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Institute of Computer Technologies and Informatics, Faculty of Natural Sciences,
University of Ss. Cyril and Methodius, J. Herdu 2, 917 01 Trnava, Slovakia; iveta.dirgova.luptakova@ucm.sk
* Correspondence: martin.kubovcik@ucm.sk (M.K.); jiri.pospichal@ucm.sk (J.P.)

Abstract: A transformer neural network is employed in the present study to predict Q-values in a
simulated environment using reinforcement learning techniques. The goal is to teach an agent to
navigate and excel in the Flappy Bird game, which became a popular model for control in machine
learning approaches. Unlike most top existing approaches that use the game’s rendered image as
input, our main contribution lies in using sensory input from LIDAR, which is represented by the
ray casting method. Specifically, we focus on understanding the temporal context of measurements
from a ray casting perspective and optimizing potentially risky behavior by considering the degree of
the approach to objects identified as obstacles. The agent learned to use the measurements from ray
casting to avoid collisions with obstacles. Our model substantially outperforms related approaches.
Going forward, we aim to apply this approach in real-world scenarios.

Keywords: reinforcement learning; motion sensors; ray casting; signal processing; time series
processing; transformer model; robotics; Flappy Bird game; agent control

1. Introduction

The autonomous control of robots using reinforcement learning (RL) has emerged as
one of the important topics in machine learning. The extensive use of deep neural network
technology has made it the most common choice for creating control systems that rely
on information collected from a robot’s operating environment. This paper focuses on
processing the collected data within a time framework and using motion information to
control the robot’s actions. The architecture used is the transformer model [1], which can
efficiently process long time series [2].

The popular computer game Flappy Bird created by Vietnamese programmer Dong
Nguyen [3] acts as the simulation environment here. The goal of the player, who controls a
simulated robot bird, is to fly continuously forward without a collision. The bird encounters
a succession of pairs of pipes obstructing its path, and they are suspended from the top
and protrude from the bottom of the game environment. A constant distance is maintained
between each pair of pipes, forming a gap through which the bird can fly. The vertical
position of this gap is randomly generated, introducing a dynamic element to the game.
The ever-changing environment demands that players adapt and quickly react. Gravity
pulls the bird downward, whereas the player’s actions push the bird upward. Horizontal
velocity remains constant. The game concludes instantly if the bird collides with either a
pipe or the ground.

There are several approaches to train players in Flappy Bird. One typical approach is
to use the image generated by the game [4], with various adaptations. Another modification
involves introducing an extra negative reward when the agent collides with the upper edge
of the game screen [5]. Further modifications are based on the creation of three training
difficulty levels, easy, medium, and hard [6], which are distinguished by the width of the
gap between pipes. The subsequent method involved a computer expert who extracted
key information from the pipes and the agent, which is then used to predict actions [7].
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In this paper, the player–bird is equipped with a simulated light detection and ranging
(LIDAR) sensor represented by the ray casting method to detect pipelines and ground. The
player can utilize time-series signal processing to maneuver around pipelines and avoid
collisions. The goal is to use motion data to navigate through obstacles, such as pipes and
the ground. In this model, a custom-built deep neural network, called here the “motion
transformer”, is employed for both time series and ray casting signal processing.

A similar approach to processing temporal components is used by [8–10]. However,
these papers primarily focus on processing human activity data while also incorporating
spatial components. All spatial measurements are interpreted as features. The transformer
model in the present study is only looking for time correlations and not for correlations
between the rays of the sensor.

The transformer model has already been used for action prediction, where it deter-
mines the next action based on the current state, previous actions, and rewards. However,
this model specifically uses a causal transformer, limiting information processing only to
one direction from the past to the future [11]. Another application utilizes the transformer
model in RL as the replacement of convolutional layers for feature extraction. This is the
case of the Swin Transformer model used for image processing [12]. It differs from the
present paper, which does not incorporate the entire game screen as part of its input. The
next application of the transformer model is in the temporal domain, but it only considers
using the last timestep for action prediction, while the remaining timesteps are only used
in the learning process to compute the model’s error. It also uses a causal transformer [13].

Additional strategies for enhancing time-series prediction involve utilizing the last
timestep, averaging features across timesteps, and determining the maximum value
across timesteps.

The vision transformer [14] uses the features from the last timestep for action pre-
diction, notably through its use of the class token. In the present paper, the last timestep
represents the final state of the game, eliminating the necessity for an additional class token
in the time series.

The average of the features across timesteps is used in the paper [15], and their
maximum value is reported in [16]. The final alternative involves merging features over
time, though this approach may result in a proliferation of inputs to the subsequent layer
and contribute to overfitting in the model [17].

In contrast to previous research on Flappy Bird, the present paper aims to use the
understanding of the temporal context from ray casting measurements. We employed the
transformer model to process historical state measurements, subsequently aggregating
these data in a judicious manner to forecast the current action of the agent. The sensor
simulated in our study has a more restricted field of view when compared to the methods
used in prior research [18]. Therefore, our model is designed to leverage its past knowledge
of obstacles within the environment for effective navigation. Unlike neural network models
that have been already applied to the Flappy Bird problem, our goal is to devise a method
that can effectively condense information transmitted over time. This will allow us to
express the qualities of actions for the current state of the agent and its corresponding
response. Consequently, our model is designed to predict a categorical distribution of
actions based on the current state of the agent, taking into account the agent’s previously
evaluated states. This approach allows the model to make informed decisions based on
both the current and past states of the agent.

The key contributions of this paper are as follows:

• Improved performance: Our transformer model with a distance sensor significantly
outperformed existing methods (an increase of over 50 times in both average and
maximum scores). This suggests that real robots equipped with similar sensors can
potentially achieve considerably higher accuracy when processing long sequences of
sensor data.
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• Sensor-focused learning: Unlike previous approaches, our agent solely relies on sensor
data (not on the full game image) to learn from past experiences, identify obstacles,
and navigate the environment. This suggests that focusing on relevant sensor data can
be an efficient strategy for controlling robots.

• Visualizing and tracking the temporal similarity of sensor data: This research intro-
duces a visualization technique to track similarities within sensor data sequences
during a transformer’s model training. This technique helps adjust the model to focus
on the crucial measurements that impact the game’s strategy and ultimate outcome, ef-
fectively discarding non-critical information. This approach was developed to reduce
training times and lower memory requirements for the agent.

• Real-world applicability: Our findings have the potential to be applied to real robots
operating in hazardous environments (comparable to the Flappy Bird simulation,
where the agent can crash). By incorporating a “private zone” concept and deep
learning guidance, robots could potentially navigate complex tasks while minimizing
collisions and extending their operational lifespan.

This paper is organized as follows. Section 2 provides a review of the core algorithmic
and computational approaches employed in this work. These include the dueling network
architecture for Q-learning, the motion transformer architecture, the DeepMind Reverb
database server used for machine learning, ray casting for obstacle detection, episodic
memory incorporated into the transformer’s input, and the private zone concept that aids
in obstacle avoidance. Section 3 details the optimization process for the chosen methods
and their hyperparameters. This section explores factors such as the number of timesteps
used, the feature reduction techniques applied, and the optimal size of the private zone. It
concludes with a crash analysis to assess the potential for enhancing the ultimate outcomes.
Section 4 discusses future applications of this method and explores promising ways to
improve it. Finally, Section 5 summarizes the key findings and conclusions presented
throughout the paper.

2. Materials and Methods

The transformer model is trained by the dueling deep Q network approach. To
achieve effective learning, we need to collect data on various paths explored within the
state space and share the updated characteristics of our computational model. This task is
facilitated by a specialized DeepMind Reverb database server. The state space only contains
measurements from ray casting. The measurements from ray casting therefore warrant
a dedicated exposition. Since the transformer is built on episodic memory, its usage in
the Flappy Bird problem is independently addressed. Finally, an innovative approach
involves the establishment of a private zone surrounding the agent to enhance its ability
to maintain a secure distance while navigating obstacles. The introduction of this concept
markedly improves performance throughout the learning process. A thorough analysis of
these methodologies will be conducted in subsequent sections.

2.1. Dueling Deep Q Network

The principle of dueling network architecture is to extract features from the state
space that are relevant for value function and advantage function prediction. The value
function expresses how advantageous the current state of an agent is for its policy. The
agent prioritizes traversing states that possess higher values. This strategy ensures the
maximization of the overall value function. In order to make an informed selection among
a multitude of potential actions, it is essential to ascertain the benefit associated with each
action. This is achieved through the utilization of an advantage function [19]. In the case of
a discrete action space, the probabilities of each action need to be expressed in the form of
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logits, which are predicted by a deep neural network model [20]. Logits represent Q-values,
which can be computed according to the following relation [21]:

Q(s, a) = V(s) + (A(s, a)− 1
|A|∑a′

A(s, a′)) (1)

Q(s, a) expresses the quality function for a given action a and in a given state s. V(s)
expresses the value function for a given state s. A(s, a) expresses the advantage function
for a given action a in a given state s. The average of the advantage function across actions
in a given state s is subtracted from the A(s, a) function. Therefore, the advantage action
has a zero mean [22].

The model is trained with the logarithmic hyperbolic cosine (LogCosh) error function,
which is less sensitive to outliers than the more conventional mean squared error (MSE)
function [23]. The error function of the model is expressed by the following:

L(θ) = E(s,a,r,s′)∼U (D)

[
LogCosh

(
yDQN −Q(s, a; θ)

)]
(2)

yDQN = r + γmax
a′

Q
(
s′, a′; θ−

)
(3)

U (D) represents the uniform sampling from the replay buffer D that contains trajecto-
ries. Q(s, a; θ) expresses the Q-value predicted by the model. The reward is symbolized
by r. a′ is the next action expressed by the maximum Q-value in the next state s′. θ− are
parameters of the exponential moving average (EMA) model [24].

2.2. Motion Transformer

The motion transformer architecture is based on the encoder block in the transformer
model [25]. The purpose of the encoder block is to traverse the input vector across the
timeline in both directions. In this way, it is possible to look for relationships in historical
data from past to future or from future to past and possibly associate them appropriately
with the last timestep. The last timestep represents the source of information in the classical
Markov decision process (MDP) [26]. A state vector representing the local memory of the
model is fed to the model’s input. The task of the model learning process is then to optimize
the global memory (parameters) of the model so that the state space is ideally transformed
into an action space. However, the output of the encoder block again represents a sequence;
i.e., for each timestep, it predicts a set of extracted features from the input vector. Here,
several methods are presented for extracting one particular distribution of the current
action at. One possible approach is to only use the extracted features from the last timestep
to predict the distribution of actions at, similarly to the class token [27]. The idea is to
use the last timestep st to predict action at as in classical MDP. If some historical features
are needed, they are inserted during the last timestep thanks to the attention mechanism.
Another possibility is to use the average or maximum across all timesteps for each extracted
feature separately.

Figure 1 shows the architecture of the motion transformer. The architecture consists of
a preprocessing layer that adds position information to the input vector within the time
series. This is followed by several encoder blocks that extract features along the time axis.
The layer labeled X represents the reduction layer of the extracted features across the time
series. Its type was varied during experiments. The last layers are value and advantage,
representing fully connected output layers. Equation (1) is then applied to the output of
the motion transformer.
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Figure 1. The architecture of the motion transformer model.

Figure 2 depicts the architecture of the preprocessing layer, which includes a projection
layer in the form of a fully connected layer with a linear activation function. Its role is
to transform the number of input features into the number of hidden features used in
the rest of the model. Subsequently, a positional embedding, which is represented by
trainable variables, is summed with the output of a fully connected layer. Thus, in this
paper, embeddings for the time series are trained, along with the model [28].
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The encoder block architecture is depicted in Figure 3. It consists of a pair of resid-
ual [29] sub-blocks. The first is multi-head attention [30], which processes the time series
according to the following relations:

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO + bO (4)

headi = Attention
(

QWQ
i + bQ

i , KWK
i +bK

i , VWV
i + bV

i

)
(5)

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (6)Sensors 2024, 24, x FOR PEER REVIEW 7 of 23 

 

 

 
Figure 3. Architecture of encoder layer. 𝑾𝑶 represents weights, and 𝑏𝑶 represents the biases of the linear transformation af-
ter merging heads. The process of merging heads comprises concatenating tensors along 
the head dimension (axis). 𝑾𝒊𝑸, 𝑾𝒊𝑲, and 𝑾𝒊𝑽 represent weights, and 𝒃𝒊𝑸, 𝒃𝒊𝑲, and 𝒃𝒊𝑽 rep-
resent biases of the linear transformation of the input vector of layer Q (Query), K (Key), 
and V (Value) into the space handled by the attention function. 𝒅𝒌 represents the number 
of dimensions K after the linear projection of the layer input vector. 

The second block is a multi-layer perceptron (MLP) [31], and its task is to nonlinearly 
transform the processed time series. The nonlinear activation function used is Gaussian 
error linear units (GeLUs) [32], applied after the first fully connected layer. It can be ex-
pressed by the following relation: 
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WO represents weights, and bO represents the biases of the linear transformation after
merging heads. The process of merging heads comprises concatenating tensors along the
head dimension (axis). WQ

i , WK
i , and WV

i represent weights, and bQ
i ,bK

i , and bV
i represent

biases of the linear transformation of the input vector of layer Q (Query), K (Key), and
V (Value) into the space handled by the attention function. dk represents the number of
dimensions K after the linear projection of the layer input vector.

The second block is a multi-layer perceptron (MLP) [31], and its task is to nonlinearly
transform the processed time series. The nonlinear activation function used is Gaussian
error linear units (GeLUs) [32], applied after the first fully connected layer. It can be
expressed by the following relation:

y = GeLU(xW1 + b1)W2 + b2 (7)

W1 and b1 represent weight and bias parameters for the first fully connected layer
to which the nonlinear transformation is subsequently applied. The parameters W2 and
b2 represent the second layer of the block. This layer is responsible for executing a linear
transformation on the output derived from the preceding layer. The dimension of this
transformed output equals the dimension of the original input vector. Typically, the first
layer of the block has 4 times more neurons than the last layer of the block [33].

2.3. Database Reverb

The DeepMind Reverb database server is used to effectively manage the collected
trajectories and distribute the updated model parameters. This dedicated database server
is tailored for RL algorithms where it acts as a replay buffer. Users can control strategies for
selecting and removing elements from the database and options for controlling the ratio
between sampled and inserted elements. The database server may contain several tables
where trajectories or the parameters of the model are stored. An important feature is the
compression of the stored data that the database server provides. In the case of overlapped
trajectories, it is important to avoid storing duplicate trajectories [34]. The strategy used for
sampling trajectories is the uniform sampler, which selects trajectories from the table with
equal probability. The strategy for removing trajectories from a table is the first-in-first-out
(FIFO) method. The ratio between sampled and inserted items is empirically set to 32 with
10% tolerance.

The client–server architecture used is illustrated in Figure 4. The server represents
the database repository where trajectories are stored. The actor represents the client in
the form of an agent, which gathers the experience in the form of trajectories through its
interactions with the environment and stores the trajectories in the database server. The
learner represents a client that retrieves trajectories from the database server and uses
them to train an agent model. Following the training process, the agent receives the newly
updated model parameters via the database server. A similar principle is used in the Acme
framework [35].
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2.4. LIDAR

The method used to detect nearby objects and track the agent’s movement within
the game environment employs a ray casting technique, specifically referred to as LIDAR
for simplicity. It consists of 180 rays that are directed from the front of the agent to the
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right edge of the screen (see Figure 5). The endpoints of rays are determined by the
following relations:

x = dMAX ∗ cos
(

α− playerα −
π

2

)
+ playerx (8)

y = dMAX ∗ sin
(

α− playerα −
π

2

)
+ playery (9)
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dMAX represents the maximum ray’s length. The angle α determines the direction of
ray radiation, and a playerα expresses the pitch angle of the player to the plane of the game
space. The starting point of the ray is expressed by the coordinates of the front of the agents
playerx and playery.

When the bird is pushed upward, it rotates towards the sky at a 45-degree angle. In
the absence of player input, the bird slowly rotates towards the ground until reaching an
angle of −90 degrees and then falls straight down.

The maximum ray length is the distance between the front of the agent and the right
edge of the screen. Thus, the perpendicular ray touches the edge of the screen (if there are
no obstacles) while other rays at a higher or lower angle usually do not reach the edge of
the screen. This behavior mirrors the actual spread of ideal light and the measurements
of its reflections from ideally reflective objects at different angles. In contrast, when other
methods use an image generated by the game, the system sees it as a whole.

Here, rays emitted through ray casting spread out in a semicircular pattern and can
detect obstacles within a limited area ahead of the agent. Moreover, if the bird is not
positioned at the correct height and orientation relative to the game environment’s plane,
the detection rays do not even register the ground. Consequently, the agent cannot know its
altitude throughout each episode. The sensor operates at an angular resolution of 1 degree
and has a range limited only by the visible part of the environment ahead of the player.
Collision with a ray occurs when the ray hits the surface of a pipe or the ground. The
distance to the object is measured as the Euclidean distance between the agent’s front,
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where the ray originates, and the collision point. However, these values are not statistically
optimal for the model’s input; hence, it is convenient to normalize them to the range [0, 1].

dnorm
α =

dα

dMAX
(10)

dnorm
α represents the normalized distance to the object at an angle α. dα expresses the

measured value of the distance to the object. dMAX represents the maximum ray’s length.
The dMAX is defined as follows:

dMAX =0.8 ∗ Screenw − Playerw (11)

Playerw represents the width of the agent. The following measurements are given in
pixels. The agent has a width of 34 and a height of 24. Screenw represents the width of the
screen. The screen is the visible part of a game environment that can be seen when the
game is rendered. The screen width is 288, and the height is 512.

2.5. Episodic Memory

The agent’s state space consists of a fixed-length window of measurements from the
timestep history. Therefore, it is necessary to create memory to store these measurements
during a game episode. The entire contents of this memory serve as an input vector for
the motion transformer. The first-in-first-out (FIFO) data structure ensures the flow of
information in one direction, expressing the passage of time in the game environment. As
new measurements are acquired during the episode, they replace the oldest ones in the
queue. At the beginning of each episode, the queue is initialized with the initial state of
the environment. While similarities are observed in the intended result relative to Atari
stacking frames at the channel level [36], the present approach introduces a new timestep
dimension in the input vector. This enables the model to exploit temporal relationships
among measurements. The size of the memory determines how far back the model can
effectively analyze measured states in the local history. Insufficient memory capacity
can hinder information availability and impede effective action prediction. Conversely,
excessively large memory unnecessarily drains computational resources.

Figure 6 illustrates the principle of applied episodic memory. The new state arrives at
the end of the queue from the bottom. The oldest state leaves from the beginning of the
queue, i.e., the top part. The input to the motion transformer represents all items that are
stored in the queue and are ordered as they come in.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 6. Architecture of episodic memory. 

2.6. Private Zone around the Agent 
In experiments, it was found that the agent tends to take risks and moves too close to 

the edges of the pipe when passing through the gap between pipes. There is a possibility 
of penalizing the agent for risky behavior in the policy. Therefore, a penalty for an obstacle 
approaching inside the agent’s private zone was introduced. With this penalty in place, 
the agent is motivated to find the optimal solution for the given problem while consider-
ing its proximity to recognized obstacles. In a real-world application, object recognition 
would typically involve a dedicated deep neural network, which aims to distinguish be-
tween obstacles and desired objects, such as food or coins, in other gaming scenarios [37]. 

The agent needs to maintain a safe distance while navigating through obstacles to 
ensure its policy is not risky. This distance can be experimentally determined by finding 
the optimal radius for the private zone, which is represented by a circle. The circular 
model is chosen due to the sensor data being obtained in a circular polar grid format. As 
the rays are emitted from the agent’s surface, the center of the private zone circle must 
coincide with the sensor’s center. In the case where the simulation contains obstacles and 
objects the agent may need to interact with, such as collectibles, it is necessary to define 
this private zone dynamically. The classification process of obstacles vs. collectibles can 
be complex and involve sophisticated methods [38,39], and keeping the identified object 
between consecutive measurements can require specialized methods [40,41]. However, in 
the present game environment, where only obstacles exist, simple classification suffices. 𝒓 = 𝑴𝑨𝑿(𝑷𝒍𝒂𝒚𝒆𝒓𝒘, 𝑷𝒍𝒂𝒚𝒆𝒓𝒉) + 𝒙𝟐  (12) 

The radius of the private zone circle is defined as r, where 𝑷𝒍𝒂𝒚𝒆𝒓𝒘 represents the 
width of the agent and 𝑷𝒍𝒂𝒚𝒆𝒓𝒉 represents the height of the agent. Hyperparameter x 
specifies the size of the private zone. Since the rays radiate from ethe dges of the agent 
and not its center, when 𝒙  is set to 0, the private zone’s radius is equal to half of the 
agent’s maximum dimension. 

  

Figure 6. Architecture of episodic memory.



Sensors 2024, 24, 1905 10 of 20

2.6. Private Zone around the Agent

In experiments, it was found that the agent tends to take risks and moves too close to
the edges of the pipe when passing through the gap between pipes. There is a possibility of
penalizing the agent for risky behavior in the policy. Therefore, a penalty for an obstacle
approaching inside the agent’s private zone was introduced. With this penalty in place, the
agent is motivated to find the optimal solution for the given problem while considering its
proximity to recognized obstacles. In a real-world application, object recognition would
typically involve a dedicated deep neural network, which aims to distinguish between
obstacles and desired objects, such as food or coins, in other gaming scenarios [37].

The agent needs to maintain a safe distance while navigating through obstacles to
ensure its policy is not risky. This distance can be experimentally determined by finding
the optimal radius for the private zone, which is represented by a circle. The circular
model is chosen due to the sensor data being obtained in a circular polar grid format. As
the rays are emitted from the agent’s surface, the center of the private zone circle must
coincide with the sensor’s center. In the case where the simulation contains obstacles and
objects the agent may need to interact with, such as collectibles, it is necessary to define
this private zone dynamically. The classification process of obstacles vs. collectibles can
be complex and involve sophisticated methods [38,39], and keeping the identified object
between consecutive measurements can require specialized methods [40,41]. However, in
the present game environment, where only obstacles exist, simple classification suffices.

r =
MAX(Playerw, Playerh) + x

2
(12)

The radius of the private zone circle is defined as r, where Playerw represents the
width of the agent and Playerh represents the height of the agent. Hyperparameter x
specifies the size of the private zone. Since the rays radiate from ethe dges of the agent
and not its center, when x is set to 0, the private zone’s radius is equal to half of the agent’s
maximum dimension.

Figure 7 illustrates the agent’s private zone, where the parameter x is set to 30. The
gap between pipes is fixed at a size of 100 units (i.e., pixels), and the width of each pipe
measures 52 units. As can be seen, a high value of x penalizes the agent if it attempts to
navigate through the gap between pipes. Conversely, an x value that is too low diminishes
the existence of a private zone, prompting the agent to take increased risks.
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3. Results

In order to improve the performance of the deep neural network controlling Flappy
Bird’s obstacle avoidance, various techniques required finetuning. This included selecting
the right control system architecture and algorithmic techniques, as well as choosing
appropriate hyperparameters during implementation. The following section provides
detailed explanations of the key aspects of this process.

One aspect involved optimizing the number of timesteps retained in episodic memory.
This determined the extent to which the agent would recall the short-term history and utilize
it in its action predictions. Additionally, the study focused on refining the architecture
of the model. Specifically, it explored whether it was effective to use the last timestep of
the output series of actions. Alternatives included the global average or global maximum
pooling. These operations involve computing the average or maximum of features across
the timestep axis. These methods are commonly employed for reduction tasks, as seen
in vision transformers and convolutional neural networks. Lastly, attention was directed
towards determining the optimal size of the private zone, with options set to 30, 15, and 0.

The first tested configuration used 16 timesteps as the episodic memory size. Figure 8
shows the cosine similarity between embeddings for different pairs of timesteps. The
closest similarities are in the region of the upper-left corner of the heatmap. Therefore, the
subsequent experiment aimed to decrease the number of timesteps to diminish the density
of similarities among timesteps and refine the optimal number of timesteps. Since there
exists similarity among the initial timesteps, it is feasible to restrict their number. A total
of 12 timesteps were used, which was anticipated to decrease the density of similarities,
particularly in the upper-left corner.
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The second experiment was to use only 12 timesteps. The cosine similarity between
timestep embeddings is depicted in Figure 9. In contrast to using 16 timesteps, the density
of timestep embedding similarities in the upper-left corner decreased, but the score of the
agent did not significantly deteriorate. Figure 9 is not merely a subset of Figure 8; the
difference in the density of similarities is apparent. Additionally, the similarity distribution
is not perfectly symmetrical along the diagonal, with past steps showing more resemblance
to future steps, especially for distant timeframes. This trend, however, is not observed in
recent timesteps. Based on these observations, it could be beneficial in future experiments
to explore using fewer past timesteps, as they exhibit similarities to future steps. Timesteps
fewer than 12 or higher than 16 were not tested in this study.
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In our investigation, we found that as the timestep increases, the similarity of em-
beddings decreases. This trend is particularly evident in the final timestep, regardless of
whether there are 16 or 12 timesteps configured. Typically, the Markov decision process is
applied only to the current state st. This implies that the most unique timestep must be the
last timestep, which was also supported by measurement with both the 16 and 12 timestep
configurations. Specifically, the last timestep exhibits the highest similarity only relative to
itself. In this paper, a typical Markov decision process is modified. The historical states and
current state are used simultaneously st-N:t, with the exception of the first state st due to its
lack of existing history. Some historical states can probably have similar meanings for the
agent. This adaptation draws parallels with word embedding, where words with similar
meanings have a higher positive cosine similarity, but on the other hand, words with much
different meanings have a small cosine similarity near zero [42].

In the following measurements, the comparison of the last timestep, global average,
and global maximum pooling used data collected from 500 episodes. The average and
maximum scores across episodes were measured for a deterministic, pre-trained agent. The
score represents the number of pipes that the agent successfully passed through.

Table 1 shows the results of comparisons between different reduction techniques. The
average of features along the timestep axis is significantly better than other approaches.

Table 1. Results of tested reduction methods.

Architecture Timesteps Highest Score Average Score

Global average pooling 16 2970 324.198
Last timestep 16 2809 286.394

Global maximum pooling 16 1948 329.194
Global average pooling 12 2348 380.284

Last timestep 12 1922 335.114
Global maximum pooling 12 1128 152.858

The highest score is emphasized in boldface font.

Table 2 presents a comparison of the best results achieved in both the highest score
and average score in this paper in contrast to other papers. This paper has significantly
better scores.
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Table 2. Caption.

Paper Highest Score Average Score

[43] 15 3.300
[4] 80 16.400
[6] 215 82.200
[5] - 102.170
[7] 1491 209.298

This paper without a private zone 2970 380.284
This paper with a private zone 74,755 13,156.590

The score obtained in this paper is highlighted in boldface font.

Figures 10–12 show the tracking of the shifting pipelines along the timeline. The
agent uses the history from 16 timesteps. A link to a video showing an animation of
the changing attention matrix along with the changing environment is provided in the
Supplementary Materials.
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Figure 10. Agent with 16 timesteps entering the gap between the upper and lower pipes. (The
brighter the color, the higher the attention value).

From the analysis of the agent’s policy, it is evident that the agent takes risks and
approaches the upper or lower pipes while passing through the gap between the pipes.
To address this issue, it is necessary to designate a zone for the agent, beyond which, if
obstacles are detected, the agent incurs a penalty of −0.5.

Likewise, the same −0.5 penalty stipulated in [5] for the agent reaching the top of the
screen is also applied to the obstacles in the agent’s private zone. In this game environment,
all objects are regarded as obstacles.

Conversely, if the agent maintains a distance from the obstacles that is above a critical
threshold, it is rewarded with a “still alive” reward valued at +0.1, similarly to [44].
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Figure 12. Agent with 16 timesteps passed the gap between the upper and lower pipes. (The brighter
the color, the higher the attention value).

Figure 13 shows a histogram of the agent’s score across various feature reduction
techniques and private zone sizes. Experiments involving different feature reduction
methods did not incorporate a penalty in the reward function for approaching obstacles too
closely. Meanwhile, experiments with varying private zone sizes utilized global average
pooling with 16 timesteps for feature reduction. Comparing the use of global maximum
pooling to global average pooling, it is evident that the agent has a higher likelihood of
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scoring below 10 when employing the former method. The deep Q network generally
overestimates the predicted Q-values [45]. Consequently, employing global maximum
pooling may result in an overestimation of Q-values and a more risk-prone policy for
the agent.
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In the present study, it was observed that when only the last timestep was utilized,
akin to the class token in the vision transformer [46], the global average pooling performed
similarly to global maximum pooling.

The most stable control of Flappy Bird among the tested options of feature reduction
was achieved via the global average pooling reduction method. It provided the highest
maximum scores and average scores compared to the other methods of feature reduction. In
contrast to global maximum pooling, global average pooling weighs down the activation by
combining maximal and non-maximal activations [47]. This behavior leads to a reduction in
the overestimation of Q-values predicted by the model and a less risky policy for the agent.

It was observed that using the optimal private zone size resulted in the agent achieving
scores that were many times higher. The probability of obtaining a score of less than 100
was extremely low. Furthermore, a high probability of obtaining a score greater than 1000
was observed compared to agents without a private zone.

Table 3 presents a comparison between different private zone sizes. From a selection
of several options, results indicate an optimal private zone size of 15. Excessively large
values of private zone sizes would also penalize the agent for flying through the pipeline
gap until it passes its center, which counts as a high positive reward of +1.0 to the exclusion
of the other values of the reward function [48].

Table 3. Comparison of scores with different sizes of private zones.

Private Zone Highest Score Average Score

None 2970 380.284
0 10,250 2138.858
15 74,755 13,156.590
30 11,383 1645.654

Figure 14 presents the crash analysis for the collisions of the Flappy Bird without the
private zone and with the optimal size private zone. While the score with the private zone
is better by several orders of magnitude, the crush analysis shows that there still exists
room for improvement. A robust solution should have an equal probability of hitting
potential obstacles, while the results show that the Flappy Bird tends to crash almost
exclusively into the bottom end of the upper pipe. The introduction of the private zone has
minimized potential impact points, allowing future focus on suppressing these collisions.
One approach to achieving this goal is to design a more robust reward function.
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Figure 14. Crash analysis with and without the private zone.

Table 4 displays the hyperparameters used in all the experiments performed. Their
values are set based on a combination of recommended settings. The recommended size
of the replay buffer and the discount factor are taken from [49]. The multiplier of the
MLP block dimension, type of learning rate schedule, and gradient clipping are based
on [50]. A private zone with a value of None indicates the absence of a penalty rule for
approaching obstacles in the reward function. The other numerical values of the private
zone size express the x of Equation (12).

Table 4. Hyperparameters of the agent and learner model.

Hyperparameter Description Value

port Database server port 8000
max_replay_size Maximum database memory 1,000,000

samples_per_insert Samples per insert ratio for reverb 32
temp_init Initial Boltzmann temperature for exploration 0.500
temp_min Minimal Boltzmann temperature 0.010

temp_decay Decay of Boltzmann temperature 0.999999

warmup_steps Warmup steps for learning rate
cosine scheduler 1000

train_steps Training steps 1,000,000
batch_size Batch size 256

gamma Discount factor 0.990
tau Tau factor (for EMA model) 0.005

num_layers Num. of encoder blocks 2
embed_dim Embedding dimension 128

ff_mult Multiplier of MLP block dimension 4
num_heads Num. of attention heads 6

learning_rate Learning rate 3 × 10−4

global_clipnorm Globally normalized clipping of gradient 1
weight_decay Weight decay for AdamW optimizer 1 × 10−4

frame_stack Size of short-term (episodic) memory 16 or 12
player_private_zone Size of agent’s private zone None, 0, 15 or 30

4. Discussion

Utilizing a transformer neural network to control a simulated agent via ray casting
as a simple LIDAR sensor has potentially diverse applications across several domains.
Remote sensing technology integrated with advanced AI-based control can be beneficial in
the following contexts:

In virtual reality and games, avatars or characters can benefit from more natural and
responsive interactions.
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The method for improving navigation using ray casting in 2D could potentially be
expanded to utilize true LIDAR in 3D space. In the future, this could lead to advancements
in robotics; autonomous vehicles like self-driving cars, drones, or any kind of mobile robots
that require effective navigation; and obstacle avoidance capabilities. In disaster-stricken
areas, such robots can aid in search and rescue missions. Enhanced agents can streamline
tasks such as inventory management and material handling in warehouses. Additionally,
robotic arms could better manipulate objects in dynamic environments.

In each of these contexts, the integration of ray casting and transformer neural net-
work control should enable the agent to make informed decisions based on temporal and
spatial information.

When considering the selection of algorithmic procedures and hyperparameters, there
exists ample room for exploration and experimentation with various possibilities.

When storing high-dimensional states in episodic memory, it would be more conve-
nient to only extract the significant features for storage. For this purpose, an AutoEncoder-
type model could be used to compress the input vector.

Another consideration is the initialization of episodic memory. Currently, it duplicates
the initial state, but one alternative includes creating an embedding for the empty state
containing episodic memory at each episode’s start. The next option is to dynamically
adjust the number of timesteps with respect to the input to the motion transformer, while
ensuring the proper assignment of positional embedding for incrementing states from
the timesteps.

A promising research direction is exploring the impact of cosine similarity on the opti-
mal number of timesteps. This involves investigating whether the similarity of timestep em-
beddings can reduce the necessary number of timesteps. Further study is needed to validate
the effect of positional embedding in reducing timesteps across various game environments.

In the case of the Flappy Bird game, future research should also try the possibility
of adding a weighted reward for keeping a safe distance from the upper pipe more than
from other obstacles. This research direction follows from the results of the error analysis.
The subject of further research is also to study and rectify failures after the agent has
performed a very large number of steps in the environment. Potential improvements might
be anticipated in algorithms based on the deep Q Learning principle, such as dueling deep
Q learning or double deep Q learning. Numerical instability should also be checked, as
well as more advanced Actor–Critic-type models such as A2C or PPO.

Further improvements could be attained by establishing a dynamic private zone
around the agent. The private zone could be delineated by deep neural network prediction,
whether objects crossing the private zone boundary are obstacles or aids in achieving a
specific task. Such a model could directly adjust the complex reward function necessary for
task completion without exposing the agent to risky behavior.

5. Conclusions

Our study presents novel guidance control using LIDAR sensors represented by
the ray casting method for obstacle detection and agent navigation within obstacle-filled
environments. The designed motion transformer model effectively grasped the temporal
dynamics between sensor readings. The findings demonstrate the model’s ability to
adaptively respond to the agent’s movement among pipelines, as reflected in the attention
matrix. The model’s attention mechanism prioritizes past or present sensor data, or a
combination thereof, based on the spatial distribution of pipelines in the surroundings.
Additionally, the results show that employing average reduction techniques helps mitigate
the risk of overestimating Q values. Furthermore, the incorporation of a private zone for
the agent contributes to the formulation of a less risky navigation policy.

In this paper, the average score (the number of passes through pipeline gaps) obtained
by the agent without a private zone is 182 percent better compared to the best results
obtained by the competitors. The highest score achieved by the agent without a private
zone compared to the best competitors’ obtained results is 199 percent better. The agent
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with a private zone of 15 pixels achieved an average score that was 6286 percent better
than the best competitors’ average agent score and a maximum score that was 5014 percent
better than the competition’s best results in terms of maximum agent score.

Supplementary Materials: The following supporting information can be downloaded at the follow-
ing: interactive charts: https://wandb.ai/markub/rl-toolkit/groups/FlappyBird-v0 (accessed on 16
October 2023); source codes: https://github.com/markub3327/rl-toolkit (accessed on 16 October
2023) and https://github.com/markub3327/flappy-bird-gymnasium (accessed on 16 October 2023);
YouTube video: https://youtu.be/aZQxuDCyHoI (accessed on 22 December 2023).
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