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Abstract: This work investigates the effectiveness of deep neural networks within the realm of battery
charging. This is done by introducing an innovative control methodology that not only ensures safety
and optimizes the charging current, but also substantially reduces the computational complexity
with respect to traditional model-based approaches. In addition to their high computational costs,
model-based approaches are also hindered by their need to accurately know the model parameters
and the internal states of the battery, which are typically unmeasurable in a realistic scenario. In this
regard, the deep learning-based methodology described in this work was been applied for the first
time to the best of the authors’ knowledge, to scenarios where the battery’s internal states cannot be
measured and an estimate of the battery’s parameters is unavailable. The reported results from the
statistical validation of such a methodology underline the efficacy of this approach in approximating
the optimal charging policy.

Keywords: machine learning; deep learning; neural networks; computational complexity; predictive
control; battery management systems

1. Introduction

Managing Lithium-Ion batteries is a multifaceted undertaking that necessitates the
careful negotiation of various factors and approaches, which may frequently be at odds
with one another. This involves defining appropriate current profiles for both charging and
discharging the batteries, implementing mechanisms to mitigate performance degradation
over time, and ensuring their safety throughout their lifespan. Given the breadth of these
considerations, it is evident that managing Lithium-Ion batteries is a challenging task
that requires meticulous attention [1]. Battery management systems used in the industry
usually rely on rule-based algorithms. One widely used class of algorithms is based on
the constant-current/constant-voltage principle, which seeks to optimize the charging
time of the batteries while staying within the voltage limits that have been established [2].
Despite their widespread use, these mechanisms tend to employ a conservative approach
that often fails to fully leverage the potential of Lithium-Ion batteries, whether it be to
expedite the charging time or safeguard their safety. Consequently, the outcomes of these
algorithms are often suboptimal. Moreover, due to the fixed nature of voltage constraints,
such basic algorithms overlook the gradual deterioration of batteries and the progressive
alteration of their internal characteristics as they undergo numerous cycles of charging and
discharging [3].

In reality, there are methods available that can offer a more effective control strategy
by exploiting a mathematical model of the battery. Within this context, different control
approaches have been considered, such as fuzzy logic [4,5], empirical rules [6,7], and
optimization-based strategies [8,9]. Among the latter, one such noteworthy technique
is model predictive control (MPC) [10], which has achieved considerable success and
widespread adoption in the context of battery management (see for instance [11–18]).
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This is owing to its ability to manage complex, nonlinear processes involving multiple
variables while satisfying constraints related to inputs and states. Despite its effectiveness
in simulations, MPC is not without limitations. Its practical use in real-world scenarios
is often impeded by computational complexities, which can render it less efficient and
effective than its theoretical potential suggests, especially when accurate nonlinear models
of the system are employed. This is due to the nature of the algorithm, which must solve
a constrained optimal control problem at each time step in real time. When it is not
able to computationally be on par with a fast sampling time of the control law, MPC
becomes useless.

To address this challenge, researchers have proposed a potential solution in the form of
an explicit MPC algorithm, which has been applied in the context of battery charging by the
authors in [19]. This type of MPC, as introduced in [20], aims to reduce the computational
burden of real-time operations by simplifying them to the evaluation of a straightfor-
ward function. In theory, the explicit MPC should require fewer computations since it
precomputes the optimal control action in the form of a piece-wise function of the state
and reference vectors, and only needs to detect the region in which the states are located
during real-time operations. However, in practice, the detection of such a region can be
computationally demanding, especially when dealing with numerous constraints and long
prediction horizons, leading to performance degradation that may not be acceptable [21].

The computational cost of the explicit MPC has been a challenge, leading to several
works in the literature attempting to address the issue (for instance, [22–24]). Most of
these works propose an approximation of the control law, with machine learning models
gaining attention in recent years, giving birth to the concept of learning-based model-
predictive control. Among the various learning models, deep neural networks have been
successful, leading to the development of the so-called deep MPC. Previous works in
deep MPC include [25], where the authors describe a model that is robust to input errors,
and [21], where a deep predictive controller is shown to be able to exactly represent—with
a sufficiently high number of neurons and layers—an explicit MPC control law. As far as
the battery control is concerned, a deep MPC formulation has been proven successful in
mitigating the issues of the computational complexity of a standard predictive controller
in [26,27], where a learning-based charging approach is applied to a battery modeled as an
equivalent circuit model and as an electrochemical one, respectively.

Beyond the problem of computational complexity, which can be reduced with the
use of approximations based on neural networks, the use of a predictive control paradigm
within the context of battery management is also limited by the fact that it relies on the
following assumptions: (i) the availability of an accurate model of the battery dynamics
(with accurately estimated parameters), (ii) measurability of all the relevant states of the
system. Such assumptions hold only in an ideal scenario in which the controller has a
perfect knowledge of the system, while in practice the parameters and the internal states
of the system need to be inferred from the available measurements (voltage, current, and
surface temperature) and only the model structure can be assumed to be known a priori.
The problem of parameter and state estimations for Lithium-Ion batteries has been largely
discussed in the literature and it is usually considered a key issue in the development
of reliable controllers. The proposed solutions usually involve the execution of ad hoc
experiments to collect the data required for the estimation of the parameters (see [28]) and
the design of suitable observers to reconstruct the state trajectory online (see [29]). However,
it is worth highlighting that the accuracy of the state observer is highly related to that of the
estimated electrochemical parameters, which can vary greatly, even among cells of the same
type, and may change as the battery ages. In conclusion, determining these parameters
with the required level of accuracy often needs time-intensive and intrusive experiments.

It is clear that a deep MPC approach that simply approximates an MPC feedback law,
such as the one proposed in [26,27], still suffers from the aforementioned issues related to
state/parameter estimation. In this paper, an extension is proposed for the work presented
in [27], with the aim of considering a more realistic scenario in which only the current,
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voltage, and temperature are assumed to be measurable, and the battery parameters are
unknown. Specifically, the implementation of an output-based deep MPC is considered
here, which is able to charge the battery with the knowledge of the system restricted to the
model structure, which is considered here as that of the well-known single particle model
(SPM) [30]. The results show that the proposed approach can accurately reproduce the
benchmark performance in a practical scenario.

For the first time, to the knowledge of the authors, a computationally-efficient neural
network-based predictive controller was successfully employed for the optimal charging of
a Lithium-Ion battery in the presence of non-measurable states and unknown parameters.

The structure of this work is as follows: in Section 2, the battery model is presented
in detail. Section 3 presents the formulation of the learning-based predictive controller.
Section 4 shows the training approach. The experimental results are shown in Section 5,
while Section 6 discusses potential improvements to the proposed approach. Finally,
Section 7 provides the concluding remarks.

2. Model

The primary categories of models used in sophisticated battery management systems
(BMSs) include equivalent circuit models (ECMs) [31,32] and electrochemical models
(EMs) [33,34]. ECMs are relatively simple and intuitive, whereas EMs offer a comprehensive
explanation of the electrochemical processes occurring within a cell. Electrochemical models
are more appropriate for simulation purposes rather than for real-time control applications.
Furthermore, the implementation of electrochemical models in a control framework is
constrained by issues of identifiability and observability [35]. As a result, researchers have
been focusing on the creation of simplified electrochemical models that are quicker to
simulate, identifiable, observable, and still provide adequate representation of the internal
cell phenomena [36,37]. The single-particle model (SPM) [30], which is obtained from the
pseudo-two-dimensional model [38] by considering the two electrodes as spherical particles,
is one notable example among these models. SPM is used in this paper to mathematically
describe the battery dynamics. Such a simplified electrochemical model has been largely
adopted for battery control and estimation of the states, due to its ability in achieving a
reasonable trade-off between the computational cost and accuracy (see e.g., [27,39–41]). The
accuracy of such a model was demonstrated in [42], among others. Note that the battery
model is enriched with the two-state temperature dynamics proposed by the authors in [43]
to account for thermal phenomena.

Only the equations pertaining to the primary variables of the model are mentioned
below; for a more comprehensive explanation, the reader is directed to reference [27].
Specifically, the variable soc(t) ∈ [0, 1] represents the state of charge of the battery, whose
temporal evolution is given by:

d soc(t)
d t

=
I(t)

3600C
(1)

where the applied current is denoted as I(t), with the convention that a positive current
charges the cell and C represents the cell capacity in [Ah]. It is important to note that
when the battery is fully charged, the state of charge is at soc(t) = 1, and when completely
discharged, the state of charge is at soc(t) = 0. Moreover, the battery voltage is given by
the following equation:

V(t) = Up(t)−Un(t) + ηp(t)− ηn(t) + Rsei I(t) (2)

where the terms Ui(t) and ηi(t), for i ∈ {n, p}, represent the open circuit potential and
overpotential, respectively, as defined in Section 2 of [27], while the term Rsei I(t) describes
the voltage drop in the solid electrolyte interphase (SEI) resistance. Note that the open
circuit potentials and the overpotential are nonlinear functions of the applied current, state
of charge, and battery average temperature. As far as the latter is concerned, the two-state
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model proposed in [43] is adopted here for the thermal dynamics, in which the core and
the surface temperatures are represented by Tc(t) and Ts(t), respectively. In particular, it
holds that:

Cc
d Tc(t)

d t
= Q(t)− Tc(t)− Ts(t)

Rc,s
(3a)

Cs
d Ts(t)

d t
=

Tc(t)− Ts(t)
Rc,s

− Ts(t)− Tenv

Rs,e
(3b)

where Rc,s and Rs,e denote the thermal resistances between the core and surface and be-
tween the surface and the external environment, respectively, whereas Cc and Cs represent,
respectively, the heat capacity of the cell’s core and surface. Finally, Q(t) represents the
amount of heat generated, which is defined as follows:

Q(t) =|I(t)(V(t)−Up(t) + Un(t))|. (4)

It is important to highlight that the electrochemical parameters in nominal form have
been extracted from the experimental characterization of a commercial cell, specifically the
Kokam SLPB 75106100, as presented in [44,45], while the thermal ones are based on those
employed by [43].

3. Methodology

This section outlines the methodology behind the learning-based predictive controller.
First of all, the nonlinear equations that describe the plant dynamics are formulated in a
state space form and discretized as follows:

x(tk+1) = fd(x(tk), u(tk), p) (5a)

y(tk+1) =g(x(tk+1), u(tk), p) (5b)

in order to consider a digital controller that applies a piece-wise constant input at the
discrete times tk, k ∈ N with sample time ts. Specifically, x(tk) ∈ Rnx , u(tk) ∈ Rnu ,
and y(tk) ∈ Rny represent the state, input, and output vectors, respectively. Moreover,
the model parameters are represented as p ∈ Rnp (the dependence of a variable on the
parameter vector will be made explicit below only where necessary). Furthermore, the
functions fd : Rnx ×Rnu → Rnx and g : Rnx ×Rnu → Rny map the current state and the
current input into the next state (x(tk+1)) and the output (y(tk)), respectively. Finally, note
that the generic input sequence applied in the time interval [tk, tk+H ], with H ∈ N, is
represented as:

u[tk , tk+H ] =
[
u(tk)

> u(tk+1)
> · · · u(tk+H−1)

>
]>

. (6)

The rest of the section is organized as follows. The main features of a standard pre-
dictive controller are discussed in Section 3.1, while its approximation through a learning-
based algorithm under the assumption of state measurability and parameter knowledge is
presented in Section 3.2. Finally, in Section 3.3, * a novel algorithm is proposed, which still
relies on neural networks and consists of the adaptation of the deep MPC for the case in
which the states and parameters are unknown.

3.1. Model Predictive Control

Predictive control methodologies that rely on a receding horizon framework [46] have
been shown to be particularly effective in dealing with nonlinear processes subject to the
input and state constraints [10]. In this context, the model’s predictive control scheme
computes the optimal control sequence u?

[tk , tk+H ] over the prediction horizon H at each time
step tk, by solving a constrained optimization problem with a cost function that depends
on predictions made by a mathematical model of the plant. Then, according to the receding
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horizon paradigm, only the first element u?(tk) of the resulting optimal input sequence is
applied, while the remaining future optimal moves are discarded.

Specifically, the following optimization problem is solved at each time step in order to
compute the control action:

u?
[tk ,tk+H ] = argmin

u[tk ,tk+H ]

J(x(tk)) (7)

subject to:

system dynamic in (5) (8a)

ulb ≤ u(ti) ≤ uub, i = k, k + 1, · · · , k + H − 1 (8b)

xlb ≤ x(ti) ≤ xub, i = k + 1, k + 1, · · · , k + H (8c)

ylb ≤ y(ti) ≤ yub, i = k + 1, k + 1, · · · , k + H (8d)

with ulb, uub ∈ Rnu being the limits for the input vector, xlb, xub ∈ Rnx the ones for the
state vector, and ylb, yub ∈ Rnx the ones for the output vector. The cost function J(x(tk)) to
be minimized is formulated as follows:

J(x(tk)) = ‖x(tk+H)− xref‖2
QH

+
k+H

∑
i=k+1

[
‖x(ti)− xref‖2

Qx
+ ‖y(ti)− yref‖2

Qy

]
+

+
k+H−1

∑
i=k

‖u(ti)− uref‖2
R

(9)

where the vectors xref ∈ Rnx , yref ∈ Rny and uref ∈ Rnu correspond to the reference point
that the MPC aims to track and the matrices Qx ∈ Rnx×nx , Qy ∈ Rny×ny ,QH ∈ Rnx×nx ,
and R ∈ Rnu×nu are design parameters, with Qx, Qy, QH ≥ 0 and R > 0. Note that the
term ‖x(tk+H)− xref‖2

QH
represents a suitably tuned terminal penalty used to improve the

controller stability.
The MPC control law is defined as follows:

umpc(x(tk)) = u(tk)
? (10)

which is computed by solving the problem in (7) for the state vector x(tk).

3.2. State-Based Deep MPC

Learning-based predictive control leverages the representation capabilities of machine
learning models to achieve a precise approximation of the feedback law used in standard
predictive controllers. This approach offers an alternative to the concept of “explicit”
MPC, with the goal of further reducing the online computational burden of the control
scheme. Explicit MPC relies on a piece-wise function to represent the control law, which
requires finding the polytopic region where the states are located online. This process
can be computationally expensive, especially if the number of regions that define the
corresponding piece-wise function is high. In contrast, learning-based methodologies solve
this issue by directly mapping the current states to the optimal action using a machine
learning model.

The notion of learning-based MPC was initially introduced by [47]. However, its
practical application in designing fast MPC techniques has only become reliable recently,
primarily due to new advancements in the theoretical description of neural networks. In
the following part of this section, the deep MPC formulation used in this study is presented.

A deep learning modelN = N (x, r, θ) with nx inputs and nu outputs can be described
in this fashion, where θ stands for the parameters of the data-driven model, whereas r
represents the vector of the MPC references, i.e., r = [x>ref y>ref u>ref]

>. Synthetic data for
training are produced by solving Equation (7) for ntr different reference samples and
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different states, i.e., ri and xtr,i, respectively, for i = 1, 2, . . . , ntr, and by saving the tuples(
xtr,i, ri, umpc(xtr,i)

)
in the dataset Btr, where umpc(·) represents the MPC control action.

The model denoted by N is subjected to offline training using the dataset Btr via the
backpropagation method to resolve the following optimization problem:

θ? = argmin
θ

1
ntr

ntr

∑
i=0
‖umpc(xtr,i)−N (xtr,i, ri, θ)‖2

2 (11)

where the loss function is the mean squared error between the model prediction and the
target. Finally, the actual control action is obtained as follows:

us-dmpc(x(tk)) = N (x(tk), r, θ?) (12)

where the subscript “s-dmpc” indicates the state-based deep MPC algorithm.

3.3. Output-Based Deep MPC

As previously stated, the reliability in a practical scenario of the algorithm proposed in
Section 3.2 is limited by the assumption of full-state measurability. Within this context, it is
worth noticing that the design and tuning of a suitable state observer is usually considered a
time-consuming process that still relies on the strong assumption of knowledge of the model
parameters. In a realistic situation, the latter can only be estimated with a certain degree of
accuracy, which may significantly affect the performance of the state observer. Moreover,
inaccuracies in the parameters may lead to wrong predictions of the system’s state evolution,
thus making pointless the predictive nature of the controller. As a possible solution, a
novel methodology is proposed here, which relies only on the available measurements to
approximate the optimal control action. In particular, inspired by the techniques used in the
context of the partially observable Markov decision process, a fixed window of historical
measurements is used as input for the neural network during the training phase, thus
allowing the model to learn a map from the available measurements to the optimal action.

Therefore, the training phase is firstly reformulated by relying on a dataset Bout
tr , with

|Bout
tr | = ntr − nw, in which the i-th sample consists of a feature vector fi and the target

umpc(xtr,i), with the former defined as follows:

fi = [ytr,i−nw , . . . , ytr,i−1, utr,i−nw , . . . , utr,i−1, ri] (13)

where ytr,i and utr,i are the samples of the system’s outputs and inputs, respectively, while
nw is the length of the window of the considered historical measurements. The neural
network N is then trained offline on the dataset Bout

tr by solving the following optimization
through the backpropagation method:

θ?out = argmin
θ

1
ntr − nw

ntr

∑
i=nw

‖umpc(xtr,i)−N (fi, θ)‖2
2 (14)

where the loss function is the mean squared error between the network prediction and the
target. The control action is obtained from the following equation:

uo-dmpc(x(tk)) = N (fi, θ?out) (15)

where the subscript “o-dmpc” indicates the output-based deep MPC algorithm.
The proposed output-based deep MPC relies on the idea that a sufficiently large

window of historical measurements contains the information necessary to reconstruct the
state of the system, and that the neural network is able to approximate the optimal action to
take in a particular state by recognizing its pattern in the available measurements. However,
the possibility of using the presented technique in a realistic scenario strictly depends on
how the training set Bout

tr is generated. For instance, if the model’s parameters are kept
constant through the whole generation procedure, the algorithm is expected to achieve high
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performance only if the parameters of the system coincide with the ones used to generate
the training set. However, as mentioned above, the assumption of accurate knowledge of
the model’s parameters has limited practical support. For this reason, an adaptation of the
output-based deep MPC is presented here with the aim of making the control algorithm
robust to variations in the parameters of the system. Specifically, such a result is achieved
by generating each sample i of the training dataset Bout

tr by integrating the system dynamics
in (5) and solving the optimization problem (7) with a different value of the parameter
vector pi. As a consequence, the training of the neural network becomes

θ?out = argmin
θ

1
ntr − nw

ntr

∑
i=nw

‖umpc(xtr,i, pi)−N (fi, θ)‖2
2 (16)

which is based on the idea that a deep learning model can learn the optimal action to take
in a particular state and parameter configuration by searching for a specific pattern in the
available historical measurements.

4. Training of the Controller

This section is devoted to the definition of the optimal charging problem for a Lithium-
Ion cell in Section 4.1, as well as the dataset generation and model training phases in
Section 4.2 and Section 4.3, respectively.

4.1. Optimal Battery Charging

Within this section, a problem of optimal control is presented concerning the fast
charging of a battery. The main objectives are to track the state of charge while reducing the
current flow, with the additional constraint of maintaining safe voltage and temperature
levels. The battery dynamics are modeled as a nonlinear and discrete system where the
current applied to the battery acts as the input variable. Finally, the optimization problem
is formulated according to the following procedure:

min
I[tk ,tk+H ]

qsoc

k+H

∑
i=k+1

(soc(tk)− socref)
2 + r

k+H−1

∑
i=k

I(tk)
2+ (17)

+ qH(soc(tk+H)− socref)
2

that for i = k, k + 1, · · · , k + H − 1 are subject to:

battery dynamics in (1)–(4) (18a)

0 ≤ I(ti) ≤ 10 A (18b)

0 ≤ soc(ti) ≤ 1 (18c)

Tc(ti) ≤ 313.15 K (18d)

Ts(ti) ≤ 313.15 K (18e)

V(ti) ≤ 4.2 V (18f)

with qsoc = 1, r = 10−6 and qH = 1. Moreover, the length of the prediction horizon is chosen
as H = 4 and the sample time is taken as ts = 10 s. Interestingly enough, the reference
state of charge (socref) is left unspecified due to its dependence on charging preferences.
This is in contrast to the current, temperature, and voltage limits, which are determined
solely by the battery chemistry. During the dataset generation phase for the learning-based
algorithm, the reference state of charge is modeled as a random variable with a uniform
probability distribution within a designated range. This enables the learning-based MPC
to adapt the charging profile to the various potential values of the reference. Finally, the
input reference, which is the current reference, is always set to Iref = 0 since the system is
marginally stable.
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4.2. Dataset Generation

In order to train the learning-based algorithm effectively, it is necessary to have a large
dataset that includes information on the system’s states and parameters, as well as the
optimal action taken by the predictive controller. The quality of the data is critical, as it
can significantly affect the performance of the proposed data-driven algorithm. Having
inaccurate, inconsistent, or flawed data can have a negative impact on the performance of a
data-driven algorithm, such as the one presented in this manuscript, potentially leading to
incorrect or biased results, poor performance, and decreased trust in the algorithm and its
outcomes. Furthermore, the quantity of data used is also crucial in avoiding overfitting
in a machine learning model. Overfitting takes place whenever a model ends up being
too complex and includes too many parameters with respect to the amount of training
data; this phenomenon makes it so that the model memorizes the training data, with the
consequence of displaying a poor performance when applied to new, previously unseen
data. Overfitting can be alleviated by increasing the amount of training data, so that the
model is provided with more examples to learn from and, thus, may be able to generalize
to new data. Even so, a mere increase in the quantity of training data may not be enough to
prevent the overfitting phenomenon since the characteristics of the training data used need
to be considered. In fact, it is important for those data to be as varied and representative as
possible with respect to their real-world distribution, in order for the model not to memorize
specific patterns or features in the data. In this regard, robust models for machine learning,
with a high potential for generalization when dealing with unseen data, need to be fed both
high-quality and large quantities of data.

As a result, firstly, an ideal MPC controller that executes the control task specified
in Section 4.1 is implemented. To produce the dataset, a synthetic method is utilized,
involving the offline execution of 2000 simulations, each containing 200 time steps. For
each sample time i, a dataset sample is created, including the available measurements,
the reference for the state of charge (determined for the j-th simulation), and the optimal
current value for the subsequent time step:(

Vi−1, Ts,i−1, Ii−1, socref,j, I?i
)
. (19)

In order to include a window of historical measurements of size nw, the database is
reshaped with the rows as follows:(

Vi−nw , Ts,i−nw , Ii−nw , . . . , Vi−1, Ts,i−1, Ii−1, socref,j, I?i
)

(20)

i.e., the previous measurements are used to predict the optimal current. Note that for
each simulation j, the battery’s initial conditions are extracted from a random uniform
distribution: soc(t0) ∼ U (0, 1) and Ts(t0), Tc(t0) ∼ U (298.15 K, 313.15 K). Similarly, the
reference state of charge for the j-th simulation is sampled as socref,j ∼ U (0.7, 1). Finally,
in order to make the algorithm robust to changes in the parameters during the battery
aging, the battery capacity and the SEI resistance are sampled from a uniform distribution,
thus obtaining a different parameter vector pj in every simulation: Cj ∼ U(5.5 Ah, 8 Ah)
and Rsei,j ∼ U(0.014 Ω, 0.019 Ω). Note that the pair C = 8Ah and Rsei = 0.014 Ω corre-
sponds to that of a brand new battery just released from the factory, while C = 5.5Ah and
Rsei = 0.019 Ω represents a battery at the end of its life.

To reiterate, it is crucial to remember that for each step i, the optimal current I?i is
determined by solving the optimization problem described in (17). This process involves
executing an ideal MPC, assuming full-state measurability and complete knowledge of
the relevant parameters. To increase exploration, Gaussian noise is added to the MPC
control action during the battery dynamics evolution for every simulation, using a standard
deviation of 2, A. Lastly, the dataset is split into three separate sets, as is customary in
machine learning: training, validation, and testing.
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4.3. Training Phase and Model Selection

In this section, the training phase of several machine learning configurations is con-
ducted, with a particular focus on feed-forward deep neural networks (DNNs) and re-
current neural networks (RNNs). As can be seen from Table 1, which reports the results
of the training phase for the different architectures and measurement window nw, the
use of RNNs appears to be particularly suitable for solving the considered task, thanks
to their ability in dealing with sequential information, such as the one contained in the
dataset samples (see (20)). Note that all of the considered models have a ReLu activation
function in the hidden layers and a tanh activation function in the output layer. The tanh
activation function on the last layer is used to constrain the output of the network within a
specific range, which means, in the context of battery charging, constraining the optimally
applied current within its range of operation. In order to enhance the learning capabilities
of all of the considered models, a preprocessing pipeline is considered that involves both
the scaling and standardization of the dataset’s features. Moreover, for the training of
the deep learning models, the stochastic gradient descent algorithm is employed, and, in
particular, the Adam optimizer is adopted, with the mean squared error as the loss function
and learning rate equal to 5× 10−4. Finally, it is worth highlighting that Gaussian noise
was applied to the features in the training set with the dual motivation of preventing any
overfitting and making the model robust to a realistic scenario, in which the values of
surface temperature and voltage were affected by a measurement disturbance due to mal-
functioning or inaccurate sensors. Specifically, Gaussian noises with standard deviations of
20 mV for the voltage and 1 K for the temperature were considered.

Table 1. Mean square error (MSE) over the validation set of the machine learning models considered
as possible candidates for the MPC law approximation under the assumption of non-measurable
states and unknown model parameters.

Model Measurements Window (nw) Mean Squared Error

DNN (Dense: 3× 100, 3× 50, 3× 10) 10 0.256
DNN (Dense: 3× 100, 3× 50, 3× 10) 15 0.212
DNN (Dense: 3× 100, 3× 50, 3× 10) 20 0.199
RNN (LSTM: 64, 32, 16, Dense: 3× 100, 3× 50, 3× 10) 10 0.202
RNN (LSTM: 64, 32, 16, Dense: 3× 100, 3× 50, 3× 10) 15 0.182
RNN (LSTM: 64, 32, 16, Dense: 3× 100, 3× 50, 3× 10) 20 0.124
RNN (LSTM: 128, 64, 32, 16, Dense: 2× 100, 50, 10) 10 0.193
RNN (LSTM: 128, 64, 32, 16, Dense: 2× 100, 50, 10) 15 0.133
RNN (LSTM: 128, 64, 32, 16, Dense: 2× 100, 50, 10) 20 0.109

The model that achieved the highest performance consisted of a recurrent neural
network with 4 long short-term memory (LSTM) hidden layers (with 128, 64, 32, and
16 neurons each) and 4 fully connected hidden layers (2 of them with 100 neurons each,
one with 50 neurons, and the last one with 10 neurons), with a window of historical
measurements nw = 20. Therefore, such a model was selected to properly approximate the
predictive control law in the simulations considered in Section 5.

It is important to note that the loss of validation for the selected model converged
after 23 epochs, as depicted in Figure 1, and that no overfitting was present due to the fact
that the prediction error during the testing phase (etest = 0.109) was coherent with that
achieved on the training set.
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Figure 1. Training and validation loss profiles against epochs for the RNN model with 4 long short-
term memory (LSTM) hidden layers (with 128, 64, 32, and 16 neurons each) and 4 fully connected
hidden layers (2 of them with 100 neurons each, one with 50 neurons, and the last one with 10
neurons), with a window of historical measurements nw = 20.

5. Results

This section illustrates the results of the comparison, regarding the case of battery
charging, between an ideal predictive controller, which operates under the assumptions
of state measurability and parameter knowledge, and an output-based deep MPC, for
which only the model structure is assumed to be known a priori. More specifically, the
effectiveness of the proposed algorithm in tracking the optimal charging profile for a
battery with uncertain parameters by exploiting only noisy measurements is demonstrated
in Section 5.1, for the first time, to the knowledge of the authors. Finally, in Section 5.2,
details on the software implementation are provided.

5.1. Approximation of the Optimal Charging Profile in the Presence of Unknown States and Parameters

In the following subsection, the effectiveness of the neural network-based approach
in approximating the charging profile achieved by the ideal predictive controller will
be evaluated, with particular attention to different combinations of initial conditions,
references, and battery parameters. The results are illustrated in Figures 2–6, with crossed
lines representing the output-based deep MPC profiles and solid lines representing the
ideal predictive controller. Specifically, the figures on the left refer to an almost new battery
with parameters C = 7.5 Ah and Rsei = 0.015 Ω, while the ones on the right represent
an aged battery with C = 6 Ah and Rsei = 0.018 Ω. Moreover, two scenarios of initial
conditions and state-of-charge references are considered: blue lines are used for the profiles,
which refer to the simulation with socref = 0.8 and initial states given by soc(t0) = 0.2,
qn(t0) = 0, qp(t0) = 0 and Ts(t0) = Tc(t0) = 305.15 K (also referred as sim 1), while the
red lines are used for the case of socref = 1 and initial states given by soc(t0) = 0.05,
qn(t0) = 0, qp(t0) = 0, and Ts(t0) = Tc(t0) = 300.15 K (sim 2). For all of the simulations,
a prediction horizon H = 4 is considered, equal to the one used for the generation of the
training dataset.
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Figure 2. State-of-charge profiles of the two considered methodologies (solid line for the ideal
predictive controller and crossed line for the output-based deep MPC), with sim 1 in blue and sim 2 in
red. The blue and red dotted lines represent the SOC references for the first and second simulations,
respectively. The case of a new battery is considered on the left, while an aged battery is considered
on the right.
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Figure 3. The figure illustrates the profiles of the terminal voltage achieved by the benchmark and
the proposed methodology for different initial conditions and battery parameters. The dash-dotted
black line represents the upper-bound voltage.
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Figure 4. The figure illustrates the profiles of the core temperature achieved by the benchmark and
the proposed methodology for different initial conditions and battery parameters. The dash-dotted
black line represents the upper-bound for the core temperature.
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Figure 5. The figure illustrates the profiles of the surface temperature achieved by the benchmark and
the proposed methodology for different initial conditions and battery parameters. The dash-dotted
black line represents the upper-bound for the surface temperature.
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Figure 6. The figure illustrates the profiles of the current applied by the benchmark and the proposed
methodology for different initial conditions and battery parameters. The dash-dotted black line
represents the upper-bound for the applied current.

It is important to recall that in every simulation the output-based deep MPC does not
have access to the battery states and is not aware of the value of the battery parameters,
but it relies only on the available measurements, which are assumed to be affected by a
Gaussian noise with a standard deviation of 20 mV for the voltage and 1 K for the surface
temperature.

As seen from the results, the trajectory of the system controlled by the proposed
algorithm exhibits characteristics that are very similar to those achieved by using the ideal
MPC. It is important to note that the ideal MPC is based on strong assumptions, such as
full-state measurability and known parameters, which may not hold in a realistic scenario.
Therefore, it is considered as a benchmark in this study. In particular, Figure 2 demonstrates
that both controllers are capable of tracking the state of charge references in all considered
situations. Moreover, Figures 3–5 show that the output-based deep MPC is almost always
able to satisfy the constraints on voltage and temperature. Furthermore, in Figure 6, the
applied current is shown, where the constraints are satisfied by the design of the output-
based deep MPC, while in the case of the ideal predictive controller, they are imposed as
bounds on the input. The control strategy obtained with both the controllers for sim 2 is
similar to the constant-current/constant-temperature/constant-voltage protocol, which has
been proven to be effective in decreasing the charging time while adhering to the current,
voltage, and temperature restrictions (see [48,49]).

It should be noted that in realistic scenarios, such as the one considered for the
proposed algorithm, slight violations of voltage and temperature constraints may occur due
to unknown internal states, unknown parameters, and measurement noises affecting the
available output. In practical situations, it is not always feasible to ensure strict satisfaction
of hard constraints on states and outputs. Instead, these constraints should be considered
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soft constraints, meaning they should be avoided if possible. Appropriate measures can
be taken to minimize the likelihood of a constraint violation. For instance, using a more
accurate machine learning model in output-based deep MPC may help reduce constraint
violations. As for the satisfaction of input constraints, the inclusion of a tanh activation
function on the output layer of the neural network model ensures that the applied current
does not exceed the safety limits.

It should be noted that a similar approximation capability for the output-based deep
MPC can be achieved for initial conditions, references, and parameters that fall in the
intervals of variation considered during the training phase. These intervals can be set wide
enough to account for the entire range of realistic scenarios. To support this claim, the
paper provides a statistical analysis comparing the output-based deep MPC profiles with
a benchmark over 100 simulations with randomly chosen starting states, references, and
parameters. In particular, it emerges that the approximation error for the applied current is,
on average, −3.9 mA, with a standard deviation of 487.9 mA, as depicted in a histogram
that resembles a normal distribution in Figure 7.
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Figure 7. Histogram of the errors observed in over 100 simulations by the output-based deep MPC
approach in approximating the ideal predictive control law.

Table 2 summarizes the approximation errors and standard deviations for the state
of charge, voltage, and core temperature profiles. The average approximation error for
the state of charge profile is −0.2× 10−3, and the standard deviation is 10.1× 10−3. The
voltage profile has an average error of −0.2 mV, with a standard deviation of 14.4 mV,
while the core temperature has an average error of −24.4 mK, with a standard deviation of
401.7 mK. The algorithm has a higher probability of making errors in the approximation of
the MPC control law when the system state is near the reference or constraints. Although
these errors can cause small oscillations around the reference, they do not affect the stability
of the control law. However, including additional samples corresponding to critical points
in the dataset could improve the accuracy of the algorithm.

Finally, we note that, although the output-based dMPC does not imply an initial guess
for the battery’s states or the battery parameters, a guess for the first nw control action is
required, due to the fact that the proposed approach can predict the optimal current only
when a window of nw historical measurements is available. Such an applied current guess
is computed offline as the average current applied at the beginning of the charging phase
according to the available data in the training set.
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Table 2. Statistical description of over 100 simulations of the difference between the trajectory of the
model variables obtained with the 2 considered control methodologies.

Statistics soc [10−3] V [mV ] Tc [mK]

Mean −0.2 −0.1 −24.4
Standard deviation 10.1 14.4 401.7

5.2. Implementation Details

The simulations presented in this paper were conducted on a personal computer run-
ning Windows 10 with an i7-8750H processor and 16 GB of RAM, and the implementation
was carried out using Python 3.7. The deep learning model was created and trained using
TensorFlow 2.0, while the equations of the model were integrated via CasADi, a symbolic
framework that allows for automatic differentiation. CasADi was also employed to solve
the optimal control problem described in Equation (7).

6. Discussion

As stated, the methodology described in this paper is a novel contribution. However,
corresponding issues need to be taken into account. Specifically, the aspects mentioned in
the following paragraphs may be considered in future research.

• The proposed methodology is designed to be robust with respect to uncertainty in
the battery parameters. However, it should be highlighted that a high performance
can be achieved in a practical scenario only under the assumption that all of the
relevant physical phenomena have been considered in the battery model used to
generate the synthetic dataset. Although this assumption is more realistic than as-
suming perfect knowledge of states and parameters, it is important to investigate the
consequences of its violation and develop countermeasures to mitigate the effects of
potential inaccuracies in the modeling phase.

• The output-based deep MPC predicts the optimal input for charging a battery based
on previous measurements. However, at the start of the charging process, there are
only a limited number of previous measurements available, making it challenging to
effectively use the proposed algorithm. To address this challenge, a rough guess for
the initial control actions is utilized. This guess is computed offline as the average
current applied at the beginning of the charging phase, based on the available data in
our training set. Unfortunately, if the guess input deviates from the optimal one, the
controller’s performance during the first stage of charging may be affected, potentially
leading to safety issues. To mitigate this issue, multiple output-based deep MPC
algorithms can be employed during the first stage of charging. Each algorithm utilizes
a different number of previous measurements, starting from no previous measure-
ments, then gradually incorporating one, two, and so on, until a certain number of
measurements are available.

Addressing the aforementioned issues in the future may pave the way to further
improve the proposed approach.

7. Conclusions

In this paper, the optimal charging of a battery is addressed by exploiting a deep
learning-based methodology. This methodology has been designed to be effective even in a
realistic scenario in which the battery parameters are unknown and only noisy measure-
ments are available. To the best of the authors’ knowledge, for the first time, the proposed
technique relies on recurrent neural networks to approximate the optimal control law of a
predictive controller, by using only voltage and temperature data. Firstly, battery charging
was formalized as an optimal control problem. Then, a detailed description of the genera-
tion of a synthetic dataset for the training phase was provided, highlighting the importance
of exploring different battery conditions and parameters. In addition, an analysis was
conducted to select the most suitable machine learning model, in order to find a reasonable
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trade-off between accuracy and computational complexity. Finally, the validation of the
proposed algorithm was performed against an ideal predictive controller (with full-state
measurability and parameter knowledge) used as a benchmark. The results show that the
output-based deep MPC is able to achieve a performance similar to the benchmark without
relying on the unrealistic assumption of knowing the battery states and parameters, but
only on noisy measurements. In this regard, a statistical analysis was provided to highlight
the effectiveness of the proposed approach over 100 different simulations.
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