularly lower TP rates
in the abnormal test set, at 0.67 and 0.75, respectively. The frontal and ethmoid sinuses
are anatomically adjacent structures, and both have smaller volumes than the sphenoid
and maxillary sinuses [31]. In sinus cavities with mucosal inflammation, the cavities of the
ethmoid and frontal sinuses had much less pronounced features compared to other areas
of the paranasal sinuses. This limitation is evident in Figure 7 of the right ethmoid sinus,
where the contrast between the sinus bone and cavity appears less pronounced compared
to the left ethmoid sinus.
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Despite the substantial size of the dataset collected for this study, the clinical nature
of the CT scans led to an uneven distribution of data between patients with sinusitis
and those without the condition. Moreover, training data was obtained solely from a
single institution, suggesting the possibility that the trained models could exhibit limited
generalization capabilities on external datasets. A comprehensive follow-up study should
encompass a well-balanced dataset, including an equal distribution of data from patients
with sinusitis and those without the condition. It would be advantageous to source this
data from multiple institutes to enable internal and external validations.

Accurate segmentation of the paranasal sinuses is crucial for the preoperative eval-
uation of patients undergoing sinus surgery. To this end, this study aimed to evaluate
the segmentation efficacy in patients with mucosal inflammation. While limitations do
exist in the segmentation of paranasal sinuses with mucosal inflammation, the proposed
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method exhibited promising results. With minor refinements, our segmentation model has
the potential to enhance surgical accuracy when integrated into guidance systems. Such
integration can aid surgeons in avoiding healthy mucosal tissue, thereby reducing the risk
of complications.
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28. Kolařík, M.; Burget, R.; Uher, V.; Dutta, M.K. 3D Dense-U-Net for MRI Brain Tissue Segmentation. In Proceedings of the 2018 41st
International Conference on Telecommunications and Signal Processing (TSP), Athens, Greece, 4–6 July 2018; pp. 1–4.

29. Sarica, B.; Seker, D.Z.; Bayram, B. A Dense Residual U-Net for Multiple Sclerosis Lesions Segmentation from Multi-Sequence 3D
MR Images. Int. J. Med. Inform. 2023, 170, 104965. [CrossRef] [PubMed]

30. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
31. Mynatt, R.G.; Sindwani, R. Surgical Anatomy of the Paranasal Sinuses. In Rhinology and Facial Plastic Surgery; Springer:

Berlin/Heidelberg, Germany, 2009; pp. 13–33.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/BF00344487
https://doi.org/10.1002/acm2.13207
https://doi.org/10.1109/5289.911175
https://doi.org/10.1016/j.procs.2019.12.112
https://doi.org/10.1016/j.compbiomed.2021.104319
https://www.ncbi.nlm.nih.gov/pubmed/33799220
https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1109/ACCESS.2021.3086020
https://doi.org/10.1016/j.ijmedinf.2022.104965
https://www.ncbi.nlm.nih.gov/pubmed/36580821

	Introduction 
	Materials and Methods 
	Results 
	Discussion 
	References

