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Abstract: This paper presents a novel approach to creating a graphical summary of a subject’s activity
during a protocol in a Semi Free-Living Environment. Thanks to this new visualization, human
behavior, in particular locomotion, can now be condensed into an easy-to-read and user-friendly
output. As time series collected while monitoring patients in Semi Free-Living Environments are often
long and complex, our contribution relies on an innovative pipeline of signal processing methods
and machine learning algorithms. Once learned, the graphical representation is able to sum up
all activities present in the data and can quickly be applied to newly acquired time series. In a
nutshell, raw data from inertial measurement units are first segmented into homogeneous regimes
with an adaptive change-point detection procedure, then each segment is automatically labeled. Then,
features are extracted from each regime, and lastly, a score is computed using these features. The
final visual summary is constructed from the scores of the activities and their comparisons to healthy
models. This graphical output is a detailed, adaptive, and structured visualization that helps better
understand the salient events in a complex gait protocol.

Keywords: free-living; wearable sensor; IMU; graphical feedback; change point detection; Human
Activity Recognition

1. Introduction

Portable inertial sensors such as accelerometers, gyroscopes, or Inertial Measurement
Units (IMUs) are frequently used to analyze human activity. In particular, gait quantification
is a major subject of interest for clinicians, as it can help to precociously detect the risk of
falling or be applied in the context of longitudinal follow-up for degenerative diseases [1].
Most of the published studies are led in clinical and controlled environments (laboratories,
etc.), where efficient algorithms have been developed to extract from the raw data relevant
features such as gait events, with precision as low as a few milliseconds [2–6].

However, these environments can induce a Hawthorne effect (“white coat” effect) on
the patients and therefore bias the gait analysis process [7,8]. Indeed, during controlled
studies, subjects are aware of being measured and this implies over- or under-performance
during the protocol. A study has shown for instance that the variability of step duration
in a free or semi-controlled environment is statistically different from the one measured
in a controlled environment [9]. These effects can be due to the bulkiness of the sensors,
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to the instructions given to the recorded subjects, or to the narrowness of the measure-
ment environments. Moreover, gait cannot be fully apprehended and analyzed without
acknowledging phenomena caused by free-living measurements (fatigue, open spaces).
A wide range of new protocols, referred to as Free-Living Environments (FLEs) protocols
have therefore emerged to avoid these issues and to improve our understanding of human
behavior in FLEs, or in the "wild" [10].

The study of locomotion is more challenging in FLEs than in controlled settings, as the
automatic computation of gait features at a micro level in FLE (stride times, step times) is
more complex when no context information is available [11]. As for the current studies
set up by the scientific community in FLEs, they present very diversified goals. The vast
majority of studies carried out in FLEs aim to perform Human Activity Recognition (HAR)
and to use its outputs to enable clinical analyses [12,13]. HAR can thus help providing
general metrics about activity durations in order to enable a quantified follow-up of patients’
physical activity. This can also be the first step in estimating a patient’s energy expenditure
over long periods. Indeed, some works aim specifically to measure the time spent in
activities that require a greater or lesser expenditure of energy with or without using
HAR [14–16]. Activities are then associated with a metabolic equivalent of task which is the
objective measure of a participant’s rate of energy expenditure in relation to mass. Finally,
another large group of studies is dedicated to the detection of falls in FLEs in order to
respond to the public health issues that these falls represent [17,18].

In almost all of the work cited above, the output measures provided to clinicians are
often generalized/aggregated through simple features. For instance, HAR studies tend
to only determine the time spent in various targeted activities, whereas studies that focus
on calculating energy expenditure only quantify the time spent in more or less energy-
consuming activities. Works that seek to detect falls rely on general output metrics as
well (number of falls, time of falls). This, therefore, leads to analyses of physical activity
summarized by aggregate and averaged output measures that may hide some relevant
phenomena of interest. To get around this drawback, one idea would be to use fine-
grained features such as those used in clinical settings. However, this would imply a
greater computational burden (e.g., detection of all steps, strides) and a prohibitive flow
of information that would overwhelm clinicians and prevent them from obtaining a clear
and quickly understandable assessment of the physical activity of their patients. Based on
this observation, we present in this paper an alternative and intermediate solution whose
major innovation is to provide an accurate macro-analysis with a low computational cost
and which is ergonomic for clinicians. This visual summary also allows to keep a temporal
structure that helps to provide new interpretations to the free-living recordings (impact
of fatigue on specific regimes, performance during transitions between long and short
walking regimes).

To the authors’ knowledge, few, if any studies based on the use of IMUs in FLEs have
endeavored to provide a macro-analysis displayed in the form of an easy-to-understand
visual summary that fully assesses the entire timeline of FLE signals. The purpose of our
paper is to describe the processing steps to compute such accurate and didactic quantitative
feedback on a subject’s walking during an acquisition in a Semi Free-Living Environment
(Semi FLE). We believe that such visualization will help clinicians to perform more accurate
and comprehensive longitudinal tracking of locomotion in the natural environment of their
patients. This could for instance allow us to evaluate rehabilitation procedures or treatment
choices for specific diseases and to assess the impact of treatments on pathologies such as
musculoskeletal tumors of the lower limbs or neurological disorders (Parkinson’s disease
for instance). The current monitoring of the effects of these FLE treatments is only carried
out via calculations of general metrics (steps/day, ambulatory bouts/day) [19] when our
graphical tool will enable a refined follow-up displaying an enhanced macro analysis of
gait phases.

This paper is organized as follows. Section 2 describes the protocols and algorithms
used to create the graphical tool in question. Section 3 provides a comprehensive evaluation
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of each of the steps of the processing pipeline as well as some results obtained on both
pathological and healthy subjects. In Section 4, these results are analyzed and discussed.

2. Material and Methods

The proposed pipeline is composed of four successive steps: data segmentation,
data classification, feature extraction, and comparison with a healthy model. Figure 1
summarizes these successive steps from the raw data to the final graphical feedback.

Figure 1. Successive steps of our processing pipeline to render a graphical feedback from a semi-
FLE acquisition.

• The segmentation step uses an adaptive change-point detection algorithm to process
IMU recordings. The method searches for significant changes in the time-frequency
space at a given scale, i.e., instants where the subject changed their behavior/activity.
Signals are thus segmented into several homogeneous regimes that will help to extract
knowledge from the global recording.

• Once these homogeneous regimes are segmented, they are classified as walking or non-
walking phases through a supervised classification procedure. A second algorithm
identifies, within non walking phases, sedentary and non-sedentary regimes, thus
providing a full labelization of the regimes. Sedentary regimes correspond to activities
that are not walking phases but that imply movements from the recorded subjects (in
our case, walking up and down stairs, opening a fire door, and performing a 90° turn).
On the other hand, non-sedentary regimes correspond to activities that do not imply
movements from participants (in our case, leaning, sitting, standing).

• The next step consists of extracting features from the regimes that have been classified
as corresponding to a walking phase. These features were selected in order to assess
different aspects of gait (stability, steadiness, sturdiness, and symmetry).
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• By using models learned from healthy subjects, each walking regime is then given a
score represented by distinct color, allowing visual and intuitive feedback.

2.1. Data and Protocols

A total of 21 healthy subjects (33.4± 14.42 years old, 10 men and 11 women), 6 patients
having undergone or about to undergo an orthopedical surgery (48.75 ± 20.32 years old,
1 man and 5 women), and 3 patients suffering from a neurological pathology due to a
cerebral lesion (71.5 ± 8.22 years old, 1 man and 2 women) were measured on a semi-
controlled protocol. Informed consent was obtained for all participants.

Subjects were equipped with a Shimmer3 IMU (Shimmer, Dublin, Ireland) on their
lower back L5 (via the use of a belt strap) (with sampling frequency Fs = 100 Hz, battery
life = 39–69 h, storage = 8 GB,±2 g (to±16 g) for the accelerometer,±250 dps (to±2000 dps)
for the gyroscope [10]. Subjects were asked to complete several laps of the Neurophysiology
Department at Percy Hospital (a semi-controlled environment) and to perform activities at
the end of each lap (climbing up and down some stairs, leaning, sitting, standing) for a total
protocol duration of precisely 6 min. Participants can complete different numbers of laps
depending on their pathology or walking characteristics. However, subjects must be able to
complete at least one full lap in less than 6 min in order to perform at least one end-of-lap
sedentary activity. If a registered subject fails to complete a lap of the protocol, he/she is
not included in the list of selected subjects. Raw signals are filtered between 0.5 and 5 Hz
to remove the noise [20] with a Butterworth bandpass filter (4th order). This experimental
protocol was approved by the committee for the protection of individuals (Comité de
Protection des Personnes) from the Agence Régionale de Santé (ARS). The ID-RCB number
of the committee in which this study is included is 2021-A00087-34. All methods were
carried out in accordance with the principles of the Declaration of Helsinki.

The protocol, illustrated on Figure 2, contains several regimes that are either walking
phases (denoted W•) or activities (denoted A•). During each recording, breakpoints were
identified thanks to a camera carried by the subject who was left alone to perform the
protocol. These breakpoints correspond to transitions between walking phases/activities,
activities/walking phases, activities/activities, or walking phases/walking phases. These
annotations were conducted collaboratively by two experts and consist of precise times-
tamps that will be used as ground truth breakpoints’ labels. Characteristics of these
transitions are displayed in Table 1.

Figure 2. Description of the semi-controlled protocol. Numbers displayed indicate the position of the
subject during its path.
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Table 1. Details of annotated transitions.

Transition Identification Details Type of Regime

W1 Walk (1→ 2) Walking

A1 Door opening and 90-degree
turn Non-Sedentary

W2 Walk (2→ 3) Walking

W3 Walk (3→ 4) Walking

A2 Going up 3 stairs U-turn and
going down 3 steps stairs Non-Sedentary

A3 Leaning Sedentary

A4 Standing Still Sedentary

A5 Sitting Still Sedentary

W4 Walk (5→ 6) Walking

W5 Walk (6→ 1) Walking

2.2. Step 1: Adaptive Changepoint Detection Method

The first step of the processing pipeline consists of segmenting the raw signals by
detecting all activity changes. Intuitively, this segmentation depends on the meaning given
to the notion of change . In order to adapt the strategy to the signals of interest, we propose
to use a supervised approach that learns from annotated data the type of changes that are
meaningful in the context and thus the adequate scale for the segmentation algorithm.

2.2.1. Data Transformation

In the proposed method, changes are detected in the short-time Fourier transform
(STFT) of the raw acceleration/angular velocity signals recorded on the lower back of
healthy subjects. This data transformation has been successfully used in multiple publi-
cations as it enables visualizing activity changes but also speed changes or event slope
changes [21–23].

More specifically, two signals of interest are extracted from the raw data (IMU record-
ings): the craniocaudal angular velocity (gCC) and the anteroposterior acceleration (aAP).
These signals were chosen as they are directly influenced by the changes that can be ob-
served during the execution of the protocol (beginning and end of gait, short activities, half
turns, and turns). Studies have already used these signals to meet objectives similar to
ours (turn detection, detection of activities of daily life) [24,25]. They are normalized (zero
mean and unit variance) before being transformed in the time-frequency domain through
STFT (3 s window length and 0.1 hop length). Only the 0–5 Hz frequency band, where
phenomena of interest are contained, is kept [26,27]. The norms of the STFT coefficients
of each aAP and gCC signal are computed and concatenated, providing d = 28 frequency
bins per frame (14 per signal). The output data will be seen by the segmentation algorithm
as a d-dimensional multivariate signal.

2.2.2. Changepoint Detection Algorithm

Formally, let y = {y1, y2, . . . , yn} denote a Rd-valued signal with n frames: the goal is
to detect shifts in the mean of this signal. For K change point indexes {tk}K

k=1 (1 < t1 < t2 <
· · · < tK < n), a common measure of approximation quality is the empirical quadratic risk:

R(y, {tk}) :=
K+1

∑
k=0

(
tk+1−1

∑
t=tk

‖yt − ȳtk ..tk+1‖
2

)
(1)

where ȳtk ..tk+1 is the empirical mean of ytk , . . . , ytk+1−1 and t0 := 1 and tK+1 := n by
convention. The risk (1) is simply the error when approximating y by a piecewise constant
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signal. The objective is to find the change points {tk}K
k=1 that minimize this risk. When the

number of breaks K is not known (which is the case in this article), the empirical quadratic
risk is penalized with a linear penalty and the optimal breakpoints can be estimated by
solving the following optimization problem:

K̂, t̂1, . . . , t̂K := arg min
K,t1,...,tK

R(y, {tk}K
k=1) + βK︸ ︷︷ ︸

Rβ(y,{tk})

 (2)

where the smoothing parameter β > 0 controls the trade-off between model complexity and
model accuracy. The value of β is critical: a large β only detects strong breaks (change of
activity for instance) whereas a low β also detects small breaks (change within the walking
phases). For a fixed β, this discrete optimization problem can be solved efficiently in linear
time O(n) with the PELT algorithm [28].

2.2.3. Calibration of β

Instead of manually calibrating this parameter by trial and error, a supervised ap-
proach, described in previous studies [29,30], is adopted in this article to learn an optimal
value. This method takes as input an annotated database of physiological signals where the
relevant breakpoints have been annotated by an expert, and learns the adequate parameter
value that is able to reproduce the segmentation strategy of the expert on new signals.

Formally, the input is a collection of N labeled signals y(1), . . . , y(N), and for each y(i),
an expert manually provided the set of true change point indexes {t(i)k }k. The optimal
smoothing parameter, denoted β̂opt, is such that the risk of the true expert segmentation on

all signals Rβ

(
y(i), {t(i)k }k

)
is closest to the one of the predicted segmentation on all signals

Rβ

(
y(i), {t̂(i)k }k

)
:

β̂opt := arg min
β>0

1
N

N

∑
i=1

(
Rβ

(
y(i), {t(i)k }k

)
− Rβ

(
y(i), {t̂(i)k }k

))
. (3)

Intuitively, the algorithm will search for the penalty β that allows to reproduce the
annotations by forcing the β−optimal solution {t̂(i)k }k to be as close as possible to the

ground truth partition {t(i)k }k. The excess penalized risk is a convex function w.r.t. β
(precisely, this is an affine function minus a concave function: see [29] for details). We
therefore used Brent’s method as a convex optimization tool to minimize this component
for each signal.

2.3. Step 2: Classification of Segmented Phases

Once the homogeneous regimes have been extracted from the raw data, our aim is
to assess whether each of these regimes consists of a walking phase or another activity
(sedentary or not). This task is known in the literature as Walking Bout (WB) detection.

There are several existing approaches to perform this detection. The first two ap-
proaches are peak detection [31] and step detection methods [32]. These two types of
methods impose a significant computational heaviness and are inadequate for FLEs if we
wish to provide a simple and easy-to-understand visualization method as we do. Moreover,
these types of studies do not allow to characterize all the portions of the signal (only the
WBs) as it is desired in our case. A third group of studies integrates the detection of WB
into HAR methods via the use of classifiers. To do so, a list of features is extracted on
filtered signals in each frame selected by sliding windows. Machine learning classifiers are
trained with supervised data (features’ values associated with specifically targeted labels)
and then implemented for each portion of the signal. Several classifiers in particular are
then used with a very satisfactory accuracy rate: the support vector machine (SVM) [33],
random forest [34], decision trees [35] and k-nearest neighbors [36]. This way of detecting
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WBs using classifiers matches the objectives of our study. Indeed, it will be possible by
using this approach to label every portion of the signal and not only the walking regimes
(unlike the first two approaches). Moreover, the computational costs are lower than the
first two approaches with satisfactory results.

Our classification procedure is therefore based on feature extraction coupled with
supervised learning. However, contrary to state-of-the-art methods used for HAR, instead
of using (possibly overlapping) frames, we propose to perform this classification at the
regime level. The advantages are twofold: first, because of the segmentation procedure, we
know that each regime is stationary, which is a valuable theoretical property for computing
robust features. Second, the average length of the regimes is often longer than typical frame
durations, which provides more data for computing features.

First, we extract for each detected regime an extensive list of both temporal and
frequency features such as variances, means, dominant frequencies, and power at dominant
frequencies. These features have been chosen and selected in accordance with a recent state-
of-the-art article [10] dedicated to activity classification from IMU signals. The features
list is presented in Table 2. These 135 features are retained because their computation
is convenient for long FLE signals as they do not require any detection of events (heel
strikes, toe strikes). PCA is then applied to these 135 features in order to keep 99% of the
cumulative explained variance. As for classifiers, we have compared their performance
when applied to our signals, and the SVM classifier with linear kernel was retained for
our study.

Table 2. Details of features used for classification. For each formula, X = [x1, x2 . . . , xn] is assumed
to be one of the six dimensions (three linear accelerations and three angular velocities) from the IMU
signal. In total, 135 features are used. Notations: x is the empirical mean of X, σ̂ is the empirical
unbiased standard deviation of X, FFT(X) is the Fourier transform of X, ConjFFT(X) denotes the
complex conjugate of FFT(X).

Features Signal Used for
Computation Description Domain Formulas

mean_signal All 6 Signals Mean Time x

std_signal All 6 Signals Standard
deviation Time σ̂

var_signal All 6 Signals Variance Time σ̂2

min_signal All 6 Signals Minimum Time min(x)

max_signal All 6 Signals Maximum Time max(x)

PD0_signal All 6 Signals
Power at the

first dominant
frequency

Frequency max( FFT(X)∗ConjFFT(X)
N )

F0_signal All 6 Signals First dominant
frequency Frequency argmax( FFT(X)∗ConjFFT(X)

N )

PD2_signal All 6 Signals

Power at the
second

dominant
frequency

Frequency second_max( FFT(X)∗ConjFFT(X)
N )

F2_signal All 6 Signals
Second

dominant
frequency

Frequency second_argmax( FFT(X)∗ConjFFT(X)
N )

CV_signal All 6 Signals Coefficient of
variation Time σ̂/x
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Table 2. Cont.

Features Signal Used for
Computation Description Domain Formulas

p75_signal All 6 Signals 75th percentile Time Let R be the 75th percentile rank: R = 75∗n
100 , p75

corresponds to the Rth value on the sorted X array

p25_signal All 6 Signals 25th percentile Time Let R be the 25th percentile rank: R = 25∗n
100 , p25

corresponds to the Rth value on the sorted X array

p85_signal All 6 Signals 85th percentile Time Let R be the 85th percentile rank: R = 85∗n
100 , p85

corresponds to the Rth value on the sorted X array

p15_signal All 6 Signals 15th percentile Time Let R be the 15th percentile rank: R = 15∗n
100 , p15

corresponds to the Rth value on the sorted X array

p95_signal All 6 Signals 95th percentile Time Let R be the 95th percentile rank: R = 95∗n
100 , p95

corresponds to the Rth value on the sorted X array

p5_signal All 6 Signals 5th percentile Time Let R be the 5th percentile rank: R = 5∗n
100 , p5

corresponds to the Rth value on the sorted X array

p75m_signal All 6 Signals

75th percentile
at the middle of
the signal (2/3
of the signal)

Time Let R be the 75th percentile rank: R = 75∗n
100 , p75

corresponds to the Rth value on the sorted X array

p25m_signal All 6 Signals
25th percentile

at the middle of
the signal

Time Let R be the 25th percentile rank: R = 25∗n
100 , p25

corresponds to the Rth value on the sorted X array

p85m_signal All 6 Signals
85th percentile

at the middle of
the signal

Time Let R be the 85th percentile rank: R = 85∗n
100 , p85

corresponds to the Rth value on the sorted X array

p15m_signal All 6 Signals
15th percentile

at the middle of
the signal

Time Let R be the 15th percentile rank: R = 15∗n
100 , p15

corresponds to the Rth value on the sorted X array

RMS_signal All 6 Signals Root mean
Ssquare Time RMS =

√
1
n ∗ (∑

n
i=1 x2

i )

P1_aCC aCC

First peak of
autocorrelation
coefficients for
craniocaudal
acceleration

Time ACF = iFFT[FFT(X) ∗ ConjFFT(X)] , P1 is the
first peak of ACF

P2_aCC aCC

Second peak of
autocorrelation
coefficients for
craniocaudal
acceleration

Time ACF = iFFT[FFT(X) ∗ ConjFFT(X)] , P2 is the
second peak of ACF

VM All 6 Signals

Vector
magnitude of all

accelerations
(craniocaudal

aCC,
mediolateral

aML, and
anteroposterior

aAP)

Time VM =
√

aCC2 + aAP2 + aML2

In our pipeline, two classifiers are trained and used in cascade. The first SVM classifier
with the linear kernel (Classifier 1) performs a walking/non-walking binary classification,
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whereas the second SVM classifier with linear kernel (Classifier 2) only considers the non-
walking phases detected by Classifier 1 and classifies them as sedentary or non sedentary.

2.4. Step 3: Feature Extraction

In our visual summary, a walking regime is assessed according to four standard
criteria: stability, steadiness, sturdiness, and symmetry. The four features to be extracted
for regime evaluation, detailed in Table 3, are chosen because of their ability to accurately
characterize the gait, their recurrent use in the literature, and ease of computation. These
features are directly calculated on filtered signals at each regime level before the PCA has
been applied.

Stability [37,38]: criterion evaluating postural balance and used for instance to
prevent falls [39]. Stable walking can be defined as gait that does not lead to falls despite
perturbations [40]. This aspect is evaluated by using the root mean square ratio computed
on the mediolateral acceleration RMSRML. It corresponds to the ratio of the root mean
square of the mediolateral accelerations RMSML to the root mean square vector magnitude
computed on all axes RMSA as displayed in (4). RMS evaluates the magnitude of the accel-
eration on one specific axis. The higher RMSRML is, the higher the values of mediolateral
accelerations tend to be compared to other accelerations. This indicates an instability on
the mediolateral axis and therefore a postural instability. Thus, RMSRML is selected for
our study since it has been proven to be uncorrelated with walking speed [38].

RMSA =
√

RMS2
ML + RMS2

CC + RMS2
AP,

RMSRML =
RMSML
RMSA

(4)

Sturdiness [3,41]: criterion evaluating gait amplitude [3]. For instance, sturdiness can
be assessed to quantify observed defects in patients with Parkinson’s disease with low
amplitude movements [42]. This aspect is evaluated by using the root mean square ratio
computed on the anteroposterior acceleration RMSRAP whose computation is conducted
the same way it is performed for RMSRML. The higher it is, the higher the anteroposterior
accelerations’ values compared to other accelerations and the higher the sturdiness is.
Indeed, high anteroposterior acceleration values mean that step impulsions are vigorously
performed by the participant. RMSRAP is used instead of RMSAP in order to limit the
influence of the walking speed.

RMSRAP =
RMSAP
RMSA

(5)

Steadiness[43,44]: criterion evaluating step regularity, i.e., similarity of consecutive
strides[45]. This criterion can be used to quantify locomotion flaws in targeted cohorts with
lower limb defects (such as transfemoral amputees). This category is evaluated by using
the second peak of the autocorrelation coefficients (P2CC) calculated on craniocaudal accel-
erations via the Wiener–Khinchin theorem. This unbiased autocorrelation function uses
both fast Fourier transform (FFT) and inverse fast Fourier transform (iFFT) as detailed in
Table 3. This feature compares the similarity between strides within a walking regime since
it occurs with a time lag of two steps. The higher P2CC is, the more similar the performed
strides are. Let aCC be the associated craniocaudal acceleration signal, ConjFFT(aCC) the
complex conjugate of FFT(aCC), and ACF the autocorrelation coefficients: P2CC is defined
as detailed in (6). Figure 3 shows a craniocaudal acceleration signal associated with its
autocorrelation: P1CC and P2CC locations are presented.

ACF = iFFT[FFT(aCC)ConjFFT(aCC)] (6)

Symmetry[43,44]: criterion evaluating step symmetry. A symmetric gait pattern for humans
is characterized by the almost identical behavior of bilateral limbs during a gait cycle [46]. This aspect
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is evaluated by using the first peak of the autocorrelation coefficients (P1CC) calculated on
craniocaudal accelerations via the Wiener–Khinchin theorem. It compares the similarity
between steps within a walking regime since it occurs with a time lag of one step. P1CC
evaluates the ability to maintain vertical correspondence between right and left hemi-bodies
during walking regimes. The higher it is, the more similar the steps from both sides are.

Table 3. Features used to establish scores for the graphical feedback. In total, four features are used.
ConjFFT(X) denotes the complex conjugate of FFT(X).

Categories Features Description Mathematical Computation

Steadiness P2CC The second peak of the autocorrelation
coefficients calculated on craniocaudal

accelerations via the Wiener–Khinchin theorem:
the higher it is, the more similar the steps are.

ACF = iFFT[FFT(X)ConjFFT(X)] , P1 is the first
peak of ACF whereas P2 is the second peak

Symmetry P1CC The first peak of the autocorrelation coefficients
calculated on craniocaudal accelerations via the

Wiener–Khinchin theorem: the higher it is,
the more similar the strides are.

P1 is the first peak of ACF whereas P2 is the
second peak

Sturdiness RMSRAP Root mean square ratio on anteroposterior
acceleration. The higher it is, the higher the

sturdiness is.

RMSA =
√

RMS2
ML + RMS2

CC + RMS2
AP,

RMSRAP = RMSAP
RMSA

Stability RMSRML Root mean square ratio on mediolateral
acceleration. The lower it is, the higher the

stability is.

RMSA =
√

RMS2
ML + RMS2

CC + RMS2
AP,

RMSRML = RMSML
RMSA

Figure 3. One aCC signal and its associated unbiased autocorrelation. Definition of P1CC (blue dot)
and P2CC features (red dot).
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2.5. Step 4: Score Generation and Graphical Feedback

Using a database of healthy walking phases taken from the healthy subjects from the
recorded cohort, statistics for the different features are computed (means, percentiles, etc.).
These models are then used to assess each novel walking phase with the scoring procedure
described as follows.

Considering a feature with mean µ and standard deviation σ on all walking regimes
from healthy subjects, we compute the z-score normalized feature

z =
x− µ

σ
. (7)

The z-score normalized features are then displayed with a color bar of boundaries
[xmin, xmax] where xmin and xmax are, respectively, the 10% and 90% percentiles of the
normalized features on the healthy subjects. Slightly below healthy values correspond to
regimes with z-scores just below those obtained for the 10th percentile of healthy subjects,
and slightly above healthy values correspond to regimes with z-scores just above those
obtained for the 90th percentile of healthy subjects.

2.6. Evaluation Metrics

In the next section, we conduct a step-by-step assessment of each step of the pipeline
with adapted metrics. All simulations are run with 3-fold cross-validation. To that aim, we
split the dataset into three balanced sets (two training sets and one validation set) of seven
healthy subjects and three pathological subjects (two participants having undergone or
about to undergo orthopedical surgery and one neurological patient). This cross-validation
allows one to verify that the algorithm developed in this study can be used on new unseen
data to apply the desired segmentation.

2.6.1. Evaluation of the Adaptive Change-Point Detection

The supervised segmentation procedure is assessed with three standard evaluation
metrics: precision, recall, and F1-score. A predicted change point is a true positive (TP) if it
is close to a true change point (within a specific positive temporal margin). This margin is
set to 3.5 s and corresponds to the maximum accepted error for a change point. It must be
lesser or equal to the minimum temporal distance between two true change points. Recall
which corresponds to the proportion of true change points that are correctly predicted is
the ratio of the number of TPs to the number of true change points K∗. Precision is the
proportion of predicted change points that are associated with true change points. It is the
ratio of the number of TPs to the number of predicted change points K.

Precision =
TP
K

Recall =
TP
K∗ F1Score = 2

PrecisionRecall
Precision + Recall

(8)

2.6.2. Joint Evaluation of Segmentation and Classification Steps

After the first two steps of the pipeline, each data sample is labeled as Walking,
Non-Walking/Non-Sedentary, or Sedentary. Intuitively, the sample-scale classification
performances depend both on the segmentation step and on the regime classification step.
To jointly evaluate these tasks, we compute the confusion matrix between all three labels.
Each coefficient of the matrix represents the percentages of samples annotated as belonging
to the row activity that have been classified as the column activity. Perfect performances
would correspond to a diagonal matrix.

3. Results
3.1. Adaptive Change-Point Detection

The cross-validation results are the following: F1-Score 0.76 ± 0.01, Recall
0.79± 0.02, and Precision 0.74± 0.02. These are satisfactory results and enable a proper
segmentation that can be relied on for the further setup of graphical feedback. The recall
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and precision results are well-balanced, which means that there is no oversegmentation
or undersegmentation.

3.2. Joint Evaluation of Segmentation and Classification Steps

Figure 4 displays the confusion matrix at sample scale evaluating both segmentation and
classification. The correct class (Walking, Non-Sedentary, Sedentary) is accurately predicted
for a large majority of samples. In detail, Walking samples are well distinguished from other
classes whereas Sedentary and Non-Sedentary samples are less precisely discriminated.

Several HAR methods detailed in the literature attempt to classify WBs. Their results
have all been evaluated in a review conducted by the authors of the current article [10].
Table 4 displays accuracy values for different kinds of classifiers used in recent HAR studies
carried out in free-living conditions as well for these same classifiers tested on our retrieved
data. Accuracy results are satisfactory for our implemented chosen linear SVM cascade
classifiers (0.88) when compared to these results (no other accuracy result above 0.89).
It is noteworthy that the majority of these methods are difficult to compare with ours
because of variations in the conditions of application of the classifiers (very few studies
compute the training features at the scale of a regime for instance, sensors are placed on
different locations).

Table 4. Average accuracy values for different kinds of classifiers used in the literature to classify
activities (including walking bouts) in free environments.

Type of Classifiers Reported Performances Performances on Our Data

Support Vector Machine SVM
0.72 [47]

0.88 ± 0.140.85 [14]
0.74 [48]

Random Forest
0.88 [49]

0.85 ± 0.160.88 [50]
0.86 [14]

Decision Tree
0.82 [47]

0.77 ± 0.170.83 [51]
0.80 [14]

k Nearest Neighbors

0.75 [47]
0.89 ± 0.060.74 [49]

0.68 [50]

Figure 4. Confusion matrix for the segmentation and classification steps of our processing pipeline.
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3.3. Scores and Graphical Feedback

Graphical outputs are plotted for four subjects: one 23 year-old healthy male subject
(HSU—Figure 5a), one 66 year-old female pathological subject (PSU1—Figure 5b) with
a chronic gluteus medius insufficiency, one 75 year-old woman with post-radiation left
brachial plexitis called PSU2, and one 25 year-old female pathological subject (PSU3—
Figure 6b) in an immediate post-operative phase of a knee ligamentoplasty. For the PSU3
subject, we have also computed the visual feedback in the immediate pre-operative phase
of her knee ligamentoplasty as displayed in Figure 6.

(a) (b)

(c)

Figure 5. Graphical feedbacks from (a) HSU, (b) PSU1, (c) PSU2.
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(a) (b)
Figure 6. Evaluation of pre-hospitalization acquisition and post-hospitalization acquisition for a
subject who has undergone knee ligamentoplasty. Post-operation evaluation displays a worse state.
(a) Pathological Subject 3 graphical feedback Pre-surgery PSU3A; (b) Pathological Subject 3 graphical
feedback: Post-surgery PSU3B.

These graphs display the evaluation of the whole protocol segmented in regimes in
a clockwise manner. The first outer circle specifies the nature of the segmented regimes:
dark blue for non-sedentary activities, standard blue for sedentary activities, and light
blue for walking regimes. The four next inner concentric circles are each associated with a
gait criterion: stability, steadiness, sturdiness, and symmetry. Each portion of these circles
delimited by black lines corresponds to a segmented regime, whose length is proportional
to the duration of the regime. For a given evaluation criterion, each walking regime is then
assigned a color from dark red to dark green. This color depends on the comparison of this
regime to the average healthy walking regime. Non-walking regimes are not evaluated
and are displayed in dark blue for non-sedentary activities and light blue for sedentary
activities (as in the first outer circle).

Several interesting features can be highlighted by simple visual inspections of these
diagrams. We see for instance in the feedback obtained for HSU (Figure 5a) that walking
regimes from this participant are deemed to be of satisfactory quality according to all
evaluated criteria. On the other hand, scores’ figures for several walking regimes from PSU1
and PSU2 are below average healthy standards. For PSU1, stability and symmetry (first
and fourth inner circles) are degraded whereas PSU2 displays deteriorated stability and
sturdiness (first and third inner circles). The tool thus allows for a simple interindividual
comparison, which is both quantitative (thanks to the colors) and qualitative (thanks to the
four criteria). Furthermore, the temporality of the whole excercice is preserved, allowing
for a better understanding and interpretation. Figure 6 shows another potential use for
the tool in the context of longitudinal follow-up. By comparing the diagram obtained
before (Figure 6a) and after surgery (Figure 6b) from participant PSU3, it is visible that the
post-surgery consequences mostly affect the stability of the locomotion, and that symmetry
is also degraded.

4. Discussion
4.1. Performances

The metrics obtained for the supervised segmentation are satisfactory (F1-score around
75%) and the observed margin of error is due either to annotation approximations or specific



Sensors 2023, 23, 4000 15 of 20

breakpoints difficult to detect because of the movement of the subjects (quick transitions
or turns that are taken so quickly that they do not appear as a clear breakpoint). A study
differentiating the results obtained according to the types of transitions was carried out.
Turns appear to be less accurately detected than transitions between slow/steady regimes
and active regimes (A3/A4/A5 to W4 for example, see Table 1 for the categories of changes).
This is due to the fact that these turns are not performed the same way by all subjects. Some
are too fast to produce a particular pattern in the spectrogram used by our method. This
may explain the few errors observed in the segmentation. The segmentation is currently
performed using spectrograms whose hop size is 0.1 s, thus limiting the temporal resolution
that can be achieved. In case we would like to lower it, it is possible to do so, but at the
expense of the computation time.

As for the joint segmentation/classification assessment, the walking phases are well-
predicted (>90%) and sufficiently discriminated for the two other phases (>75% for non-
sedentary phases and >83% for sedentary phases). Again, imprecision margins are con-
sequences of errors in the segmentation. In addition to segmentation error, inaccuracy
can be introduced by the two classifiers. Walking regimes are well detected because this
activity is structured and made up of repetitive and precise patterns that therefore manifest
themselves with intense spectral signatures. Since a significant proportion of the features
used for classification are spectral features, this probably facilitates the classification process.
Sedentary and non-sedentary activities are inherently more difficult to differentiate. For ex-
ample, activities where subjects open fire doors (A1) include movements similar to those
observed during walking (stomping and some slow steps) that have spectral signatures
closer to those of walking activities. As a result, non-sedentary activities are often mistaken
for walking regimes. On the contrary, the intensity of sedentary activities tends to be very
low, which may lead to confusion with some low-energy non-sedentary activities. All of
these confusions are often encountered in other studies aimed at classifying activities and
especially walking activities [52].

4.2. Robustness of the Features

In the final graphical feedback, four features are used to characterize the gait activ-
ity. The robustness of the feedback depends mainly on the robustness of those features,
especially when confronted with segmentation errors. To investigate this issue, we con-
ducted an additional experiment where we intentionally degrade the segmentation process
(e.g., by voluntarily lowering the number of samples for feature computation), in order
to assess the robustness of the features. In total, 10 degraded configurations are tested,
as described in Table 5. Figure 7 shows the distribution of features in all categories over the
10 configurations in walking sections of one healthy subject (HSU) and two pathological
subjects: PSU1 (gluteus medius deficiency) and PSU2 (post-radiation left brachial plexitis).
PSU1 has shown the highest instability and lack of symmetry in their deambulation, PSU2
has shown degraded sturdiness. For each subject, we have extracted all walking regimes,
and computed the features according to the different configurations. Each box contains
the distribution of the different values of this feature on all 10 tested configurations in a
given walking regime. The walking regimes for HSU are displayed in blue, and the ones
of the first, second, and third pathological subject, respectively, in red and green. The
blue horizontal line shows the average value of the feature computed on all 10 degraded
ranges of every walking regime from all healthy participants (dotted lines correspond to
the 75th/25th percentiles). Thus, the distribution for one healthy subject and two patho-
logical subjects as well as the average distribution for all healthy participants are shown in
Figure 7.
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Figure 7. Evaluation of the robustness of selected features. Features with low dispersion and high
discrimination between classes. The blue horizontal line shows the average value of the feature for
all healthy subjects, the red horizontal line shows the median value of the feature for all healthy
subjects, and the dotted lines correspond to the 75th/25th percentiles. Each boxplot corresponds to
10 computations of the feature on a walking regime on 10 degraded ranges. Boxplots are displayed
with specific colors depending on their associated subject: blue for a healthy subject, red for PSU1,
and green for PSU2.

One first observation is that all boxes display little spread over all recorded subjects,
which suggests that the computation process is robust. It is interesting to note that the
differences between the three subjects are clearly visible for all walking regimes in all
categories except for steadiness (no recorded participants displayed an affected regular-
ity). Moreover, the patient with the most impact on their stability (PSU1) displays boxes
associated with the RMSRML feature that are even more detached than PSU2 from the
figures of the healthy subjects, which confirms the different visual impacts observed on the
gait of each pathological subject. This feature thus presents satisfactory robustness results
in terms of dispersion on the degradation ranges as well as in terms of discrimination
between subjects. This confirms the relevance of using this feature to evaluate the stability
of walking regimes. The calculation of this feature remains indeed constant on all the
ranges presented in Table 5, which allows our method to be correctly applied despite
eventual segmentation errors that may occur. No patient presented a continuous affection
in steadiness and it was thus difficult to estimate the discrimination power from P2CC: it
must be evaluated in further works. Other figures and additional experiments show that
all other features listed in Table 3 display the same consistency and robustness, which is an
important asset of our proposed approach.

Table 5. Degraded configurations for the computation of the features.

Configurations

All the regime is used (normal configuration)
Only the first 3 s of the regime are used

Only the first 3.5 s of the regime are used
Only the first 4 s of the regime are used
Only the first 5 s of the regime are used
Only the first 40% of the regime is used

Only 40% of the regime is used (with start at 20% of the total duration)
Only 40% of the regime is used (with start at 30% of the total duration)
Only 40% of the regime is used (with start at 40% of the total duration)

Only the last 40% of the regime is used
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4.3. Relevance of the Graphical Feedback and Possible Usecases

Several important conclusions can be made from the graphical feedbacks obtained on
the HSU, PSU1, PSU2, and PSU3 subjects.

The overall readings of the graphs from HSU in Figure 5a, PSU1 in Figure 5b, and
PSU2 in Figure 5c correlate with field observations of subjects’ deambulations made by
an orthopedic surgeon and a neurologist (Hôpital d’Instruction des Armées Percy): PSU1
suffers from gluteus medius insufficiency causing Trendelenburg-type lameness because
of multiple right hip surgeries. This lameness is related to the low scores obtained for
symmetry and stability for this participant. As for PSU2, this patient suffered from post-
radiation left brachial plexitis 20 years after radiation treatment for breast cancer. Complete
paralysis of the entire left upper limb was observed. The patient’s stability and sturdiness
are accordingly affected. The displayed impairment of stability may be due to the imbalance
related to the dead weight of her left arm, which hangs from the shoulder and weighs at
least 10 kg. Besides, PSU2 performed steps with little amplitude which explains degraded
scores in sturdiness as displayed in the visual feedback (third inner circle). This confirms
that this graphical tool gives a correct overall perception of the subjects’ gait actual defects
(this must nevertheless be extended to other subjects).

Longitudinal follow-ups allowed by these visual feedbacks accurately reflect ob-
served degradations or improvements in subjects’ walking regimes: the differences of the
same subject before and after their knee ligamentoplasty surgery are presented in Figure 6.
In this figure, an obvious degradation is observable between the two recordings as detailed
in Section 2.4. This corresponds to the visual observation made by the surgeon: the subject
presented a much more degraded gait after surgery than before. After the surgery, there
was a significant quadricipital sideration which fully explains the alteration in stability and
symmetry (first and fourth inner circles in graphical outputs). This shows how efficient
this graphical tool is to track a patient’s physical activity longitudinally.

Visual feedbacks provide time scales of segmented regimes and allow for a new type
of ambulatory gait analysis: regimes’ delineations implemented with black lines described
in Section 2.5 allow the relative lengths of each segmented regimes to be assessed and
compared with each other. This provides a new prism for innovative macro analysis when
associated with the evaluations that these visual feedbacks offer: long sedentary regimes
might induce better stability scores for walking regimes starting afterward since it can
remove fatigue symptoms, for instance.

To the authors’ knowledge, few studies based on the use of IMUs in FLEs have
endeavored to provide a macro analysis displayed in the form of an easy-to-understand
visual legend that fully assesses the entire timeline of FLE signals. Provided summaries
either focus on metrics that are too specific, which prevents clear and didactive visual
feedback, or on metrics that are too general, which prevent a complete assessment of a
subject’s physical activity in free environments. In these kinds of studies, the influence of
time is often erased by computing features that are often agglomerated over the whole of
the measurements as explained above. Rather than knowing the percentage of time spent
on each activity, we can, for example, be interested in the impact of transitions between
activities on the quality of walking regimes, on the evolution of this quality over several
consecutive regimes. In this section, we developed a graphical tool by circumventing these
pitfalls of physical activity assessment: time-scales of segmented regimes are provided
as well as a continuous evaluation of the physical activity over several walking regimes
thanks to pre-defined criteria. Our graphical tool will enable refined follow-ups, displaying
an enhanced macro analysis of gait phases. The output graphs allow for easier and
more meaningful intra- and interindividual comparisons than those allowed by the global
monitoring metrics generally used in the literature. This graphical tool could also allow
practitioners to quickly determine the areas of instability in their patients, to identify the
influences of fatigue, and perform longitudinal follow-ups allowing new interpretations.
Besides, it could help to evaluate rehabilitation procedures or treatment choices for specific
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diseases and to assess the impact of treatments on pathologies such as musculoskeletal
tumors of the lower limbs or neurological disorders (Parkinson’s disease, for instance)

5. Conclusions

A pipeline aiming to provide practitioners with a graphical evaluation of their subjects
walking in semi-FLEs is presented here. These methods are innovative in the interpretations
they offer, adapting a notably concerning segmentation which follows the annotation strate-
gies, precise and ergonomic in its final visual rendering. The rendered visual summary
will help practitioners to provide a reliable comprehensive longitudinal tracking of loco-
motion in free environments. This could for instance allow one to improve post-operatory
follow-ups and evaluate rehabilitation procedures or treatment choices for specific diseases.
The first results are encouraging since they correlate closely with field observations of the
walking state of the recorded subjects. Besides, additional criteria such as time scales can
enable enhanced interpretations (evaluation of fatigue’s impact, development of transitions
between activities). However, these methods need to be tested on longer signals in order to
define whether they can be applied with the same efficiency to signals collected in FLEs.
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