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Abstract: With the continuous evolution of autonomous driving and unmanned driving systems,
traditional limitations such as a limited field-of-view, poor ranging accuracy, and real-time display are
becoming inadequate to satisfy the requirements of binocular stereo-perception systems. Firstly, we
designed a binocular stereo-imaging-perception system with a wide-field-of-view and infrared- and
visible light-dual-band fusion. Secondly we proposed a binocular stereo-perception optical imaging
system with a wide field-of-view of 120.3◦, which solves the small field-of-view of current binocular
stereo-perception systems. Thirdly, For image aberration caused by the wide-field-of-view system
design, we propose an ellipsoidal-image-aberration algorithm with a low consumption of memory
resources and no loss of field-of-view. This algorithm simultaneously solves visible light and infrared
images with an aberration rate of 45% and 47%, respectively. Fourthly, a multi-scale infrared- and
visible light-image-fusion algorithm is used, which improves the situational-awareness capabilities of
a binocular stereo-sensing system in a scene and enhances image details to improve ranging accuracy.
Furthermore, this paper is based on the Taylor model-calibration binocular stereo-sensing system of
internal and external parameters for limit correction; the implemented algorithms are integrated into
an NVIDIA Jetson TX2 + FPGA hardware framework, enabling near-distance ranging experiments.
The fusion-ranging accuracy within 20 m achieved an error of 0.02 m, outperforming both visible
light- and infrared-ranging methods. It generates the fusion-ranging-image output with a minimal
delay of only 22.31 ms at a frame rate of 50 Hz.

Keywords: binocular stereoscopic-perception system; wide field-of-view; infrared and visible light
fusion; image distortion

1. Introduction

In the field of autonomous driving, the primary methods for perception systems
currently include millimeter-wave radar perception, LiDAR perception, millimeter-wave
radar, and LiDAR fusion with visual perception, monocular vision, and binocular stereo
vision. Radar- and vision sensor-fusion methods involve the calibration of multiple sensors
in both time and space, transforming their acquired data into a common coordinate system,
followed by information processing. The authors in [1] used the radar sensor and visual
sensor approaches to investigate the vehicle environment. This approach is more accurate
in terms of the information obtained but it suffers from the complexity of calibrating
multiple sensors with inconsistent sensing ranges and becomes increasingly expensive as
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accuracy increases. Monocular stereo vision utilizes a single camera to project the three-
dimensional world onto a two-dimensional plane, resulting in a loss of depth information.
Monocular stereo vision systems assume static ground and solve for a dynamic camera
pose to achieve distance-measurement functionality [2–4]. R. Mur-Artal et al. [5] introduced
the ORB-SLAM monocular simultaneous localization and mapping (SLAM) system, which
exhibits robustness against significant motion noise and allows for wide baseline-loop
closure and relocalization but requires further improvements in depth accuracy. Raul Mur-
Artal et al. [6] presented ORB-SLAM2, a monocular SLAM system that employs bundle
adjustment to enhance depth accuracy and features a lightweight localization mode for the
efficient reutilization of disabled maps. Carlos Campos et al. [7] introduced ORB-SLAM3,
which employs comprehensive short-term, medium-term, and long-term data associations
to achieve zero drift in mapped areas. Compared to other methods, monocular stereo vision
systems offer the advantage of being small and lightweight. However, such systems can
only capture two-dimensional images and cannot determine distances to objects, leading to
issues with low ranging accuracy and poor environmental adaptability. Binocular stereo
vision, on the other hand, emulates the human visual system and leverages the principle of
disparity to acquire target features from different positions using detectors. This approach
establishes the relationship between corresponding pixel points in the image based on the
three-dimensional geometric positions of certain features on the spatial-target surface. This
process involves constructing a binocular stereo vision-imaging model to obtain model
parameters [8,9]. Binocular stereo vision is also referred to as passive binocular depth
sensing and offers improved robustness in depth computation compared to monocular
stereo vision. This technology also enables three-dimensional object recognition. Various
methods exist for obtaining real-world depth information in binocular stereo perception
systems, such as passive stereo [10], active stereo [11], time-of-flight imaging [12], and
defocus depth [13]. In this paper, the passive stereo method of binocular stereo systems
is employed.

With the advancement of industrial automation and machine vision, binocular stereo
perception systems have been widely researched and applied in various fields, including ve-
hicle driving [14], intelligent transportation [15], 3D reconstruction [16], virtual reality [17],
surveying, and rapid positioning [18]. In the realm of autonomous and assisted driving [19],
the first assisted-driving vehicle based on a binocular stereo vision system was developed
in Japan. This system processes images captured by two onboard cameras. Subsequently,
in Europe and the United States, autonomous driving vehicles were developed based on
binocular stereo vision. Notable examples include the NavLab series developed at Carnegie
Mellon University in the United States [20] (NavLab-1, NavLab-5, and NavLab-11). These
vehicles utilize binocular stereo vision for road environment detection and focus on ad-
dressing challenging visual perception issues in complex environments. Silicon Valley
chip company Ambarella has developed binocular ADAS (Advanced Driver Assistance
Systems) and autonomous driving chips [21], as well as binocular stereo-specific chips
and solutions tailored to binocular vision systems, which act as valuable complements to
integrated chips. These specialized chips can handle a portion of the perception tasks at
the edge, creating a smaller and more efficient perception-decision loop.

With the evolution of deep learning, many researchers have proposed more efficient
and accurate binocular stereo algorithms. Sun et al. [22] introduced a multi-path Viterbi
(MPV) multi-scale fast stereo matching algorithm for generating dense disparity informa-
tion. Jure Bontar and others [23] trained a convolutional neural network (CNN) to predict
the matching degree between two image patches and used this CNN for binocular stereo
matching. The authors incorporated left–right consistency checks to eliminate errors in
occluded areas. However, their method was found to be ineffective in textureless regions.
Li et al. [24] introduced Stereo R-CNN, which takes binocular images as network inputs.
The authors extended Faster R-CNN to simultaneously detect and associate objects in left
and right images. Through the binocular FPN network, the authors predicted object key
points and sizes to generate coarse 3D object detection boxes. Finally, the authors used
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the region-based photometric correspondence method to refine fine-grained 3D detection
boxes. Tang et al. [25] used the YOLOv4-tiny model to generate boundary frameworks
and employed an adaptive stereo matching approach based on these boundaries. This
approach meets real-time detection requirements and exhibits high localization stability
and robustness under varying lighting conditions.

Autonomous driving vehicle is a kind of autonomous and automatic unmanned
vehicle, the vehicle not only needs to grasp the dynamic situation of nearby vehicles and
obstacles in real-time, but also needs to deal with the complex environment of night, haze,
and obstacles. The traditional driving system based on visible light is easy to fail in the
area of poor lighting conditions, unable to meet the all-weather needs of automatic driving
vehicles, infrared images are not subject to the interference of illumination, sun glare,
can penetrate smoke, haze, and other characteristics. The perception ability of automatic
driving vehicles can be further improved by fusion of visible light and infrared. Current
autopilots commonly use small field-of-view cameras, usually with a field-of-view of 40–60,
which limits the system’s perception of the external environment, and the field-of-view and
perception can be further improved to a wide-field-of-view technology with infrared- and
visible light fusion [26].

The field of autonomous driving places significant emphasis on important metrics
such as the field-of-view, ranging accuracy, and real-time display in binocular stereo percep-
tion systems. This paper integrates the characteristics of visible light and infrared sensors to
design a wide-field-of-view binocular stereo imaging perception system using infrared- and
visible light-fusion . This system combines a wide-field-of-view binocular stereo optical
imaging system with a low-storage image distortion correction algorithm to achieve imag-
ing with a wide field-of-view and minimal distortion. Focusing on the features of visible
light and infrared images, this study employs a multi-scale fusion approach for infrared-
and visible light images. This work explores a straightforward yet precise method for object
ranging based on the Taylor model for calibrating the internal and external parameters
of the binocular stereo perception system for extreme correction, thereby enhancing the
measurement accuracy of the binocular stereo perception system. The algorithms are im-
plemented using the NVIDIA Jetson TX2 + FPGA hardware framework, enabling real-time
ranging and display.

2. System Framework

In this paper, a wide-field-of-view binocular stereo sensing system based on infrared
and visible light is established; the system block diagram is shown in Figure 1. This
system consists of two sets of uncooled long-wave infrared-imaging modules with a
field-of-view greater than 120◦, visible-high-definition-imaging modules, and digital-video-
processing modules. The system’s operating temperature ranges from −40 ◦C to 70 ◦C. The
digital-video-processing module utilizes hardware circuits featuring the NVIDIA Jetson
TX2 + FPGA combination and receives digital video signals from the visible light-imaging
component and the infrared-imaging component, enabling the module to perform image
processing. A hardware diagram of the digital-video-processing module is shown in
Figure 2.
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2.1. Design and Simulation of the Wide-Field Binocular Stereo Perception-Dual-Band-Imaging
System
2.1.1. The Principle of Binocular Stereo Imaging

In response to the specific requirements of night-time vehicle driving and rapidly
changing work environments, we designed a wide-field-binocular stereo perception system
with dual-band-electro-optical imaging. The visiblelight-imaging component incorporates
a large-array CMOS device from Rockchip Electronics Co., Ltd. (Jiangsu, China) that has
high sensitivity and definition. This system boasts a pixel resolution of 1920 (H) × 1080 (V),
with each pixel measuring 13 µm (H) × 13 µm (V), and it operates at a frame rate of
50 Hz. This component can function effectively under low-light conditions down to 10−3 lx.
Furthermore, the infrared-imaging component employs a non-cooled infrared focal plane
detector from Yantai IRay Technology Co., Ltd. (Yantai, China) that offers a pixel resolution
of 1024 (H) × 768 (V), with each pixel measuring 14 µm. The frame rate of the infrared
component is also 50 Hz.

Binocular stereo sensing systems are mainly divided into two types according to their
placement [27]: a parallel model and a convergent model. The parallel model has two
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camera optical axes parallel to each other. Moreover, the structure is simple and easy to
calculate. The advantage of this structure is the presence of only a negative horizontal
parallax, with no vertical parallax. Disadvantages include a small common area and a lack
of stereoscopic information in the left and right sides of the single viewing area, which will
cause a waste of information. The convergence model can adjust the angle between the
two optical axes to obtain a larger effective field-of-view, with positive-, negative-, or zero-
horizontal parallax; however, the camera body will produce vertical parallax, which causes
a certain gradient distortion. In this study, considering the advantages and disadvantages
of the parallel model and the convergence model, the visible and infrared components
were fused. For this purpose, we selected an optical design based on the parallel model, as
shown in Figure 3. To realize binocular stereo vision, the binocular stereo sensing system
consisted of two visible light-objective lens groups and two infrared-objective lens groups.
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Binocular-imaging-distance-measurement technology relies on the binocular disparity
to establish an ideal model for binocular ranging. In this model, both cameras have identical
specifications and parameters, including matching camera models, consistent focal lengths,
and the parallel alignment of optical axes. The model is shown in Figure 4.
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Here, d represents the camera’s inter-image plane spacing (baseline width), d1 and
d2 are the distance from the image point to the image plane center, f is the camera’s focal
length, and L is distance to the object. Using the principles of similar triangles, the following
relationships can be derived:

L =
f d

d1 − d2
=

f d
c

(1)

where c represents the difference in the imaging positions of the object point in the two
fields of view, which is commonly referred to as the parallax value.

Under the conditions of parameter determination in a binocular-stereo-perception
system (such as focal length and baseline), ranging accuracy is determined by the parameter
c. Presently, binocular stereo-matching algorithms can achieve sub-pixel-level matching
accuracy, resulting in superior disparity precision. Results can be obtained by differentiating
Equation (1):

dL =
f d
c2 dc =

L2

f d
dc. (2)

Hence, as long as the parameters of the binocular-stereo-perception system are de-
termined, the distance to the target can be calculated by measuring the disparity. System
parameters typically consist of intrinsic and extrinsic parameters. Intrinsic parameters in-
clude the focal length, principal point coordinates, and distortion coefficients of the left and
right cameras, among others. Extrinsic parameters encompass the relative transformation
between the left and right cameras, involving rotation and translation matrices. Due to
potential errors during camera installation, such as non-parallel alignment of the lens and
imaging plane, it is necessary to recalibrate the camera to obtain updated focal lengths,
intrinsic parameters, and extrinsic parameters.

2.1.2. The Simulation and Design of Visible- and Infrared Objective Lenses

A. Simulation design for the visible light objective lens

In the wide-field binocular stereo perception-optical-imaging system, the visible light
component employs a high-resolution and low-light CMOS-imaging module from Rockchip
Electronics Co., Ltd., which enables imaging in both day and night scenes. This component
features large pixels and sensor-imaging areas, imposing stringent requirements on the opti-
cal system. We utilized the CODE V(10.2) software for optical system design, implementing
a “telephoto-type” optical path structure with 12 lenses. By introducing appropriate non-
spherical elements while keeping the total number of lenses, glass thickness, and imaging
quality constant, we enhanced the light-gathering capabilities of the visible light objective
lens without compromising its transmittance. The system design is depicted in Figure 5.
Table 1 presents the optical-design specifications for the visible light objective lens.
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Table 1. Optical-design specifications for the visible light lens.

Parameters Value Parameters Value

Objective focal length (f) 10.96 mm Diagonal field 133◦

F-number 2.1 Distortion (maximum on the diagonal) −45%

Horizontal field 124◦ Maximum working distance 97.16 m

Vertical field 74.4◦

The maximum effective range L of the visible light-optical-imaging system is as follows:

L =
f
√

wh
8dpix

= 97.16 m (3)

where w represents human height, h represents shoulder width, and dpix represents
pixel size.

At a distance of L = 15 m, there is a depth-calculation deviation of dL ≤ 20 cm. Under
the condition of a matching algorithm precision at the 0.1 pixel level, the baseline d can be
determined as follows:

d ≥ L2dC
f dL

= 13.52 cm (4)

where L represents the distance from the target to the system, which is referred to as the
test distance. dC is set at a 0.1 pixel level, and dL stands for the resolvable distance.

At a distance of L = 30 m, the depth-calculation deviation of dL ≤ 1 m. When these
values are incorporated into Equation (4), the following result is obtained:

d ≥ L2dC
f dL

= 10.82 cm. (5)

It can be seen clearly that d ≥ 13.52 cm. The formula for visible light stereo acuity
dγ is

dγ =
αd
L2 dL (6)

where α is a constant of 206,265 when converting from radians to arcseconds:

dγ =
α

f
dc = 24.47′′ . (7)

Stereopsis is the ability to resolve the smallest horizontal disparity between retinal
images from both eyes. The normal value for stereopsis should be less than 60′′. A smaller
value of stereopsis indicates better stereo vision.

Utilizing CONE V software, we simulated environmental temperature variations
and obtained the transfer functions for the visible light-optical system at 20 ◦C, 50 ◦C,
and −40 ◦C, as well as the diffuse spots, as shown in Figure 6, Figure 7, and Figure 8,
respectively.
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B. The Simulation Design of an Infrared objective lens

This paper addresses the design of a wide-field, relative aperture long-wave infrared
optical system for the 1024 (H) × 768 (V) long-wave infrared detector from Yantai IRay
Technology Co., Ltd. The infrared objective lens system, as depicted in Figure 9, operates
without active cooling over a wide temperature range. The front surface of the first lens is
non-spherical, enabling passive temperature compensation at different temperatures by
adjusting the system’s back focal length. Table 2 provides the optical-design specifications
for the infrared objective lens.
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Figure 9. The optical system of the infrared objective lens and a distortion map of the infrared
objective lens at 20 ◦C.

Table 2. The optical-design specifications for the infrared objective lens.

Parameters Value

objective focal length (f) 6 mm

F-number 2.1

horizontal field 121.6◦

vertical field 107◦

distortion (maximum on the diagonal) −47%

The maximum effective range L of the infrared objective lens-optical system is

L =
f
√

wh
8dpix

= 40.67 m. (8)

At a distance of L = 15 m, with a depth-calculation deviation dL ≤ 30 cm, the baseline
d can be calculated as follows:

d ≥ L2dC
f dL

= 21.26 cm. (9)

At a distance of L = 30 m, with a depth-calculation deviation dL ≤ 2 m, the baseline
d can be calculated as follows:

d ≥ L2dC
f dL

= 12.75 cm. (10)

According to Formulas (9) and (10),

d ≥ 21.26 cm. (11)

The formula for the stereo acuity dγ is as follows:

dγ =
αd
L2 dL (12)
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where d is the baseline length, dL is the resolvable distance, L is the distance from the target
to the system, and dL is the binocular ranging accuracy. The formula is as follows:

dγ =
a
f

dc = 58.44′′ (13)

With a decrease in temperature, the infrared optical system experiences changes
in inter-lens spacing, lens thickness, refractive index, and curvature radius. Therefore,
temperature variations inevitably lead to defocusing of the system’s focal plane, resulting
in a degradation of image quality. The transfer functions and diffuse spots of the infrared
optical system based on system simulation analysis are shown in Figure 10, Figure 11, and
Figure 12, respectively, at temperatures of 20 ◦C, 50 ◦C, and −40 ◦C.
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In summary, without moving any optical elements, we achieved alignment of the
image plane with the detector target surface during changes in environmental temperature.
With temperature variations, the lens assembly, employing optical passive thermal compen-
sation, can maintain consistent magnification and requires no active optical components.
The relative positions of the optical axes remain relatively unchanged, resulting in high
image registration accuracy. Large-field optical systems often exhibit significant distortion
to improve the field-of-view. Image distortion is corrected to obtain high-quality fused
images. Based on the imaging quality of the fused lens system and image registration
effectiveness, further improvements in the system’s ranging accuracy were achieved.

Baseline distance d ≥ 21.26cm; if baseline distance d = 35cm, then the ranging
accuracy is as follows:

dL ≥ L2dC
f d

. (14)

Table 3 presents the calculated accuracy of visible and infrared ranging at test distances
of 15 m and 30 m.

Table 3. Infrared- and visible light-ranging accuracy.

Serial Number Measuring Distance (L) Visible Light-Ranging Accuracy (L) Infrared-Ranging Accuracy (L)

1 15 m dL ≥ 7.63cm dL ≥ 15.00cm
2 30 m dL ≥ 30.50cm dL ≥ 60.00cm

2.2. Real-Time Image Distortion Correction and Simulation

The optical system design model produces aberrations that are unavoidable due to
the system’s non-coaxial nature, field-of-view, focal length, and other auxiliary factors. In
this study, a binocular stereo sensing optical imaging system with a large field-of-view is
designed, in which the aberration rate produced by the visible objective lens is −45%, and
the aberration rate of the infrared objective lens is −47%, as shown in Section 2.1. Here, we
propose a shareable elliptical aberration for real-time correction.

Image distortion is mainly the result of geometric distortion of the pixel positions
of the image after imaging. Geometric distortion is further categorized into linear and
nonlinear distortion, which refer to a mixture of several distortions that work together [28].
The causes of nonlinear aberrations are mainly categorized as radial aberrations, centrifugal
aberrations, and thin prismatic aberrations [29,30]:

xd = x(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2x2) (15)
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yd = y(1 + k1r2 + k2r4 + k3r6) + 2p1xy + p2(r2 + 2y2) (16)

x2 + y2 = r2 (17)

where x and xd represent, respectively, the reference image and distortion image in the
Xdirection; y and yd are, respectively, the reference image and distortion image in the
Y-direction; k1, k2, k3, p1, and p2 are distortion correction parameters. When the aberration
coefficient is greater, the aberration correction is less effective. Aberration correction usually
considers radial aberrations and ignores the effect of tangential aberrations, which can
describe the nonlinear aberrations of the lens.

Because the resolution ratio of the image H: V ̸= 1:1, there is a poor edge effect for the
image edge distortion correction edge when using the standard concentric circle distortion
model. Therefore, an elliptical distortion correction model is proposed using the improved
standard concentric circle distortion model:

x = xd
1

(1 + k1r2)
, y = yd

1
1 + k1r2 (18)

x2

a2 +
y2

b2 = r2 (19)

where H is the height of the image, V represents the image’s width, a = H/2 and b = V/2
are shown in Figure 13.
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The elliptical distortion correction model cannot cover the image completely (H × V).
We further improve the elliptical distortion correction model using an approximate elliptical
distortion correction model:

x = k2
xd

1 + k1(r − R)2 , y = k2
yd

1 + k1(r − R)2 (20)

x2

a2 +
y2

b2 = r2 (21)

where k1 and k2 represent the distortion coefficients; x and xd represent the corrected image
and distorted image in the X-direction; and y and yd represent the corrected image and the
distorted image in the Y-direction, respectively.

In this paper, real-time corrections are performed based on FPGA. A common approach
in FPGA hardware circuits is the correction-mapping table, which first calculates the
corresponding correction result of the image and stores it in the hardware circuit and
determines the corresponding corrected video output from the correction-mapping table
based on the input real-time video. The correction-mapping table is a straightforward
computation but suffers from the disadvantage of depositing an approximate elliptic-
distortion-correction-mapping table, which requires a large amount of hardware-circuit
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resources. Thus, we proposed elliptical distortion correction model only needs to store one
quarter of the data in the hardware circuitry, as shown in Figure 14.
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Figure 14. Correction-mapping table for approximate elliptic-distortion correction.

The generated checkerboard grid H × V images are shown in Figures 15a and 16a and
are standard checkerboard grids of 1920 × 1080 and 1024 × 768, respectively. Figures 15b
and 16b present, respectively, the aberration simulation images derived using the standard
checkerboard grid as the input image through the visible optical system model and those
generated using the infrared optical system. Through the myopic elliptic-aberration model
proposed in this paper for aberration correction, the aberration-correction map of the visible
image and the aberration-correction map of the infrared image are obtained, as shown
in Figures 15c and 16c, respectively. The edges of the image are still aberrated, but the
field-of-view is increased.
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Figure 15. The 1920 × 1080 Visible light distortion effect: (a) standard checkerboard grid; (b) optical-
system-aberration map (aberration rate −45%); and (c) aberration-correction-result map.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 23 
 

 

Figure 15. The 1920 × 1080 Visible light distortion effect: (a) standard checkerboard grid; (b) optical-

system-aberration map (aberration rate −45%); and (c) aberration-correction-result map. 

 
(a) (b) (c) 

Figure 16. The 1024 × 768 infrared-distortion effect: (a) standard checkerboard grid; (b) optical-sys-

tem-aberration map (aberration rate −45%); and (c) aberration-correction-result map. 

2.3. Infrared- and Visible Light-Fusion Algorithm 

The infrared- and visible light images are horizontally aligned after image alignment 

and limit correction to realize the left and right images, and the common adaptive image-

enhancement method [31] is used to enhance the infrared- and visible light images to im-

prove the bright and dark regions in the image to improve the contrast of the image. In-

frared- and visible light-image matching is a type of heterogenous spit matching, and it is 

difficult to find the same type of corresponding feature points for the two types of images. 

In this paper, we use the SURF + RANSAC algorithms to realize stereo matching [32,33]. 

The SURF algorithm has the characteristics of rotation, scale transformation, and bright-

ness invariance; compared to the SIFT algorithm, SURF reduces the complexity of the al-

gorithm, reduces the dimensionality of the feature descriptor from 128 to 65 dimensions, 

and reduces the computational amount by double [34]. The anomalous data in the match-

ing process is filtered out by using the RANSAC algorithm. 

Image fusion involves the use of image information from multiple imaging sensors 

in a unified scene to increase the perception of the scene and the ability to recognize targets 

and other objectives. Unlike traditional multi-scale fusion methods, this study adopts a 

multi-scale infrared- and visible light-fusion method based on the work in [35], which has 

the unique characteristics of retaining scale-specific information and reducing the edge 

halo, taking into account the different characteristics of the infrared image and the visible 

image. This study also adopts the traditional “maximum–absolute” fusion rule. With this 

optimization, the useful visual details can be be�er transferred to the fused image while 

suppressing the noise in the infrared image: 

1 2( ) p p p NV p I I I I I I          (22) 

where pI  is the intensity value at pixel p  in image I , ( )V p  is the significant value 

of pixel p , and N  is the total number of pixels in image I . 

If the two-pixel intensity values are equal, then 

1

0

( )
L

j P j
j

V p M I I




    (23) 

where j  is the pixel point, jM  is the number of pixels with pixel intensity the same as 

that of point j , and L  is the number of gray levels in the image. The infrared image 

irI  and visible image viI  are the input images. Then, the base layer FB  of the fused 

image is obtained as 

Figure 16. The 1024 × 768 infrared-distortion effect: (a) standard checkerboard grid; (b) optical-
system-aberration map (aberration rate −45%); and (c) aberration-correction-result map.

2.3. Infrared- and Visible Light-Fusion Algorithm

The infrared- and visible light images are horizontally aligned after image alignment
and limit correction to realize the left and right images, and the common adaptive image-
enhancement method [31] is used to enhance the infrared- and visible light images to
improve the bright and dark regions in the image to improve the contrast of the image.
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Infrared- and visible light-image matching is a type of heterogenous spit matching, and it is
difficult to find the same type of corresponding feature points for the two types of images.
In this paper, we use the SURF + RANSAC algorithms to realize stereo matching [32,33].
The SURF algorithm has the characteristics of rotation, scale transformation, and brightness
invariance; compared to the SIFT algorithm, SURF reduces the complexity of the algorithm,
reduces the dimensionality of the feature descriptor from 128 to 65 dimensions, and reduces
the computational amount by double [34]. The anomalous data in the matching process is
filtered out by using the RANSAC algorithm.

Image fusion involves the use of image information from multiple imaging sensors in
a unified scene to increase the perception of the scene and the ability to recognize targets
and other objectives. Unlike traditional multi-scale fusion methods, this study adopts a
multi-scale infrared- and visible light-fusion method based on the work in [35], which has
the unique characteristics of retaining scale-specific information and reducing the edge
halo, taking into account the different characteristics of the infrared image and the visible
image. This study also adopts the traditional “maximum–absolute” fusion rule. With this
optimization, the useful visual details can be better transferred to the fused image while
suppressing the noise in the infrared image:

V(p) =
∣∣Ip − I1

∣∣+ ∣∣Ip − I2
∣∣+ · · ·+

∣∣Ip − IN
∣∣ (22)

where Ip is the intensity value at pixel p in image I, V(p) is the significant value of pixel p,
and N is the total number of pixels in image I.

If the two-pixel intensity values are equal, then

V(p) =
L−1

∑
j=0

Mj
∣∣IP − Ij

∣∣ (23)

where j is the pixel point, Mj is the number of pixels with pixel intensity the same as that of
point j, and L is the number of gray levels in the image. The infrared image Iir and visible
image Ivi are the input images. Then, the base layer BF of the fused image is obtained as

BF = WbB1 + (1 − Wb)B2 (24)

Wb = 0.5 +
Iir − Ivi

2
(25)

Infrared images usually contain coarse-scale structural information and noise and lack
visual details compared with visible light images. The fused detail layer obtained by the
“max–absolute” rule is improved to make the image look more natural and more suitable
for human visual perception. The weighting factor W j of “max–absolute” is

W j =

{
1,
∣∣∣dj

1

∣∣∣ > ∣∣∣dj
2

∣∣∣(j = 1, 2, · · ·N)

0, otherwise
. (26)

Next, we apply a Gaussian filtering for denoising:

W j
d = Gaussian(W j, δs) (27)

where setting δs = 2, Mj for the fusion details in the jth layer is accomplished according to
the “max–absolute” rule, as follows:

Mj = W j
ddj

1 + (1 − W j
d)d

j
2. (28)
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The fusion detail layer Dj of the jth layer can be obtained according to the weighted
least squares method:

Dj = ∑
P

((
Dj

p − Mj
P

)2
+ λaj

p

(
Dj

p −
(

dj
2

)
p

)2
)

(29)

where aj
p =

(∣∣∣∑ q∈wp(d
j
1)q

∣∣∣+ ε
)−1

represents the spatial variation weight; p represents the
spatial position of the pixel; ε is a constant equal to 0.0001; and wp represents a rectangular
window centered on pixel point p.

The fused image IF after combining the base layer BF and the detail layer D1, D2, . . . , DN is

IF = BF + D1 + D2 + · · ·+ DN . (30)

2.4. Binocular Stereo Ranging Algorithm

Unlike the traditional binocular stereo-ranging method [36], we seek to acquire binoc-
ular stereo-ranging information from the image obtained via aberration correction and
image fusion. As shown in Figure 17, parallax information is used to restore the depth.
Here, QL and QR are the coordinate origins of the two camera coordinate systems, and A is
the baseline length. To find the corresponding point of the world coordinate system in the
stereoimage pair for point Q, the corresponding direction vectors in the virtual coordinate

system are
−−→
QLQ,

−−→
QRQ. Q′ is the projection of Q in the XOLZ plane. The angles of the

vector
−−→
OLQ,

−−→
ORQ with the plane YOLZ, YORZ are β1, β2. If the angles with the OLZ-axis

and O2Z-axis are both α; then, we apply the following:

θ1 =
π

2
− β1 , θ2 =

π

2
− β2. (31)

B
sin(π − θ2)

=
A

sin θ
=

A
sin(θ2 − θ1)

⇒ B =
A sin θ2

sin(θ2 − θ1)
. (32)
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Then, the depth information of Q is
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3. Experiments and Results
3.1. Test Platform

The experiment adopted a wide-field-of-view binocular stereo perception system
and a calibration checkerboard grid (ambient and heated state), as shown in Figure 18.
The calibration checkerboard grid was based on the Boltier principle design for an active
infrared-radiation-calibration checkerboard grid. We used a JY-260 microcomputer temper-
ature controller device from Jiangyin Jinyu Electric Heating Appliance Co., Ltd. (Jiangsu,
China) to control the temperature of the calibration checkerboard grid in a range from
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−50 ◦C to −260 ◦C, the calibration checkerboard grid was 10 × 7, the length of the squares
was 100 mm, and the overall size was 1040 mm × 740 mm. Infrared-component calibration
was carried out using the power supply. After the infrared component was calibrated, the
power supply was used to heat the calibration checkerboard grid, and the temperature was
controlled with the JY-260 microcomputer temperature controller at 50 ◦C, which heated
and cooled the white box to produce corners with a large grayscale gradient on the infrared
image, which was convenient for corner identification.
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3.2. Calibration Test Results

The binocular stereo sensing system was calibrated using sensors for tessellated grids
in a three-dimensional scene. Under the optical imaging model, the relationship between
the spatial coordinate system of the object points in the scene and the corresponding image
points in the image plane was established, which, in turn, determined the internal and
external parameters of the camera. In the experiment, calibration of the internal and
external parameters of infrared and visible cameras for binocular stereo sensing systems
was based on Taylor model-calibration. The images used in this experiment were acquired
by visible light and infrared left and right cameras in different orientations for calibrating
the checkerboard grid, and then the coordinates of the corner points were extracted.

We selected 18 images from the collected data for calibration, as shown in the binocular
stereo left lens’s visible light-camera-calibration diagram in Figure 19, and in the right lens’s
visible light camera-calibration diagram in Figure 20, and in the right lens’s infrared camera-
calibration diagram in Figure 21, and in the right lens’s infrared camera-calibration diagram
in Figure 22. The binocular stereo sensing system’s visible camera and its infrared camera
inside and outside the parameters of the calibration results are shown in Tables 4 and 5.
We perform parameter calibration based on a cal ibrated chessboard, which absorbs heat
uniformly after heating, overcoming the problem of difficult to recognize corner points in
infrared cameras, and at the same time solving the calibration problems arising from the
different imaging characteristics of infrared and visible light.
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Table 4. Internal and external parameters of the visible light camera of the binocular stereo sens-
ing system.

Parameter Calibration Results (Left) Calibration Results (Right)

(c, d, e) (1.0001,−1.2 × 10−5, 1.7 ×
10−5)

(1.0001,−2.2 × 10−5,−2.12 ×
10−4)

(u0, v0) (487.0978, 964.3319) (464.1441, 949.0153)

(a0, a1, a2, a3, a4)
(
−835.384, 0, 3.296 × 10−4,

3.290 × 10−7,−3.189 × 10−10) (
−819.290, 0, 3.642 × 10−4,

2.727 × 10−7,−2.909 × 10−10)
R

 0.9976 −0.0009 0.0684
0.0007 0.9999 0.0019
−0.0684 −0.0018 0.9976


T

[
−335.5285 9.9994 −16.8602

]
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Table 5. Internal and external parameters for the infrared camera of the binocular stereo sensing sys-
tem.

Parameter Calibration Results (Left) Calibration Results (Right)

(c, d, e) (0.992,−1.47 × 10−3, 6.2 ×
10−5)

(0.9998,−9.5 × 10−5 , 1.9 ×
10−5)

(u0, v0) (479.4945, 959.2869) (449.2642, 932.4781)

(a0, a1, a2, a3, a4)
(
−780.385, 0, 2.472 × 10−3,

1.522 × 10−8,−7.214 × 10−12) (
−796.383, 0, 8.938 × 10−5,

3.160 × 10−8, 1.7333 × 10−10)
R

 0.9989 0.0371 0.0291
−0.0375 0.9992 0.0133
−0.0286 −0.0144 0.9995


T

[
−355.90 11.0089 35.05714

]
3.3. Aberration-Correction Results

The aberration maps for this experiment were acquired indoors on a calibrated checker-
board grid using a binocular stereo sensing system. The aberration-correction algorithm in
this paper was used to obtain the aberration-correction map (shown in Figures 23 and 24).
The aberration rate of the visible image was 45%, indicating that the image aberration
caused by the large field-of-view was greatly improved at the edges and that the field-of-
view was not lost.
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3.4. Ranging Test Results

As shown in Figures 25 and 26, a person was selected as the recognition target and
could be recognized by both visible light and infrared cameras. Several ranging measure-
ments were taken at 5 m, 10 m, 15 m, 20 m, 25 m, 30 m, 40 m, and 60 m. By recognizing the
target, the target point was framed out and the depth value of the feature point inside the
frame was calculated. Sometimes the feature point contained both the foreground and the
background feature points. In this study, the analysis was carried out using Equation (34),
eliminating the unwanted data. The results of the ranging tests are shown in Table 6.

dV ±
∑
∣∣∣di − dV

∣∣∣
n

(34)

where di is the distance value of the feature point, and dV is the average value of the
distance value of the feature point.
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Figure 26. Binocular ranging-scene diagram in the park: (a) visible light camera image; (b) infrared
image; (c) and fused image.

Table 6. Binocular distance-measurement results.

Serial Number Measuring
Distance (m)

Visible Light-Ranging Infrared Ranging Fusion-Ranging
Distance(m) Difference (m) Distance (m) Difference (m) Distance (m) Difference (m)

1 5 4.82 0.18 5.05 0.05 5.01 0.01
2 10 10.15 0.15 10.02 0.02 10 0
3 15 14.64 0.36 15.04 0.04 15.02 0.02
4 20 19.01 0.99 19.84 0.16 19.98 0.02
5 25 24.14 0.86 24.53 0.47 24.86 0.14
6 30 31.62 1.62 29.53 0.47 30.37 0.37
7 40 37.99 2.01 39.46 0.54 39.78 0.22
8 60 56.76 3.24 62.55 2.55 60.35 0.35

Table 6 shows the visible ranging error at 0.99 m (distance 20 m), 1.62 m (distance
30 m), and 3.24 m (distance 60 m) and 0.02 m (distance 20 m), 0.47 m (distance 30 m),
and 2.55 m (distance 60 m), as well as the fusion-ranging error at 0.16 m (distance 20 m),
0.37 m (distance 30 m), and 0.35 m (distance 60 m). At a close distance, the error of ranging
was small, and the error gradually increased with an increase in distance. Comparing the



Sensors 2024, 24, 676 20 of 23

ranging results for visible and infrared cameras, the ranging accuracy of infrared camera
was better than that of visible light camera. The reason for this result is that the reprojection
error for the calibration of the infrared camera was less than that of the calibration results
for the visible light camera. Our proposed fusion-ranging method has greater accuracy
than those using only infrared- or visible light. The reason for this result is that the fusion
algorithm combines the advantages of visible- light and infrared, and the extracted feature
points are more accurate, so its ranging errors were 0.16 m (distance 20 m), 0.37 m (distance
30 m), and 0.35 m (distance 60 m). In addition, its feature points were more accurate, so its
ranging results were higher.

In order to improve the performance of this system, this paper improves the running
speed of the algorithms by optimizing the related algorithms, parallel processing, and
hardware acceleration, as shown in Figure 27. The major algorithms include: an FPGA-
based elliptic-aberration correction, which saves FPGA storage space by storing 1/4 of the
data, and the processing time of the algorithm is 6 ms; an FPGA-based adaptive image-
enhancement algorithm with a processing time of 0.2 ms, lower computational complexity,
and faster processing time; FPGA-based multi-scale infrared and visible fusion with a
processing time of 0.01 ms; a TX2-based SURF + RANSAC binocular stereo-matching algo-
rithm which uses feature point extraction, feature point descriptor calculation, matching
point search and consistency checking, such that the computational complexity is high and
the processing time is 16 ms; and, finally, a binocular stereo ranging method that removes
the misjudged points to get the final ranging data with a processing time of about 0.1 ms.
To summarize, the algorithms in the binocular stereo sensing system have a total processing
time of about 22.31 ms.
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4. Conclusions

This study proposed a dual-band fusion binocular stereo perception system with a
large 120◦ field-of-view combining infrared- and visible light imaging through two sets
of binocular stereo vision. This system enables information acquisition and stereo visual
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perception within a wide field-of-view, providing enhanced scene understanding and
addressing the limitations of traditional binocular stereo vision systems, such as a narrow
field-of-view and inaccuracies in short-distance ranging. Aiming to solve the aberration
problems of infrared and visible images with a large field-of-view, this paper adopted
the elliptic-aberration-correction model, which was corrected in real-time in the hardware
circuit in FPGA, thereby saving the storage resources of FPGA and solving the problem
of field-of-view loss. By adopting the multi-scale fusion method, the visible and infrared
images compensated for each other’s differences, fully utilized the texture information
of the visible image and the thermal radiation contour information of the infrared image,
and significantly improved the ranging accuracy. The simulation and experimental re-
sults demonstrated that the fusion-ranging accuracy outperforms the individual ranging
accuracies for infrared- and visible light cameras.

The proposed system can maintain high performance under different light and weather
conditions and scenarios. Adding image recognition algorithms for target localization of
special targets or obstacles, which has application value in many areas such as driverless
vehicles, virtual reality, and robot navigation. With the advancement of hardware and
algorithm technology, future research will focus on enhancing the real-time performance
of binocular stereo perception algorithms and achieving low-power edge computing,
engineering the binocular stereo perception system, and further building the binocular
stereo perception system with different resolutions to correct aberrations and accurately
recognize objects at different distances. By introducing artificial intelligence algorithms, the
system can realize adaptive processing and intelligent decision-making for complex scenes.
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