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Abstract: Pedestrian safety has been evaluated based on the mean number of pedestrian-involved
collisions. Traffic conflicts have been used as a data source to supplement collision data because of
their higher frequency and lower damage. Currently, the main source of traffic conflict observation is
through video cameras that can efficiently gather rich data but can be limited by weather and lighting
conditions. The utilization of wireless sensors to gather traffic conflict data can augment video sensors
because of their robustness to adverse weather conditions and poor illumination. This study presents
a prototype of a safety assessment system that utilizes ultra-wideband wireless sensors to detect traffic
conflicts. A customized variant of time-to-collision is used to detect conflicts at different severity
thresholds. Field trials are conducted using vehicle-mounted beacons and a phone to simulate sensors
on vehicles and smart devices on pedestrians. Proximity measures are calculated in real-time to alert
smartphones and prevent collisions, even in adverse weather conditions. Validation is conducted to
assess the accuracy of time-to-collision measurements at various distances from the phone. Several
limitations are identified and discussed, along with recommendations for improvement and lessons
learned for future research and development.

Keywords: pedestrian safety; time-to-collision (TTC); ultra-wideband (UWB); wireless sensors;
UWB beacons

1. Introduction
1.1. Background

Wireless signals emitted from devices commercially available to consumers operate at
various frequencies and signal modes. One type of the signal modes that is growing in
popularity is the ultra-wideband (UWB). UWB wireless communication technology allows
high-frequency signal transmission with relatively low power consumption. UWB is a radio
frequency technology that uses a large bandwidth with low power to transmit data over
short distances. UWB frequencies range from 3.1 to 10.6 GHz and have greater bandwidth
than alternative wireless technologies, including Wi-Fi and Bluetooth [1]. A device that
functions as a source of UWB wireless signal emission is often called a UWB beacon. UWB
beacons play an essential role in modern network-based applications, such as the Internet
of Things (IoT), by delivering location-based services through a wireless communication
protocol. Many applications have been developed based on UWB sensors, including proximity
sensing and tracking, to improve the functionality of IoT devices. UWB is often used to
precisely determine the position of beacons relative to a receiver without interfering with other
wireless technology. The UWB communication module consumes relatively little power and
is inexpensive compared to other wireless sensors. UWB chips have been included in some
recent designs of smartphones, e.g., Apple’s iPhone 11 and later models. For the purpose
of positioning a wireless signal source, UWB offers one of the most accurate solutions for
distance measurement between two communicating devices using the time-of-flight technique.
Therefore, UWB is adopted in this work as the main wireless mode to develop the proposed
safety application as well as detect safety-relevant events.
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Wireless communication using UWB is adopted in many applications, such as as-
set tracking, indoor navigation, and autonomous vehicles. In the field of transportation,
UWB can play a role by allowing effective navigation and communication. By virtue of
their precise distance measurement, UWB beacons have the potential to provide real-time
information about potential hazards on the road. The extraction of road user proximity in-
dicators can also help in identifying safety shortcomings at a cross-sectional or site-specific
level. This can support traffic safety applications that aim at utilizing non-collision and
safety-relevant data. For instance, UWB can enable real-time vehicle-to-vehicle communi-
cation by sharing positional information, such as range, relative speed, and direction [2].
Another potential safety application is that UWB can provide highly accurate positioning
information to enhance navigation, thus reducing the risk of a collision caused by incorrect
navigation. Finally, UWB technology can enhance pedestrian safety by detecting and track-
ing the movement of pedestrians or other vulnerable road users, allowing vehicles to react
promptly to potential hazards. Conversely, vehicles can track pedestrian positions and
movements and, if appropriate, alert the pedestrian to an impending hazard. Therefore,
UWB technology has an excellent opportunity to enhance transportation safety.

1.2. Literature Review

Extensive research has been conducted to analyze the use of wireless sensors, such as
Bluetooth, Bluetooth Low Energy (BLE), Wi-Fi, UWB, or GPS, in real-time traffic monitor-
ing applications [3–6]. Traffic monitoring applications are designed to provide real-time
information about traffic conditions; for instance, the calculation of surrogate measures of
safety to estimate the risk of collision or the severity of traffic events that are not collisions
themselves [7]. Researchers also explored the use of smartphones to alert drivers of a po-
tential accident in the case of a vehicle-to-vehicle interaction [8]. For example, the real-time
application warns drivers by combining information from traffic conflict indicators, e.g., the
time-to-collision and deceleration rate to avoid a crash, and the use of satellite navigation
systems. This application can create a safety map that provides awareness to drivers of
high-risk areas and when they are approaching “dangerous” zones. They claimed that the
real-time warning system suffers from errors in GPS measurements [8].

A recent study was conducted to evaluate UWB smartphones from major manufactur-
ers, such as Samsung, Apple, and Google [9]. The research found that the tested devices
could measure distances with an error of under 20 cm. However, the devices did not
provide consistent measurements in outdoor, lab, and garage scenarios. The maximum
range distances possible to measure with UWB-enabled smartphones were 40 m, 23 m,
and 11.6 m for the iPhone 12 Pro, Samsung Galaxy S21 Ultra, and Google Pixel 6 Pro,
respectively. The study showed that the iPhone and Google Pixel demonstrated some
measurement errors (distance reduction) of up to 3 m at a range distance of 5 m because of
the potential multipath environment even, in an outdoor environment.

In another study, researchers created a smartphone application to warn distracted
pedestrians while crossing [10]. The research utilized Bluetooth beacons around a signalized
intersection to alert pedestrians who were distracted by their phones when they were
getting close to a dangerous intersection, either through a visual or audible warning.
The application was tested in a real-life deployment to increase public safety in urban
environments. Another study [11] focused on the use of Bluetooth Low Energy (BLE)
beacons and smartphones to provide location-based and proximity-based services for
a smart parking application. A BLE beacon is a small wireless device that uses low-
power Bluetooth technology to communicate with nearby devices. The experiments were
conducted outdoors and indoors to evaluate proximity accuracy. The evaluation was
achieved by analyzing the Received Signal Strength Indicator (RSSI). BLE beacons were
used to fill the gaps in GPS data since the GPS receiver cannot perform adequately in some
indoor locations.

Many studies looked at utilizing wireless sensors in traffic safety in order to enhance
pedestrian safety. For instance, one study investigated the use of wireless sensors, such as
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Bluetooth, Wi-Fi, and BLE, in vehicle–pedestrian collision warning systems [12]. Their study
conducted field experiments to compare the performance of each mode. Moreover, five
factors, including the received signal strength indicator (RSSI)-based distance relationship,
motion effects, rainfall effects, signal transmission rates, and non-line-of-sight effects, were
evaluated. The study found that BLE mode was superior to Bluetooth and Wi-Fi modes
because it showed better accuracy in estimating distance and position. Another study [4]
conducted an experiment to look at the use of Wi-Fi technology in traffic data collection. Wi-
Fi technology has been used in vehicle and pedestrian positioning in various applications,
but the technology faces challenges that have impeded tracking, such as Media Access
Control Address (MAC) randomization.

The Federal Highway Administration (FHWA) funded PedPal, a mobile application
that was created by [13,14] to help pedestrians with disabilities conduct safe crossings
at signalized intersections. The real-time localization was obtained by using stationary
UWB and Bluetooth beacons at each corner of an intersection. Moreover, the study looked
at enhancing pedestrian safety by considering accessible route navigation and planning,
safe intersection crossings, and pedestrian-to-infrastructure communication. For instance,
when a pedestrian is approaching an intersection, the beacons start communicating with
the smartphone. The position of a pedestrian can be assumed by their proximity to a
beacon. The crossing direction can be tracked by the distances obtained from all beacons.
This study found that utilizing UWB beacons allowed for better accuracy than Bluetooth
beacons. Finally, the study showed that UWB beacons could be used to overcome the
errors of Bluetooth beacons. It was noted that UWB technology showed high accuracy in
localization and tracking even in extreme weather conditions [15]. For instance, the study
looked at enhancing cyclist safety by placing UWB tags on bikes and vehicles and placing
UWB anchors at a signalized intersection.

1.3. Study Objectives

This study aims to explore the potential to improve pedestrian safety using UWB
technology. The specific objectives of the study are as follows: [i] develop a prototype that
can detect traffic conflicts based on severity using UWB sensors, [ii] assess the performance
of this system using various statistical measures, [iii] evaluate the impact of errors in
distance measurements on the system’s performance, and [vi] document lessons learned
for future technology development. The following sections present: technology description,
field experiments, discussion, and conclusions, respectively.

2. Materials and Methods

UWB beacons transmit data over a large bandwidth, unlike traditional Bluetooth
beacons. UWB beacons allow high accuracy in measuring distances and tracking positions
between the device and beacon. Beacons can connect to nearby devices that are UWB-
enabled or, in the case of smart devices, Apple devices equipped with a U1 chip. For
example, the phone used in this study was the iPhone 13 Pro Max, which has an embedded
U1 chip that can communicate with UWB beacons. When a phone and a UWB beacon
connect, the distance measurement can be calculated by the time-of-flight and can yield
distance measurements with, as is often claimed, inch-level precision. Therefore, due
to these attributes, UWB beacons are more suitable for service and real-time location
applications than BLE beacons.

The UWB beacons used in this study were purchased in 2022. The development kit
includes UWB beacons and a software development toolkit (iOS SDK), through which
a developer can access real-time distance measurements between the beacon and a U1-
equipped iPhone. With access to distance measurements, a dedicated spatially aware
application was developed that utilizes sequences of distance measurements to calculate
the relative speed and acceleration of the beacon with respect to the phone. Furthermore,
safety-relevant measures can be calculated to estimate the hazard that a pedestrian holding
this phone is exposed to from an approaching vehicle equipped with a beacon.
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2.1. Distance Measurement Accuracy

An exploratory study was conducted to assess the real-world accuracy of distance
measurements for stationary (non-moving) beacons. This is an initial assessment in a highly
controlled environment because dynamic distance measurements, which are introduced
later, involve more experimental set-up variables and less controllable environments. Sta-
tionary UWB beacon experiments were conducted to evaluate the performance of a UWB
beacon in an outdoor and indoor environment. This study tested the UWB beacons pur-
chased from Estimote (as mentioned earlier) due to their compatibility with U1-equipped
iPhones. The experiment looked at the range, accuracy, and reliability of UWB beacons
to communicate with an iPhone 13 Pro Max. The true distances between the smartphone
and stationary UWB beacon were set up as follows: 1 m, 3 m, 10 m, 15 m, 20 m, and 25 m.
Range data was gathered for a duration of 1 minute at each distance in order to obtain
stable estimates and gather a representative sample of measurements at each location. This
is because, on average, there are three range measurements every second. It is noteworthy
that this experiment was intended to gauge the accuracy of distance measurements for a
stationary beacon, which is the backbone for further analysis involving a moving beacon.

The distance between the phone and beacon was recorded using a dedicated application
provided by the manufacturer. It is noteworthy that the iOS safety application developed as
part of this study (to be presented later) was developed using the software development kit
based on this basic application. This application displays the serial numbers of the nearby
beacons (fingerprints) and the reported distance between each beacon and the phone running
this application. All measurement data were uploaded to an online database to enable time-
extended recording of data and conduct more sophisticated analysis. Table 1 demonstrates
a sample of raw data from the outdoor experiment and shows that the detection rate is
approximately every 350 ms. However, in the indoor experiment, the detection rate could
fall to every millisecond in some instances, which caused repeated values and inaccurate
speed measurements. Therefore, a condition was later applied to discard any detections with
a timelapse of less than 100 ms. The outdoor and indoor experiment data were collected and
analyzed to evaluate the beacon’s performance and identify areas for improvement.

Table 1. Sample of raw data for distance measurements.

Fingerprint Date and Time Beacon Estimated Distance (m) Actual Distance (m)

Beacon 1 2022-12-26_09:54:04-888 1.01 1.00
Beacon 1 2022-12-26_09:54:05-193 1.1 1.00
Beacon 1 2022-12-26_09:54:05-506 1.1 1.00
Beacon 1 2022-12-26_09:54:05-812 1.13 1.00
Beacon 1 2022-12-26_09:54:06-116 1.13 1.00
Beacon 1 2022-12-26_09:54:06-427 1.11 1.00
Beacon 1 2022-12-26_09:54:06-728 1.1 1.00
Beacon 1 2022-12-26_09:54:07-043 1.12 1.00
Beacon 1 2022-12-26_09:54:07-356 1.11 1.00
Beacon 1 2022-12-26_09:54:07-673 1.12 1.00

The outdoor experiment was conducted on December 2022, at an ambient air tempera-
ture of −9 ◦C. It was found that the application ceased to work properly when the phone
was exposed to cold weather for more than 15 minutes. The experiment was occasionally
paused to warm up the phone and then resumed. As for the indoor environment, in which
the ambient air temperature was 13◦C, the results were much more consistent. The results
of stationary UWB beacon experiments are shown in Table 2, which compares the actual
distances and estimated UWB beacon distances. At a 1.00 m distance, the Mean Average
Percentage Error (MAPE) was 10.93%, and the average MAPE from all experiments was 2%.
Furthermore, the number of detections per minute ranges from 178 to 197 detections for
1.00 m to 20.00 m distances, respectively. However, at a distance of 25.00 m, the number of
detections per minute dropped to 49. The reliable range of detection was determined to be
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up to 20.00 m, but the signal can be detected at 25.00 m. Therefore, the results can be used
to inform the development of new services and applications to improve the performance of
UWB beacons and deliver best practices.

Table 2. A sample of raw data for distance measurements.

Actual Distance (m) Average UWB Beacon
Distance (m) MAPE (%) MAPE (m) Number of Detections

per Minute

1.00 1.10 10.93 0.10 178
3.00 2.99 0.40 0.01 194
10.00 9.97 0.24 0.03 194
15.00 14.99 0.15 0.01 196
20.00 19.99 0.08 0.01 197
25.00 25.05 0.22 0.05 49

Average 2.00 0.03 168

2.2. Development of a Safety Assessment Protocol for Pedestrian–Vehicle Interactions

A safety application was developed to measure the hazard that an approaching
vehicle presents to a pedestrian carrying a smartphone. An appropriate proximity measure
needs to be calculated to represent this hazard. The proximity measure chosen is time-
to-collision (TTC), which represents the time that will elapse from the current moment
until an approaching vehicle collides with the smartphone (assuming the movement of the
approaching vehicle remains unchanged). The safety application can estimate the speed
and acceleration of the approaching vehicle. This can also enable the calculation of TTC
that takes into consideration vehicle acceleration.

TTC is one of many conflict indicators used to characterize the safety of a traffic conflict
but remains one of the most common indicators [16]. Many studies analyzed crash data to
identify potential factors affecting pedestrian safety. However, analyzing pedestrian safety
using crash data is challenging on many accounts. First, pedestrian-involved crashes are
rare yet catastrophic. Second, relying on pedestrian crashes to measure safety is a reactive
approach that requires a collision to occur before a safety assessment is performed. For
that purpose, surrogate measures of safety, e.g., TTC, are utilized to assess the safety of
relevant traffic events that happen more frequently than crashes but do not involve a crash
themselves. According to a previous study [17], many studies rely on surrogate measures
of safety to investigate pedestrian–vehicle interactions. A traffic conflict is conceptually
defined in the literature as follows: “an observable situation in which two or more road
users approach each other in space and time to such an extent that there is a risk of collision
if their movements remain unchanged.” In that case, when two road users have a reportable
TTC, then the collision is expected to occur. The imminence of such a collision is inversely
proportional to TTC, with small values indicating heightened severity and hazard level.

Traffic conflict can happen at various locations, including crosswalks, intersections,
and roundabouts. Furthermore, TTC is used to evaluate the risk of a collision between a
vehicle and a pedestrian or between two interacting vehicles. From the driver’s perspec-
tive, TTC information is used in advanced driver assistance systems, including collision
avoidance systems, to give drivers collision warnings and potentially prevent accidents.
Moreover, TTC information can assist vehicles in making decisions regarding their tra-
jectory and speed during autonomous operation. The accuracy of the TTC calculation
relies on the accuracy of the distance and velocity estimates. Therefore, UWB beacons have
great potential for surrogate safety measures and calculating TTC. The exact details of TTC
calculations are presented in later sections.

2.3. Time-to-Collision Calculations

The safety application developed in the current study utilizes TTC as a traffic con-
flict indicator in order to assess pedestrian safety. According to a previous study [18],
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TTC measures how much time is left for two road users to crash into each other. TTC
is classically calculated by estimating the distance and relative velocity between two ob-
jects. Usually, knowledge of positions in road safety applications is discrete in time. For
example, computer vision detections are performed at a minimum for every frame in a
video sequence (approximately 0.03 s). The TTC requires the conflicting road users to
be on a collision course. Specifically, there is a future position that they are projected to
co-occupy if their movements remain unchanged. If the interacting road users are a vehicle
and a pedestrian, then the time series of the distances to the earliest collision point can
be assumed to be dv = (dvt : t ε T) and dp =

(
dpt : t ε T

)
, respectively. For simplicity, the

time series corresponds to time measurements T that start at the current moment, such
that T = (0, 1, 2, · · ·). Generally, TTC is the earliest moment between now and when the
two road users are projected to come into physical contact. In other words, if the two road
users are on a collision course, then the collision will commence at a moment TTC from
now. There are many ways to calculate TTC, depending on the assumptions underlying
the projections of future positions. The default assumption is that the pedestrian and the
vehicle are projected to move at the same velocity until they collide. According to this
assumption, during TTC, the vehicle will travel distance dv0 and the pedestrian will travel
distance dp0. If the current speeds of the vehicle and the pedestrian can be denoted as Sv
and Sp, respectively. This requires independent tracking of both the pedestrian and the
vehicle relative to the projected collision point. Some technologies, such as the one used
in the current study, can measure the distance between interacting road users. Hence, the
projected distance between the pedestrian and the vehicle, d = (dt : t ε T) is also a time
series that can be projected using the current rate of change in the relative distance such that
dt = d0 + t ∂d

∂t

∣∣∣
t=0

. Because TTC is calculable, that is, the two road users are on a collision
course, then the following conditions must be satisfied if TTC is estimated:

dv0

Sv
=

dp0

Sp
= TTC ⇒ dTTC = 0, (1)

where,

TTC = d0/
∂d
∂t

∣∣∣∣
t=0

(2)

Please note that ∂d
∂t

∣∣∣
t=0

is the relative speed between the two road users measured
at the time of estimating TTC and is constant (following the assumption that both Sv and
Sp are constant). Both current relative distance and relative speed can readily be obtained
using UWB sensors. It is noteworthy that in practice a collision could happen even if the
centroids, or a representative point of the road user position, do not co-occupy the same
point in space. Specifically, the condition in Equation (1) can be satisfied if dTTC ≤ dcr,
where dcr is some critical spatial proximity between the UWB beacon and phone at which
the two road users come into physical contact at other points on their boundaries. The
corresponding TTC will be (d0 − dcr)/ ∂d

∂t . In the following experiments, the beacon was
placed at the front of the vehicle, which directly faces the pedestrian. Hence, for a frontal
collision with a crossing pedestrian, dcr is likely a small distance and was therefore ignored
in the next sections of this study.

A key shortcoming of relying on relative distance instead of relative location is that
the reverse of the condition in Equation (1) is not always true. That is, when TTC is not
calculable because the two road users are not on a collision course, it could still be calculable
according to Equation (2). In other words, the reliance on the scalar quantity of relative
distance and its derivatives of time can produce false positives. To mitigate this issue, in the
upcoming experiments, the pedestrian position was assumed to be stationary and offset
very closely from the vehicle path. This simulates the case in which the two road users
are on a collision course without exposing any of the road users to the real-life hazard of
collisions during the experiment. In theory, to eliminate or reduce false positives, multiple
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beacons must communicate simultaneously with the phone in order to gain more accurate
directional information.

The rigid assumption of TTC based on constant velocity may not be realistic for
accelerating road users. Therefore, another variation of TTC is called Modified TTC,
which accounts for acceleration, speed, and distance for more accurate predictions [19].
Specifically, it utilizes acceleration information to predict how imminent a crash is between
two moving road users. When two road users accelerate toward each other, it is expected
that Modified TTC will be lower than constant-speed TTC. When two road users are
approaching each other rapidly, the TTC value will be lower, so the risk of collision is high.
In general, low values of TTC are more critical and, in the case of accelerating road users,
more realistic. The risk of collision is low when TTC is a high value, which indicates the
road users are spatiotemporally further separated.

The proximity measurement in this study was entirely based on distance, relative
speed, and relative acceleration. This can be obtained from a single beacon communicating
with a phone. The purpose was to trigger an alarm when the approaching vehicle poses
a hazard to the phone bearer. Proximity measurement was enhanced through several
revisions to calculate speed, acceleration, TTC, Modified TTC, and a customized variant of
TTC in the current study called Mixed TTC. The collision warning application went through
iterative improvement through indoor trials and early experiments. Key improvements
focused on robust TTC measurements. The purpose was to develop an accurate pedestrian
safety awareness system to the extent that a pedestrian carrying a smartphone can receive
an advance warning of an approaching vehicle in real time. The speed measurement was
improved to include a two-step moving average to reduce the sensitivity to momentary
errors in distance measurements. The Modified TTC was calculated whenever possible
but mixed with the TTC in order to increase robustness. This was decided after numerous
initial trials. The rationale is that Modified TTC assumes fixed acceleration, which can be
unreasonable for vehicles accelerating from a stop or from a very slow speed. Conversely,
the assumption of fixed speed used to support the calculation of simple TTC assumes no
acceleration whatsoever. This mixture is termed Mixed TTC and is intended to represent
the arithmetic mean of both measures. Whenever Mixed TTC drops below a pre-defined
threshold, a hazardous situation is detected. The following flowchart (Figure 1) shows the
calculation details that have been used in this application. It is noteworthy that all speeds
and accelerations are based on relative distance measurements, i.e., the change in distance
between the beacon and phone.

The safety application was developed to run on Apple’s iOS and is compatible with
U1 chip-equipped Apple devices, as shown in Figure 2. For instance, the application
presents the detections from all connected UWB beacons. Fingerprints, average speed
(speed obtained from a two-step moving average), acceleration, constant-speed TTC, Mixed
TTC, distance, and timestamps are printed on the screen and simultaneously stored on an
external online database for real-time as well as offline analysis. The application changes
the background color, such as to red, yellow, or green, based on the level of risk. For
example, all hazardous Mixed TTC values were between 0 and 3 s. When the Mixed
TTC is between 0 and 1 s, a red background color will appear, representing a high-risk
situation. Furthermore, for Mixed TTC between 1 and 2 s, the background color changes
to yellow, which indicates a medium risk. Finally, when Mixed TTC is between 2 and 3 s,
the background color changes to green, representing a relatively low risk, as shown in
Figure 2. The reader can clearly see the indication at the top of each screenshot labeled
“Critical Hazard” as a visual warning to the pedestrian that a vehicle is approaching along
a hazardous trajectory and caution is needed.

In order to enhance the collision warning system, a notification is triggered when
Mixed TTC is in a range of risky values, which is between 0 and 3 s. The notification
appears after 100 ms when a risky value is detected and alerts pedestrians of a critical
hazard. Furthermore, the notification initiates an emergency sound to help pedestrians
recognize the risk of collision and prevent an accident. Finally, the phone will flash, that is,
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turn on the camera flashlight, to aid in time-stamping the detection. From an experimental
perspective, this flash is needed to determine the exact moment a warning was detected
from the driver’s view. Many experiments were conducted to evaluate UWB beacons for
calculating TTC and Mixed TTC.

Figure 1. Flowchart showing the Mixed TTC calculation procedure.
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Figure 2. Screenshots of the safety application showing different risk levels for three different
hazardous situations.

3. Results

This collision-warning technology was verified several times in a laboratory environ-
ment. Through verification work, many improvements were implemented. Later, it was
determined that field performance testing was warranted. The performance testing aims to
explore the real-life performance of the developed technology and its potential in assessing
vehicle–pedestrian conflict. For the clear visibility of a flashing light and smartphone
screen, all testing was conducted under low-light conditions. It is noteworthy that this is a
key advantage of wireless technology, as it does not require the smartphone to “see” the
approaching vehicle through the smartphone’s rear/front cameras.

3.1. Proximity Hazard Detection Experiments

This set of experiments aims to explore the real-time performance of TTC calculations.
These experiments were conducted to test the accuracy of the UWB beacons in assessing
the risk of pedestrian–vehicle conflicts. These experiments were conducted in two different
environmental settings: outdoors and indoors (underground parking). The experiments
were conducted at different speeds for the approaching vehicle. At each speed, several trials
or replications, involving a vehicle approaching the phone location along with dynamic
TTC calculations, were conducted to ensure consistency of findings. A total of 166 trials
were performed in all experimental settings. A failure was defined as a trial in which the
approaching vehicle was not able to trigger an alarm on the phone. This could happen
for various reasons, including discontinuity in detection or deterioration of the hardware
function due to prolonged exposure to cold temperatures. There were a total of 16 failures.
Each trial was performed by installing a beacon on an approaching vehicle while an author
drove the vehicle at a specific target speed, approaching a tripod-mounted smartphone.
The tripod was placed on the sidewalk adjacent to the path of the vehicle such that it is
close enough to the vehicle path to calculate TTC without precisely occupying the path and
resulting in hazardous conditions. The lateral offset of the phone location from the beacon
mounted on the vehicle was approximately 1.75 m.

To represent various approaching conditions, the UWB beacon was mounted on a
vehicle that approached the smartphone location at various speeds: 3, 5, 10, and 15 km/h,
as shown in Table 3. Noted in the table are the trials that were deemed failures. As
mentioned earlier, these are trials in which no warning of an approaching vehicle was
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triggered. Various reasons led to that, but they were mainly due to distance measurement
errors. This is discussed in more detail in later sections.

Table 3. Number of trials at various speed limits and in indoor/outdoor settings.

Speed (km/h) Outdoor Failures Indoor Failures

3 15 3 15 1
5 34 9 16 0
10 31 1 15 0
15 25 3 15 0

Total 105 16 61 1

The outdoor experiments were analyzed in relatively harsh winter conditions, such as
freezing rain, snow, and cold, to cover many weather conditions. These experiments were
conducted on Carleton University’s campus. The outdoor location was at an intersection
controlled by a stop sign, and the indoor location was in an underground garage. Figure 3
illustrates the setup of the equipment used in the experiments as well as the beacon location.
As guided by previous research [20], the beacon location was at the right and front point
of the vehicle, mounted on a specific holder so that the beacon did not rest on the vehicle
body, as shown in Figure 3b. Additionally, visible in Figure 3a are the tripods carrying the
phone that runs the safety application, as well as another tripod carrying a video camera
recording the experiment from the pedestrian’s perspective.

Figure 3. (a) The phone mounted on a tripod shows an external recording camera and an approaching
vehicle. (b) The beacon is mounted on the front right part of the vehicle.

Figure 4 shows a magnified image of the phone running the safety application as well
as another timing device in order to match the instances from different cameras.

As shown in Table 3, almost all failures occurred outdoors. This led the researchers to
hypothesize the impact of cold weather on the performance of the electronics, specifically
the UWB chip in the phone. A previous study [21] discussed the effect of cold weather on
smartphones and noted how their performance was impacted. In January 2023, outdoor
experiments were conducted, and the temperatures were at −2◦C. The number of failures
was eight and six on the 4th and 5th of January, respectively. There was a notable difference
in performance compared to indoor experiments. It is hypothesized that fewer failures
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would have been observed given warmer weather. It was noted that occasionally the
display turned greenish after extended exposure to cold weather. Moreover, cold weather
has the capacity to impact battery life and phone performance. Therefore, during the other
experiments, the smartphone was connected to a power source in an effort to heat the
battery and mitigate the cold weather’s effect on performance. Note the deterioration in
the screen’s display in Figure 5.

Figure 4. Magnified view of the safety application during the experiment.

Figure 5. (a,b) Apparent effect of extended exposure to cold weather on the phone (iPhone 13 Pro Max).

The indoor experiments were carried out to simulate the performance under mild
environmental conditions. Two cameras were placed to record the experiment inside the
car to monitor the vehicle’s speed as it approached the phone’s location, as well as an
externally fixed camera to monitor the phone during the hazardous vehicle approach. The
temperature indoors was +13◦C, and reference points were placed, as colored cones, every
2.5 m to estimate the vehicle location, as shown in Figure 6. Furthermore, the phone was
connected to a power source. The number of failures dropped dramatically to only one out
of a total of 61 trials conducted indoors.
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Figure 6. Indoor experimental setup showing (a) weather conditions, (b) a mounted phone and an
approaching vehicle, and (c) a beacon mounted on the front right part of the vehicle.

Table 4 show a sample of the raw data recorded using the UWB equipment. As
shown, TTC, Modified TTC, Mixed TTC, average speed, and acceleration are calculated;
the distance between the beacon and phone is recorded. A trial typically starts when the
UWB is actively communicating with the phone; that is, when the distance between them
is dynamically measured. Then, the car moves to the trial starting position, which is at a
distance of 25.00 m from the phone. Subsequently, the car accelerates from that position
up to various target speeds: 3, 5, 10, and 15 km/h. The driver tries to maintain this speed
once it is reached but ceases to maintain it at a later moment as the vehicle gets closer to the
phone location. This is performed whenever necessary to maintain safe driving conditions.
Please note that in all trials, the precise phone location was laterally offset by approximately
1.75 m from the beacon in order to eliminate the risk of a direct collision. Table 4 show the
data obtained from an indoor experiment at a sample trial (Trial number 5).

As shown in Table 4, Mixed TTC reached the critical level at 19(h):59(m):(s)17.603.
Figure 7 shows the average speed over time, the distance over time, and the TTC profiles
(one profile for each TTC) over time. It was noted that occasionally, when the notification
is triggered, the average speed increases significantly immediately afterward because the
application records another distance within approximately two milliseconds. This issue
occurred randomly and unfortunately led to overestimating the post-trigger speed. It
does not appear to influence the triggering mechanism in how it alerts the pedestrian or
TTC measurements prior to the trigger. The exact reason for this issue was not clearly
understood and requires further investigation.

The real-time performance of this technology can be illustrated in Figure 8. For
instance, the application detected a critical value of Mixed TTC at 19:59:17. The application
changes the background color based on the level of risk. In this case, it was colored
“orange,” indicating a medium risk level, or calculated the value of Mixed TTC in less than
2 s but greater than 1 s. The notification triggers an alert to the pedestrian by an alarm
sound and sends a notification to a smartwatch with a message of “Critical Hazard,” as
shown in Figure 9. Moreover, the phone flashes when Mixed TTC detects the risk of a
collision to warn the driver of the potential hazard.
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Table 4. A sample of raw data recorded in the safety application during a sample trial.

Trial 5

Time Acceleration (m/s2) Moving Average
Speed (m/s) Distance (m) Modified

Time-to-Collision (s)
Mixed

Time-to-Collision (s) Previous Speed (m/s) Spot Speed (m/s) Time-to-Collision (s)

19:59:12-418 1.59 1.55 23.58 4.55 9.87 1.22 1.89 15.19
19:59:12-778 1.65 2.15 22.72 4.11 7.34 1.89 2.41 10.58
19:59:13-137 1.43 2.66 21.67 3.96 6.06 2.41 2.91 8.15
19:59:13-494 1.10 3.05 20.53 3.94 5.34 2.91 3.19 6.73
19:59:13-861 0.36 3.18 19.37 4.78 5.43 3.19 3.18 6.08
19:59:14-218 −0.12 3.14 18.26 6.62 6.22 3.18 3.11 5.81
19:59:14-578 −0.31 3.03 17.19 5.67 5.67 3.11 2.96 5.67
19:59:14-938 −0.38 2.89 16.17 5.59 5.59 2.96 2.83 5.59
19:59:15-297 −0.15 2.84 15.15 6.45 5.90 2.83 2.85 5.34
19:59:15-658 −0.14 2.79 14.17 5.95 5.52 2.85 2.73 5.08
19:59:16-018 −0.05 2.77 13.15 4.99 4.87 2.73 2.81 4.75
19:59:16-378 −0.64 2.54 12.34 4.86 4.86 2.81 2.27 4.86
19:59:16-738 −0.26 2.45 11.39 4.66 4.66 2.27 2.62 4.66
19:59:17-098 0.20 2.52 10.52 3.65 3.91 2.62 2.42 4.18
19:59:17-603 3.15 3.66 8.75 1.47 1.93 2.42 4.90 2.39
19:59:17-820 7.92 10.29 8.75 0.68 0.76 12.28 8.29 0.85
19:59:18-180 −13.78 5.32 7.90 1.49 1.49 8.29 2.35 1.49
19:59:18-535 −8.41 2.33 7.08 3.04 3.04 2.35 2.31 3.04
19:59:18-896 −0.03 2.32 6.25 2.74 2.72 2.31 2.33 2.70
19:59:19-254 −0.02 2.31 5.42 2.37 2.36 2.33 2.29 2.35
19:59:19-574 −0.21 2.24 4.72 2.37 2.23 2.29 2.19 2.10
19:59:19-932 0.80 2.53 3.69 1.22 1.34 2.19 2.87 1.46
19:59:20-222 2.33 3.20 3.69 0.87 1.01 2.87 3.54 1.15
19:59:20-524 −2.54 2.44 3.29 1.35 1.35 3.54 1.33 1.35
19:59:20-877 −3.88 1.07 3.01 2.81 2.81 1.33 0.81 2.81
19:59:21-181 −1.52 0.61 2.88 4.75 4.75 0.81 0.41 4.75
19:59:21-489 −1.35 0.19 2.89 15.22 15.22 0.41 −0.03 15.22
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Figure 7. (a) Average speed over time. (b) Distance over time. (c) TTC profiles over time.

3.2. Experiment Results

This section aims to provide an overview of the results and findings. The research
looked at the average of different observations across all trials, as shown in Table 5. On
average, the risk of collision was found to be triggered at various distances depending on
the target vehicle speed. Specifically, the average distance at trigger time was 4.46 m at a
speed of 3 km/h, 5.74 m at a speed of 5 km/h, 12.76 m at a speed of 10 km/h, and 15.44 m
at a speed of 15 km/h. This is a reasonable performance, as the system detects a hazard
further upstream in distance if the approaching vehicle is closing in faster.

A vehicle position marker (colored cones) was placed every 2.5 m on the right side
of the travel path, as shown in Figure 8c. The longitudinal distance between the vehicle
and phone at the moment of taking a given picture can be obtained from the camera
by estimating the vehicle’s longitudinal location relative to the aforementioned distance
markers. At the moment of trigger, the vehicle speed is observed by the internal camera
placed inside the vehicle cabin, as shown in Figure 8b. The ground truth TTC at the alert
trigger was calculated using vehicle information apparent in the cameras independent of
UWB observations. This was performed for all trials at a speed of 10 km/h to represent
average performance. As shown earlier, Figure 8d illustrates the estimated horizontal
distance at trigger to be 7.5 m, and the vehicle speed appears to be 9 km/h (2.5 m/s) as
shown in Figure 8b. The vehicle was laterally offset from the horizontal distance markers
(cones) by 1.75 m, so the actual dynamic distances were calculated as shown in Table 6 as
the oblique distance. Ground truth, or reported TTC, was calculated by dividing the actual
distance by the vehicle speed obtained from the internal camera. Then, TTC measured using
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UWB equipment was compared to the reported TTC as shown in Table 6. The absolute
mean difference between the two TTCs was 0.69 s at the moment of trigger.

Figure 8. (a,c) Recordings of the camera view from inside the vehicle and from a roadside camera
at times before and after the notification triggers. Notice the flash sent by phone in (b). Notice the
color-coded notification in (d) at the same moment. Notice the synchronized clocks in both cameras.

Figure 9. Sample notification sent to a connected smartwatch.
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Table 5. Average measurements from all trials were recorded at notification alert.

Approaching
Vehicle Target
Speed (km/h)

Acceleration (m/s2)
Moving
Average

Speed (m/s)
Distance (m) Modified

Time-to-Collision (s) Mixed Time-to-Collision (s) Previous Speed
(m/s)

Spot Speed
(m/s) Time-to-Collision (s)

3 2.05 1.57 4.46 1.74 2.44 1.06 2.08 3.14
5 1.93 1.98 5.74 1.95 2.56 1.61 2.35 3.16

10 3.17 3.77 12.76 1.96 2.65 3.02 4.52 3.35
15 3.55 4.92 15.44 1.91 2.53 4.52 5.33 3.15

Table 6. The estimated distances, speeds, and TTC from the cameras at the moment of trigger.

Trial Speed (m/s) Longitudinal
Distance (m)

Oblique
Distance (m)

Estimated TTC
from Cameras (s)

TTC from UWB
Beacon (s)

Absolute
Difference (s)

1 2.50 7.5 7.70 3.08 3.41 0.33
2 2.77 7.5 7.70 2.78 3.13 0.35
3 2.77 7.0 7.22 2.60 3.09 0.49
4 3.33 15 15.10 4.54 3.10 1.44
5 2.50 7.5 7.70 3.08 2.39 0.69
6 3.05 12.5 12.62 4.14 3.61 0.53
7 2.77 7.5 7.70 2.78 3.32 0.54
8 2.77 7.0 7.22 2.60 3.46 0.86
9 2.77 8.0 8.19 2.96 3.25 0.29

10 2.77 8.0 8.19 2.96 3.23 0.27
11 2.77 7.0 7.22 2.60 2.02 0.58
12 2.77 17.5 17.59 6.35 3.79 2.56
13 2.77 8.0 8.19 2.96 3.11 0.15
14 2.77 8.0 8.19 2.96 3.51 0.55
15 2.77 12.5 12.62 4.56 3.84 0.72

The study further looked at the various classification performance measures such as
sensitivity, specificity, and accuracy to evaluate the performance of UWB. Specificity and
sensitivity were calculated based on the true positive and negative rates. True positive (TP)
cases are when both the reported TTC and UWB TTC are less than the 3 s threshold. True
negative (TN) cases are when both TTCs are greater than or equal to 3 s. False positive (FP)
cases are when the reported TTC is greater than or equal to 3 s but the UWB TTC is less
than 3 s. Finally, a false negative (FN) is when the UWB TTC is greater than or equal to 3 s,
but the reported TTC is less than 3 s.

The true positive rate, also known as sensitivity, is defined as the portion of positive
cases correctly identified as positive. Sensitivity can be calculated as: (TP)/(TP + FN). A
highly sensitive classification algorithm will be associated with a high true positive rate. In
this study, the classification algorithm calculated Mixed TTC and compared it to a threshold
of 3 s. That will result in a small rate of failing to detect a positive case when it is truly
positive. For example, it will be less likely to miss a case where TTC is less than 3 s when it
is truly less than 3 s.

On the other hand, the true negative rate (TNR), also known as specificity, is the
proportion of negative cases that are correctly identified as negative by the classification
algorithm. Specificity can be calculated as (TN)/(TN + FP). Therefore, by evaluating
the sensitivity and specificity of the performance of UWB, researchers and engineers can
identify the performance of the UWB, discern the balance between positive and negative
detection, and, hence, make enhancements for practical use. Finally, the accuracy of the
UWB performance was calculated as follows:

Accuracy = (TP + TN)/(TP + FP + TN + FN). (3)

Sensitivity, specificity, and accuracy were initially calculated at the trigger moment.
However, the sample size was small, and the performance measures were unstable. The
reported TTC and UWB TTC were evaluated when the vehicle was observed to be precisely
at an exact longitudinal distance, such as 20.00 m, 15.00 m, 10.00 m, and 5.00 m, for the
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indoor experiment. This is shown in Tables 7 and 8. The UWB measurements were not
recorded at precisely the same moment when the vehicle was adjacent to a cone. To address
this issue, the corresponding UWB equipment measurements were calculated by taking the
average of two detections. The times of those two detections were identified as follows:
First, the timestamp at which the vehicle appears to be adjacent to a cone from the video
cameras was recorded. This timestamp is to be read from the timing device apparent from
the external camera. This is called the ground truth timestamp. Then, UWB measurements
were adjusted to synchronize the timestamps with the timing device that appeared from
the external camera by taking the average of two detections at each cone location. The two
detections from UWB were identified by looking at the two closest timestamps before and
after the ground truth timestamp.

The mean absolute differences between UWB measurements and ground truth mea-
surements were calculated as shown in Tables 7 and 8. In summary, the absolute mean
differences between UWB measurements and ground truth data are 1.10 s, 0.88 m, and
0.46 m/s for TTC, distance, and speed, respectively. This is an important finding of those
experiments that potentially lays the groundwork for future developments, knowing that
the distance measurement error in mild weather conditions is approximately 0.88 m and
the TTC measurement error is approximately 0.90 s. It is noteworthy that the ground truth
distance is the oblique distance with a lateral offset of 1.75 m.

The threshold of 3 s was used in the experiment to classify events as either positive or
negative. The threshold is used to construct the confusion matrix, which in turn significantly
influences the sensitivity and specificity of UWB TTC. The choice of other thresholds should
not materially affect the performance assessment. This was examined by recalculating
the confusion matrices at other TTC thresholds and also recalculating the corresponding
performance measures. Figure 10 illustrates the distribution of the sensitivity, specificity,
and accuracy at various TTC thresholds. At a TTC of 3 s, the sensitivity, specificity, and
accuracy were 0.87, 1.00, and 0.97, respectively, as shown in Table 9. Those are generally
reasonable results that demonstrate a promising performance.

Figure 10. (a) Sensitivity vs. specificity over the TTC threshold. (b) The accuracy.

High specificity (100%) at the 3 s threshold means that there are no false positive
detections. It indicates that the algorithm correctly identifies all non-collision cases and
has a zero false positive rate. Generally, it is crucial to balance sensitivity and specificity to
ensure the overall performance of estimating TTC. High specificity is crucial to minimize
false positive detections, while high sensitivity is essential to ensure that potential or actual
collisions are detected in a timely manner.
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Table 7. The estimated distances, speeds, and TTC from cameras and the UWB beacon from Trials 1 to 8.

UWB Beacon Measurements Ground Truth Data from Camera Absolute
Difference in
Distance (m)

Absolute
Difference in
Speed (m/s)

Absolute
Difference in

TTC (s)Trial Moving Average
Speed (m/s) Distance (m) TTC (s) Moving Average

Speed (m/s) Distance (m) TTC (s)

1

2.910 21.030 7.260 1.94 20 10.29 0.95 0.96 3.03
2.920 16.025 5.505 3.33 15 4.50 0.92 0.41 1.01
2.975 11.525 3.880 3.06 10 3.27 1.37 0.08 0.61
2.110 5.840 2.775 2.50 5 2.00 0.54 0.39 0.78

2

2.295 20.585 9.015 1.39 20 14.40 0.51 0.91 5.39
2.700 15.920 5.920 2.50 15 6.00 0.82 0.20 0.08
2.835 12.645 4.490 2.78 10 3.60 2.49 0.06 0.89
2.745 5.800 2.130 2.78 5 1.80 0.50 0.03 0.33

3

2.660 21.315 8.385 2.22 20 9.00 1.24 0.44 0.62
2.395 15.710 6.575 2.78 15 5.40 0.61 0.38 1.18
2.545 11.505 4.595 2.78 10 3.60 1.35 0.23 1.00
3.170 7.975 2.575 2.50 5 2.00 2.68 0.67 0.58

4

3.025 21.310 7.060 2.22 20 9.00 1.23 0.80 1.94
5.370 16.190 3.785 3.33 15 4.50 1.09 2.04 0.72
2.995 11.655 3.905 2.78 10 3.60 1.50 0.22 0.31
2.450 6.600 2.700 2.50 5 2.00 1.30 0.05 0.70

5

2.855 21.100 7.440 2.22 20 9.00 1.02 0.63 1.56
2.865 15.660 5.465 3.06 15 4.91 0.56 0.19 0.56
2.495 11.865 4.760 2.78 10 3.60 1.71 0.28 1.16
2.315 5.835 2.525 2.50 5 2.00 0.54 0.19 0.53

6

3.210 20.425 7.185 1.39 20 14.40 0.35 1.82 7.22
2.900 15.380 5.345 3.06 15 4.91 0.28 0.16 0.44
2.480 10.595 4.355 2.78 10 3.60 0.44 0.30 0.76
2.245 5.965 2.670 2.78 5 1.80 0.67 0.53 0.87

7

2.405 22.130 9.210 2.50 20 8.00 2.05 0.09 1.21
2.680 15.125 5.700 2.78 15 5.40 0.02 0.10 0.30
2.620 11.765 4.570 2.78 10 3.60 1.61 0.16 0.97
1.860 5.735 3.140 2.78 5 1.80 0.44 0.92 1.34

8

2.640 20.815 8.090 1.94 20 10.33 0.74 0.70 2.20
2.715 15.415 5.675 2.78 15 5.44 0.31 0.06 0.27
2.765 10.970 4.020 2.78 10 3.65 0.82 0.01 0.42
2.325 5.555 2.420 2.78 5 1.91 0.26 0.45 0.62
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Table 8. The estimated distances, speeds, and TTC from cameras and the UWB beacon from Trials 9 to 15.

UWB Beacon Measurements Ground Truth Data from Camera Absolute
Difference in
Distance (m)

Absolute
Difference in
Speed (m/s)

Absolute
Difference in

TTC (s)Trial Moving Average
Speed (m/s) Distance (m) TTC (s) Moving Average

Speed (m/s) Distance (m) TTC (s)

9

2.905 21.705 7.705 2.50 20 8.03 1.63 0.41 0.30
3.050 15.775 5.215 3.06 15 4.94 0.67 0.01 0.31
2.515 11.770 4.750 2.78 10 3.65 1.62 0.26 1.15
2.310 5.640 2.465 2.78 5 1.91 0.34 0.47 0.67

10

3.320 20.745 6.530 2.22 20 9.03 0.67 1.10 2.47
3.070 15.800 5.185 2.78 15 5.44 0.70 0.29 0.22
2.815 11.660 4.145 2.78 10 3.65 1.51 0.04 0.54
2.460 5.855 2.410 2.78 5 1.91 0.56 0.32 0.61

11

3.710 20.655 5.715 1.94 20 10.33 0.58 1.77 4.57
3.045 15.805 5.260 3.06 15 4.94 0.70 0.01 0.35
2.580 11.295 4.415 2.78 10 3.65 1.14 0.20 0.82
2.435 5.965 2.490 2.78 5 1.91 0.67 0.34 0.69

12

4.980 21.075 4.320 2.50 20 8.03 1.00 2.48 3.68
2.650 16.250 6.215 2.78 15 5.44 1.15 0.13 0.82
3.510 10.735 3.140 2.78 10 3.65 0.58 0.73 0.46
1.830 5.555 3.050 2.50 5 2.12 0.26 0.67 1.05

13

2.295 21.365 9.320 2.22 20 9.03 1.29 0.07 0.32
2.445 15.670 6.420 2.50 15 6.04 0.57 0.06 0.42
3.080 11.245 3.715 2.78 10 3.65 1.09 0.30 0.12
2.245 6.085 2.715 2.78 5 1.91 0.79 0.53 0.92

14

2.855 20.975 7.370 2.22 20 9.03 0.90 0.63 1.63
2.995 15.780 5.275 2.78 15 5.44 0.68 0.22 0.13
2.695 10.940 4.120 2.78 10 3.65 0.79 0.08 0.52
2.260 5.645 2.515 2.50 5 2.12 0.35 0.24 0.52

15

2.620 20.620 8.110 1.94 20 10.33 0.54 0.68 2.18
3.100 15.155 5.155 2.78 15 5.44 0.05 0.32 0.25
3.045 11.110 3.940 2.78 10 3.65 0.96 0.27 0.34
2.200 5.515 2.510 2.50 5 2.12 0.22 0.30 0.51

The mean absolute differences 0.88 0.46 1.1
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Table 9. Classification table for the reported TTC and UWB TTC.

Reported TTC
<3 s >3 s

UWB TTC
<3 s 13 0
>3 s 2 46

3.3. Smoothing Filters

The distance detections were analyzed, and it was found that the difference in dis-
tance between every two detections is not consistent. For instance, Figure 11b shows the
difference in distance from the UWB measurements. Delayed UWB measurements can
potentially be caused by many reasons. First, the authors of [22,23] mentioned that UWB
measurements can be impacted by environmental factors, such as surrounding obstacles,
which leads to UWB measurements being influenced by multipath delays. Furthermore,
the authors of [24] claimed that UWB measurements can be affected by errors in signal pro-
cessing and that they can be potentially eliminated by adding multiple antennas. Therefore,
further filtering processes should be applied in order to have accurate measurements.

Figure 11. Smoothing filters used on (a) Average speed over time. (b) Difference in distance over
time. (c) TTC profiles over time.

Many filters were applied to the UWB distance measurements in order to overcome
the issue of signal delays or errors in processing. The Kalman filter, moving average,
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and Locally Weighted Scatterplot Smoothing (Lowess) were applied to smooth UWB
measurements. The Kalman filter, based on the expectation–maximization (EM) algorithm,
was suggested by [25,26] to improve the estimation accuracy by calculating the parameters
of the noise. The authors of [27] applied the Lowess filter to smooth data for pedestrian
positioning systems. Figure 11 illustrates the performance of each filter. The Lowess filter
was found to demonstrate a better result than the moving average and Kalman filters.

After applying the smoothing filters to the raw UWB distance measurements, the next
step is validating the accuracy of the TTC. First, the TTC values were recalculated based on
the type of smoothing filter used to process the distance measurements. The next step is to
calculate the absolute mean difference of the TTC between the ground truth data from the
video camera and smoothed UWB measurements. The following Tables 10–14 show that at
a 20-meter distance, the absolute mean error of TTC was mostly over 2.00 s. However, the
absolute mean error was 0.62 s, 0.81 s, 0.86 s, and 0.73 s for the raw UWB measurements and
the Kalman, moving average, and Lowess filterings, respectively, excluding the absolute
mean error at 20 m. Although the filters increased the mean error, the Lowess showed
better results than the Kalman and moving average filters.

Table 10. Absolute mean difference of TTC (raw UWB measurements).

Difference in TTC at Each Distance 20 m 15 m 10 m 5 m

UWB Measurements

Trial 1 3.03 1.01 0.61 0.78
Trial 2 5.39 0.08 0.89 0.33
Trial 3 0.62 1.18 1.00 0.58
Trial 4 1.94 0.72 0.31 0.70
Trial 5 1.56 0.56 1.16 0.53
Trial 6 7.22 0.44 0.76 0.87
Trial 7 1.21 0.30 0.97 1.34
Trial 8 2.20 0.27 0.42 0.62
Trial 9 0.30 0.31 1.15 0.67

Trial 10 2.47 0.22 0.54 0.61
Trial 11 4.57 0.35 0.82 0.69
Trial 12 3.68 0.82 0.46 1.05
Trial 13 0.32 0.42 0.12 0.92
Trial 14 1.63 0.13 0.52 0.52
Trial 15 2.18 0.25 0.34 0.51

Average error at each distance 2.55 0.47 0.67 0.71

Average Error Excluding Errors at a distance of 20 m = 0.62 s

Table 11. Absolute mean difference of TTC (after applying the Kalman Filter).

Difference in TTC at Each Distance 20 m 15 m 10 m 5 m

Kalman Filter

Trial 1 2.22 0.83 0.92 0.78
Trial 2 4.63 0.15 1.09 0.33
Trial 3 0.49 1.11 1.14 0.58
Trial 4 0.97 0.90 0.58 0.70
Trial 5 0.23 0.66 0.96 0.53
Trial 6 5.88 0.21 1.00 0.87
Trial 7 1.58 2.50 1.16 1.34
Trial 8 1.44 0.17 1.00 0.62
Trial 9 0.94 0.32 1.30 0.67

Trial 10 1.81 0.08 0.78 0.61
Trial 11 4.21 0.60 0.88 0.69
Trial 12 2.09 0.88 0.03 1.05
Trial 13 1.35 0.50 0.72 0.92
Trial 14 1.08 0.31 1.19 0.52
Trial 15 1.08 0.66 0.44 0.51

Average error at each distance 2.00 0.66 0.88 0.88

Average Error Excluding Errors at a distance of 20 m = 0.81 s
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Table 12. Absolute mean difference of TTC (after applying the Moving Average Filter).

Difference in TTC at Each Distance 20 m 15 m 10 m 5 m

Moving Average

Trial 1 2.88 0.97 0.62 0.74
Trial 2 5.43 0.70 0.94 0.30
Trial 3 1.26 1.16 0.95 0.87
Trial 4 1.93 0.45 0.35 0.74
Trial 5 1.54 0.55 1.56 0.38
Trial 6 6.44 0.35 0.96 0.86
Trial 7 0.38 1.53 1.72 1.33
Trial 8 2.48 0.33 2.35 0.60
Trial 9 0.55 0.29 1.85 0.69

Trial 10 2.57 0.22 1.15 0.53
Trial 11 4.76 0.53 0.82 0.66
Trial 12 1.07 0.65 0.56 0.86
Trial 13 0.22 0.39 1.96 0.91
Trial 14 1.56 0.09 2.40 0.51
Trial 15 2.51 1.73 0.05 0.53

Average error at each distance 2.37 0.66 1.22 0.70

Average Error Excluding Errors at a distance of 20 m = 0.86 s

Table 13. Absolute mean difference of TTC (after applying the Lowess Filter).

Difference in TTC at Each Distance 20 m 15 m 10 m 5 m

Lowess Filter

Trial 1 2.68 0.56 0.93 0.37
Trial 2 5.81 0.45 1.00 0.55
Trial 3 1.95 0.12 0.62 0.56
Trial 4 0.78 0.40 1.16 1.06
Trial 5 2.53 0.56 0.12 0.00
Trial 6 8.80 0.39 0.08 1.64
Trial 7 2.31 0.28 0.81 1.67
Trial 8 2.05 0.31 0.06 1.59
Trial 9 2.19 1.93 1.74 1.59

Trial 10 2.62 0.09 0.30 0.54
Trial 11 2.11 0.28 2.23 0.41
Trial 12 2.84 0.22 0.53 1.18
Trial 13 0.20 1.41 1.72 0.45
Trial 14 1.19 0.36 0.29 0.61
Trial 15 2.03 0.62 0.05 0.98

Average error at each distance 2.67 0.53 0.77 0.88

Average Error Excludig Errors at a distance of 20 m = 0.73 s

Table 14. Comparison between the Mean Absolute Error in TTC for all types of Filtering used.

Mean Absolute Error of TTC at
Each Distance

Original UWB
Estimation Kalman Filter Moving Average Lowess

20 m 2.55 2.00 2.37 2.67
15 m 0.47 0.66 0.66 0.53
10 m 0.67 0.88 1.22 0.77
5 m 0.71 0.88 0.7 0.88

Average Error Excluding Errors at 20 m 0.62 0.81 0.86 0.73

4. Discussion

The proposed UWB-based TTC estimation system has the potential to improve pedes-
trian safety. Moreover, the UWB technology demonstrates good performance and accuracy
in calculating the location and speed of the moving ultra-wideband beacon. The pro-
posed system has the capacity to alert a pedestrian in advance if there is a possibility of
a collision. However, the UWB beacons used in this study required frequent changes of
batteries (lithium disposable batteries), which indicates the need for a permanent power
source if installed on vehicles. Furthermore, UWB signals have a relatively limited range,
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potentially limiting their use. After extensive testing, it appears that a maximum practical
range of 25 meters is possible. This range may decline further to 20 m during cold weather
conditions. The UWB beacon’s battery performance can be affected by cold weather, which
results in reduced capacity and lifespan. More crucially, the iPhone’s U1 chip’s performance
was found to be impacted by exposure to cold weather. The manufacturers need to note
that and deploy more robust UWB chips that can perform more reliably in cold weather.

Simultaneous communication between the phone and two beacons was attempted.
Unfortunately, it was found that this introduced a bottleneck in the measurement; that
is, the phone was not able to independently record the distances for the two beacons and
appeared to be restricted in this capacity. Therefore, the use of two beacons installed on the
approaching vehicle was not associated with performance improvements.

The presented technology focused mainly on measuring TTC and its variants. This was
in line with the literature, which considers this the main collision indicator. Furthermore,
TTC relies on predicted movements and hence can forecast hazards. Other indicators, e.g.,
PET, require the passage of time between both the pedestrian and vehicle at the same
point or conflict area. It cannot forecast movement but studies actual movement, even
if it includes evasive actions that alter and reduce the hazard levels. The precise way to
calculate TTC has a significant impact on the safety assessment. It is paramount to design a
robust technique to measure TTC that balances accuracy with robustness.

The developed prototype can potentially be used to alert a pedestrian to the danger
of an approaching vehicle if the latter is too fast and/or too close. Furthermore, if con-
nectivity between the phone and vehicle is possible, then the driver may be alerted to a
nearby pedestrian who is being approached in an unsafe way. However, the testing of the
developed prototype did not consider such cases, as the phone was static and mounted on
a tripod, and the only notification visible to the driver was a flash from the camera light.

The technology needs to consider improving the stability of some detections, including
after the notification trigger. Specifically, the post-trigger inaccuracy in speed measurement
needs to be further investigated. Even though the UWB measurements were smoothed by
using the Kalman, moving average, and Lowess filters, the accuracy may still be impacted
by many factors, such as multipath effects and environmental interferences. The line-
of-sight condition appeared to have an impact on distance measurements. The effect
was complex because the distance detection frequency per minute appeared to drop in
non-line-of-sight conditions. Therefore, further research and development are crucial to
improving and providing better accuracy and more robust system performance in various
environmental scenarios and conditions.

5. Conclusions

The presented research looked at the performance of UWB beacons under various envi-
ronmental conditions. Strengths and limitations were discussed to inform the development
of a new application to improve the performance of UWB beacons. An iOS application was
used to calculate traffic conflict measures such as time-to-collision (TTC) and a customized
variant of TTC was proposed in this study called Mixed TTC. The safety application can
calculate the acceleration, moving average speed, distance, TTC, Modified TTC, and Mixed
TTC. A notification alarm activates when the Mixed TTC value is at risk of collision, which
is between 0 and 3 s. This alert includes a flash to warn the driver of potential hazards and a
sound alarm to inform pedestrians of a critical hazard. Sensitivity, specificity, and accuracy
were calculated to evaluate the performance of UWB. The Kalman, moving average, and
Lowess filters were applied. The Lowess filter showed better smooth filtering than the
Kalman and moving average filters. More studies can be performed involving various road
users at signalized intersections or roundabouts with different smoothing filters to improve
accuracy. Possible future enhancements may involve the integration of other sensor modes,
including LiDAR and cameras, to improve the overall accuracy and reliability of the system.
A limitation of this study is that it did not consider a representative sample of commercially
available smartphones. Due to equipment compatibility at the time of this study, only
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one iPhone device was used. Another limitation of this study was that it only considered
clear line-of-sight situations, which need to be further investigated when various objects
can be present between the beacon and phone. Another limitation is that the study did
not consider the effect of hot weather or extreme humidity on the performance of the
technology.
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