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Abstract: With the rapid development of virtual reality (VR) technology and the market growth of
social network services (SNS), VR-based SNS have been actively developed, in which 3D avatars
interact with each other on behalf of the users. To provide the users with more immersive experiences
in a metaverse, facial recognition technologies that can reproduce the user’s facial gestures on their
personal avatar are required. However, it is generally difficult to employ traditional camera-based
facial tracking technology to recognize the facial expressions of VR users because a large portion of the
user’s face is occluded by a VR head-mounted display (HMD). To address this issue, attempts have
been made to recognize users’ facial expressions based on facial electromyogram (fEMG) recorded
around the eyes. fEMG-based facial expression recognition (FER) technology requires only tiny
electrodes that can be readily embedded in the HMD pad that is in contact with the user’s facial skin.
Additionally, electrodes recording fEMG signals can simultaneously acquire electrooculogram (EOG)
signals, which can be used to track the user’s eyeball movements and detect eye blinks. In this study,
we implemented an fEMG- and EOG-based FER system using ten electrodes arranged around the
eyes, assuming a commercial VR HMD device. Our FER system could continuously capture various
facial motions, including five different lip motions and two different eyebrow motions, from fEMG
signals. Unlike previous fEMG-based FER systems that simply classified discrete expressions, with
the proposed FER system, natural facial expressions could be continuously projected on the 3D avatar
face using machine-learning-based regression with a new concept named the virtual blend shape
weight, making it unnecessary to simultaneously record fEMG and camera images for each user.
An EOG-based eye tracking system was also implemented for the detection of eye blinks and eye
gaze directions using the same electrodes. These two technologies were simultaneously employed to
implement a real-time facial motion capture system, which could successfully replicate the user’s
facial expressions on a realistic avatar face in real time. To the best of our knowledge, the concurrent
use of fEMG and EOG for facial motion capture has not been reported before.

Keywords: virtual reality (VR); social network service (SNS); facial expression; electromyogram
(EMG); electrooculogram (EOG)

1. Introduction

Recently, virtual reality (VR) technologies have been actively incorporated into social
network services (SNS), leading to a new entertainment service called VR-based SNS,
where virtual avatars interact with each other on behalf of the users [1]. Indeed, several
VR-based SNSs such as VRChat and Facebook Space have been already launched [2,3]. In
addition, the application of VR environments with virtual avatars has been rapidly adopted
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by researchers in other areas such as the rehabilitation of autism patients, social skills
training for children, and cognitive training for the elderly [4–6]. In the VR-based SNSs
using 3D avatars, facial expression recognition (FER) technologies that replicate natural
facial expressions and gestures on personal avatar faces are important for allowing VR
users to feel as though they are interacting with a real person [7–9]. There are several
technologies that can project the user’s face on their virtual avatar face; however, most
of them have been implemented with camera-based facial motion capture techniques [5].
Although camera-based FER enables high-quality real-time FER, it is generally difficult to
apply this technique to VR-based SNSs because VR head-mounted display (HMD) devices
cover a large part of the user’s face, especially around the eyes, which can hinder the
camera’s ability to capture the user’s facial expressions.

Several attempts have been made to overcome the issue mentioned above, such as
the use of interior infrared cameras [10,11] and electromyography (EMG) [12,13]. A small
infrared camera with a short focus range can be placed inside the VR HMD to capture
eyeball movements and eye gestures when the user wears the HMD. However, the short-
focused infrared cameras are generally more expensive than commercial VR HMD devices
are. Additionally, as two short-focused infrared cameras are typically placed inside the
VR HMD, an additional external camera needs to be attached to the outside of the VR
HMD to capture lip motions. For example, Justus et al. developed a facial motion capture
system using interior infrared cameras and an additional external camera for tracking
facial expressions in covered and uncovered facial parts, respectively [14]; however, in their
paper, the authors also mentioned that the use of two types of cameras increased the overall
price and weight of the VR HMD.

EMG signals, which are biological electric signals generated by muscular activity,
can provide an alternative way to address the issues of the conventional camera-based
FER in VR environments. Since facial gestures are generated by combinations of various
facial muscle movements, it is possible to predict facial gestures by analyzing facial EMG
(fEMG) [13]. fEMG-based FER methods require only a few surface electrodes to capture
fEMG signals, which can be readily implemented with a low-cost biosignal recording unit
(e.g., TI ADS1299 chipset). In particular, electrodes can be easily embedded in the pad of
commercial VR HMDs.

However, although there have been a series of fEMG-based FER studies [15–19], except
for one by Cha et al. [15,16], the electrode locations of all studies were not determined
considering the VR HMD environment. Cha et al. [19] developed an fEMG-based FER
system that could successfully classify 11 facial expressions in real time using eight elec-
trodes attached around the eyes, assuming the use of a commercial VR HMD. However,
all the previous FER systems only classified discrete facial expressions, and thus, continu-
ous changes in facial expressions could not be predicted and directly projected onto the
3D virtual avatar face in real time. Because the implementation of more realistic avatar
expressions can provide the VR-based SNS users with a more immersive experience, the
development of a new FER system that can predict continuous changes in facial expressions
is necessary.

In this study, we designed a machine-learning-based FER system that can predict
not only the types of the user’s facial expressions, but also the intensities of the muscle
movements, and project the continuous facial expressions on to the user’s 3D virtual avatar
face in real time using electrodes attached around the eyes. To implement this FER system
without an extensive individual calibration process, a new concept named virtual blend
shape weight (vBSW) was proposed, and a two-step FER approach consisting of classifi-
cation and regression steps was employed. Although our FER system employed only ten
electrodes attached to the VR HMD frame, online experiments with eleven participants
demonstrated that it was possible to capture the user’s various lip and eyebrow motions
continuously, which the conventional fEMG-based FER systems were not able to do. Addi-
tionally, to replicate more realistic avatar eye motions, we developed methods for real-time
eye blink detection and eye gaze tracking using an electrooculogram (EOG) recorded using
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the same electrodes and incorporated them into the proposed fEMG-based FER system.
Our proposed FER system allows the continuous tracking of facial expression changes
by seamlessly adjusting the shapes of the lip, the eyebrows, and the eyes. To the best of
our knowledge, this is the first study that implemented the continuous tracking of facial
gestures with a limited electrode configuration in the VR HMD environment.

The remainder of the literature consists of the following sections: The Materials and
Methods Section provides detailed information of the subjects, equipment, experimen-
tal protocols, signal preprocessing, and methods for FER. The Results Section presents
the performance of our proposed system, both quantitatively and qualitatively. The Dis-
cussion and Conclusion Sections discuss some issues regarding our system and provide
future prospects.

2. Materials and Methods
2.1. Subjects and Materials

Eleven healthy male participants (age: 28.36 ± 3.55) participated in this study. None
of the participants reported any serious health problems, such as Bell’s palsy, stroke, or
Parkinson’s disease, that might affect the study. Before conducting the experiments, all
the participants were given a detailed explanation of the experimental protocols and
signed a written consent form. The participants received monetary compensation for their
participation in the experiments. The study protocol was approved by the Institutional
Review Board (IRB) of Hanyang University, South Korea (No. HYUIRB-202209-024-1).
A commercial biosignal acquisition system (ActiveTwo; BioSemi Inc, Amsterdam, The
Netherlands) was used to record fEMG and EOG signals. Both signals were recorded
at a sampling frequency of 2048 Hz. We attached ten active electrodes to plastic film as
shown in Figure 1a. The thin plastic film was designed based on the shape of the pad of
a commercial VR HMD (Samsung Gear VR 2019; Samsung Electronics, Seoul, Republic
of Korea) to expose as much of the face area as possible. We employed the transparent
plastic film instead of the actual VR HMD to quantitatively evaluate the FER accuracy
by comparing the actual facial expressions with the expressions replicated on the avatar
face. This experimental set-up was also used to determine some parameters relating the
fEMG patterns with blend shape weights (BSWs) of the avatar face, for which three male
participants (age: 29 ± 1.73) were enrolled. We implemented a 3D virtual avatar in the
Unity environment, as shown in Figure 1b. Matlab ver. R2019a and R2015a (MathWorks,
Natick, MA, USA) were used to process biosignals and predict the facial motions.
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2.2. Acquisition of Calibration Data

All participants underwent a short calibration session to build an individual machine
learning model. During the calibration session, they were asked to sit in front of a 24-inch
LCD monitor that provided visual instructions. Each experimental trials for calibration
consisted of three steps (see Figure 2). In the first step, the participants were informed about
the next facial expression that they should make using both images and text. In the second
step, the participants were asked to make the designated facial expression three times
repeatedly for 3 s. In the last step, the participants were asked to relax their facial muscles
and prepare for the next trial. The facial gestures employed in this study were selected from
the facial action coding system (FACS) [20], which is a famous standard dataset widely
used in facial expression recognition studies [17,21,22]. Among the tens of facial actions in
the FACS, we picked eight of them considering the distance between the locations of facial
muscles and the electrodes. It is to be noted that horizontal eye movement separated into
left- and right-directional eye movements in the FACS, but we regarded it as a single facial
action. Table 1 shows the full list of facial gestures used in our FER system.
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Figure 2. A schematic diagram of the experimental protocol. (a) Presentation of the next facial
expression to the participant in a random order; (b) task performing step: the participant replicates
the given facial expression repeatedly 3 times for 3 s; (c) a resting period lasting for 3 s.

Table 1. List of predictable facial expressions.

Category Facial Expressions

Lip motions (5) Neutral; mouth open;
raise the left/right corner of the lip; smile.

Eyebrow motions (2) Neutral; raise the eyebrows.

Eye motions (2) Eye blink; horizontal movement of eyeballs.

2.3. Signal Preprocessing and Feature Extraction on Biosignals

Since fEMG and EOG signals could be measured using surface electrodes, both sig-
nals were recorded using the same electrodes. fEMG signals were acquired from all ten
electrodes, while horizontal EOG (hEOG) signals were extracted from four electrodes (the
two rightmost electrodes and two leftmost electrodes; see Figure 1a).

The signal processing steps of the fEMG signals are as follows. The acquired fEMG
signals were notch filtered at 58–62 Hz to eliminate AC power noises, followed by a fourth-
order Butterworth bandpass filter with a bandwidth of 20–450 Hz. The filtered fEMG
signals were segmented using a 100 ms sliding window with a 50 ms overlap. The sliding
window started at 0 ms and lasted until the end of the signal duration with fixed intervals
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of 50 ms, resulting in an estimate of the facial expression every 50 ms. Following this, we
computed the root-mean-squared (RMS) values for each segment using

xRMS =

√
1
N ∑N

n=1|Xn|2, (1)

where Xn represents the n-th sample value and N represents the number of samples in
the sliding window. The RMS values were then smoothed by applying a fourth-order
Butterworth lowpass filter with a 0.05 Hz cutoff for each trial.

The EOG signals were processed in the following steps. As shown in Figure 1a, there
were no electrodes on the left and right sides of the eyes. Therefore, EOG signals from the
two leftmost electrodes were averaged to estimate the left electrode hEOG value. Similarly,
EOG signals on the two rightmost electrodes were averaged to estimate the right electrode
hEOG value. In same way, the EOG values from four electrodes above the eyes and the
EOG values from six electrodes below the eyes were averaged to estimate the vertical EOG
(vEOG) values, which were then used to identify eye blinks.

2.4. Acquisition of Facial Motion Data to Relate BSW and fEMG

To relate the facial motions to the fEMG signals, additional facial motion data were
collected with a webcam using a camera-based facial motion capture software package (f-
clone; https://vimeo.com/219844273, accessed on 5 February 2022) from three participants.
More specifically, we collected BSWs consisting of 29 different categories that represent
various facial motions, such as ones with the left corner of the mouth moved up, the
mouth centered, the mouth open, and the right cheek raised [23]. The list of all 29 BSWs is
provided in Supplementary Materials Table S1. We used the raw BSWs directly without
any preprocessing. Among the 29 BSWs, 9 BSWs were selected because they are closely
related to the facial expressions that we were trying to capture. Table 2 shows the selected
BSWs for each facial expression. Note that the lip motions were affected by multiple BSWs,
while the eyebrow motions of the left and right eyebrows were affected by only one BSW.
The collected BSWs data and simultaneously recorded fEMG signals were then used to
formulate the relationship between BSWs and fEMG, which are described in Section 2.5.

Table 2. Facial expressions and related BSWs. Numbers in the parenthesis represent the number of
BSWs related to each facial expression.

Facial Expressions Related BSWs

Mouth open (3) Mouth open; mouth left/right spread.

Smile (5) Mouth open; mouth left/right spread; cheek left/right up.

Raise the left/right corner of the lip (2) Mouth left/right spread; cheek left/right up.

Raise the eyebrows (1) Brow left/right up.

2.5. Virtual Blend Shape Weights

To predict and reconstruct facial motions from fEMG signals without actual BSWs
acquired from each user, we proposed a new concept called ‘virtual blend shape weight
(vBSW)’. The vBSW is an artificially generated BSW from each user’s fEMG signal data,
which has a unique weight combination of BSWs determined by analyzing simultaneously
acquired BSWs and fEMG signals in the preliminary experiment with three participants.
The vBSWs were calculated by multiplying weights of each facial expression with the
averaged preprocessed fEMG signal. The weight is a value assigned to each BSW, which
ranges from 0 to 1. Each facial expression has its own unique combination of weights, so
that the combination of weights for a specific facial expression represents how much each
BSW value changes when the facial expression is generated. The weight combination of
each facial expression was empirically determined based on the actual BSWs captured
using the f-clone program.

https://vimeo.com/219844273
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2.6. Prediction of BSWs from Facial Biosignals

We implemented a two-step prediction procedure that consisted of classification and
regression. The first step classified five discrete lip motions and two eyebrow motions.
After the classification step, the second step conducted linear regression prediction of
continuous facial motion based on fEMG signal amplitudes.

(1) Classification Step The Riemannian manifold-based pattern classification method,
which is identical to that in our previous study [19], was implemented. For each
preprocessed fEMG signal, a C× C sample covariance matrix (SCM) was computed as
Cw = 1/(S − 1)xw xw

T, where xw is a segmented fEMG signal of which the dimension
is W× C, w = 1, 2, 3, . . . , W. Here, W is the number of windows in the segment, S is the
number of samples in a single segment, and C is the number of channels. As described
in the previous study, the space of SCM can become a Riemannian manifold, and by
mapping the SCM onto a tangent space, the Riemannian manifold-based fEMG feature
can be computed. Specifically, the SCM of the segmented fEMG signal was computed
and mapped onto the tangent space formed by a reference SCM. The method for
computing the reference SCM is described in [24]. Then, the extracted features were
used to train a linear discriminant analysis (LDA) classifier. The fEMG data recorded
during the calibration sessions were used to train the classifier model. After building
the classifier model, the 100 ms fEMG sliding window was fed into the model during
the online session, resulting in a classification result at every 50 ms. Here, LDA
classification models are made for each lip motion detected and brow motion detected,
respectively, making it possible to track the lip and brow motions independently.

(2) Regression Step After the classification of discrete facial motions, a linear regression
model-based support vector machine (rSVM) was used to predict the continuous
facial motion. As mentioned in Section 2.5, each facial expression category had its
own combination of vBSW weights. Individual rSVM-based prediction models were
created for each facial expression of each user using calibration fEMG signals and the
vBSW of each facial expression. As a result, once the two-step model was trained with
the calibration fEMG data, in the online experiments, the model first classified the
facial expression from the given fEMG signals, and then it predicted the intensity of
the facial expression in the form of a combination of BSWs. Again, according to the
separated LDA models of the lips and brows, regressions of the lips and brows were
achieved independently.

Flowcharts for the classification and regression steps and the procedure of the real-time
FER system are depicted in Figure 3.

2.7. Eyeball Movements and Eye Blink Detection

For eyeball movement tracking, a simple EOG-based eye tracking method was em-
ployed. Traditionally, EOG electrodes are located at the leftmost and rightmost sides of
the eyes and above and below each eye [25]. Then, horizontal and vertical components of
the EOG signals are used to determine the eye movement directions [26]. In this research,
as mentioned above, we calculated hEOG as the difference between the average values of
the two leftmost electrodes and the two rightmost electrodes. The hEOG value was then
used to estimate the horizontal eyeball movements. Since the BSWs of horizontal eyeball
movement ranges from −1 to 1, each representing the rightmost direction and the leftmost
direction, the range of hEOG was rescaled between −1 and 1 by mapping the minimum
and maximum values of hEOG between−1 and 1, respectively. In general, there is a drift in
the EOG signal baseline, which hinders the steady tracking of eyeball directions [25,27]. To
overcome this issue, we applied a continuously updating centerline method that calculated
the average hEOG for the most recent 10 s and considered it as the EOG signal acquired
when the eyes were located at the center. Please note that only horizontal eyeball tracing
was implemented in our system. Eye blink detected was based on an algorithm called the
summation of the first-order derivative within a window [28]. For the detection of eye
blinks, vEOG was used, which was calculated by subtracting the mean value of electrodes
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below the eyes from the mean value of electrodes above the eyes. A schematic diagram of
real-time eye blinks and eye motion detection is presented in Figure 4.
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2.8. Real-Time Avatar Interaction

The two-step facial motion prediction model, an eye blink detection model, and an
eye movement tracking model were incorporated into a Matlab-based real-time facial
motion capture system and projected onto a Unity-based 3D avatar face in real time. The
real-time program acquires the fEMG signals from a commercial biosignal acquisition
system every 50 ms. fEMG signals were preprocessed and stacked in the queue until
the length of the stacked data reached 100. After 100 samples were stacked, the system
initiated the two-stage prediction model for facial expression prediction. After starting the
prediction sequence, the window of fEMG data was repeatedly updated every 50 ms by
newly acquired fEMG data. This updating process was conducted by a first-in first-out
(FIFO) paradigm, as depicted in Figure 5.

As shown in Figure 5, adding new fEMG data at the end of the queue and removing
the oldest fEMG data from the front of the queue were performed simultaneously so that
the queue always contained the latest 100 samples, which occurred every 50 ms. Each time
the queue was renewed, the two-step prediction model analyzed new data in the queue
to classify the facial expression and estimate the intensity of the expression in order to
generate the updated combination of BSWs. BSWs from the two-step prediction model
were then combined with other BSWs representing eye movements and eye blinks. All the
BSWs were subsequently sent to the avatar module.
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2.9. Evaluation Methods

To quantitatively evaluate the performance of the proposed real-time facial motion
capture system, the participants were asked to make various facial expressions after the
completion of the individual calibration session. The facial expressions replicated on the
avatar face were presented to the participants in real time, and no participant reported any
feeling of delayed visualization of their facial expressions. The user’s facial expressions
could be displayed without a delay because the generation of fEMG generally precedes
the actual muscular movements. In the online experiments, five lip motions, two eyebrow
motions, and three eye motions were tracked. In the experiments, the lip and eyebrow
motions were repeated three times, while the horizontal eyeball movements (shifting
eye gaze to the left and right) were repeated five times in a separate session. While the
participants were performing the given tasks, videos of the participants’ facial motion were
taken along with the biosignals. The facial video data taken from eleven test participants
during online experiments were used to quantitatively evaluate the performance of our
FER system, as follows: To evaluate the performance of our system, the predicted facial
motions on the avatar were quantified, and the values were compared to the actual facial
motions taken from video images, which were also quantified. The quantification of the
facial motion was represented by four features for each lip motion and two features for
each eyebrow motion. The features were calculated from factors of facial motions such
as the length of the lip, the length between the upper and lower lip, the positions of the
corners of the lip, and the height of the eyebrow. The features were evaluated based on the
following equation.

x = (FFVemotion − FFVneutral)/FSV (2)

where FFV is face factor value and FSV is face size value
In the equation, the computed value of x represents each of the features, acquired by

dividing the differences between facial factor values of the neutral face and the other facial
expressions by the face size value, which compensates for the difference in sizes between
the real face and avatar face. The face factor value (FFV) represents a variable value of
facial motions mentioned above. For example, the length of the lip, one of the FFVs, would
be different on a neutral face and s smiling face. In addition, the length of the lip would
be different for each different intensity of smiling face; therefore, FFV allows researchers
to quantify the continuous changes in real and avatar faces. By subtracting the FFVneutral
from FFVemotion, the difference in the facial motion factor values between a certain facial
expression and a neutral face can be computed. Face size value (FSV) represents the face
size factors, which are the horizontal length of the face, calculated by the distance between
ear to ear of the face and the vertical length of the face, calculated by the distance between
the glabella to the bottom of the chin. Since the size of the avatar face and the real face are
different, the FSV was employed to normalize the feature. For five facial expressions, except
the neutral face, the features were calculated for each real face and avatar face. Then, the
Pearson correlation between real and avatar faces was calculated. Eyeball movement and
wink detection were also counted, and the accuracy of eyeball movement detection was
evaluated by counting binary true and false classifications for each left and right movement.

3. Results
3.1. Comparison between Real Face and Predicted Face

All eleven participants repeated each facial motion (five lip motions, two eyebrow
motions, two eye motions, and eye blinks) three times in the online experiments. Figure 6
compares the real face and the avatar face reconstructed in real-time with respect to various
facial expressions (note that the person in the figure is the first author of this article).
As shown in the figure, the avatar face was able to successfully mimic six different lip
and eyebrow motions, track horizontal movements of the eyeball, and detect eye blinks.
The demonstration video can be found on YouTubeTM (https://youtu.be/aIg6u2_XDmw,
accessed on 12 February 2023), where real-time testing with a participant is shown.

https://youtu.be/aIg6u2_XDmw
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3.2. Quantitative Evaluation of Facial Motion Estimation

The performance of the developed facial motion capture system was evaluated after
the online experiments were finished. As mentioned in the Methods Section, the Pearson
correlation between the features of the real face and avatar face was calculated, as presented
in Table 3. The average Pearson correlation was 0.88, and most of the participants exhibited
correlation values larger than 0.85. Table 3 also shows the accuracy of estimating eye blinks
and eye motion directions. The accuracy, precision, recall, and F1 score were calculated
from the confusion matrix of each of the eye blinks and eye motion trials. Among these
four values, a false negative refers to the absence of an action in both the real and avatar
faces. However, in continuous performance testing, it is impossible to count the absence
of eye blinks and eye motions in discrete numbers. Therefore, the false negative values
were fixed at 0 for both eye blink and eye movement detection. The F1 scores of eye blink
detection and eye motion detection were reported to be 83.3% and 91.5%, respectively.
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Table 3. Correlation between real and avatar facial motions and accuracy, precision, recall, and F1
score of eye blinks and eye motions.

Facial Motion Eye Blink Eye Motion

Correlations Accuracy
(%)

Precision
(%)

Recall
(%)

F1
Score

Accuracy
(%)

Precision
(%)

Recall
(%)

F1
Score

Subject 1 0.85 69 90.9 74.1 0.816 100 100 100 1
Subject 2 0.854 100 100 100 1 100 100 100 1
Subject 3 0.794 81 81 100 0.895 83.3 83.3 100 0.909
Subject 4 0.826 100 100 100 1 100 100 100 1
Subject 5 0.888 50 55 84.6 0.667 100 100 100 1
Subject 6 0.859 80 92.3 85.7 0.889 50 50 100 0.667
Subject 7 0.929 80 80 100 0.889 100 100 100 1
Subject 8 0.863 94.3 100 94.3 0.971 71.4 71.4 100 0.833
Subject 9 0.973 58.8 0.58.8 100 0.741 100 100 100 1
Subject 10 0.871 28.6 28.6 100 0.444 75 100 75 0.857
Subject 11 0.977 73.9 89.5 81 0.85 66.7 100 66.7 0.8

Average 0.88 74.1 79.6 92.7 0.833 86 91.3 94.7 0.915

As shown in the table, the recall was relatively higher than the precision was in eye
blink detection, implying that our system captured the eye blinks fairly well, but it also
overreacted even without actual eye blinks or eye motions. Most of the false positive
detections of eye blinks were caused by eyebrow motions. Since eyebrow motions also
elicit fEMG signals similar to vEOG signals by eye blinks, fast eyebrow motions could be
misclassified as eye blinks.

4. Discussion

Our previous study simply classified discrete facial expression in a VR HMD environ-
ment [19]; however, in this study, we further investigated the possibility of enabling the
continuous and more natural tracking of facial motions by employing an SVM-based linear
regression method, which is referred to as a two-step prediction procedure in this paper. It
is to be noted that the ultimate goal of facial recognition technology would be to exactly
replicate arbitrary facial expressions without any classification steps; however, as the mus-
cles predominantly related to lip and jaw motions are located in the lower part of the face,
which is far from the surface electrodes embedded in the VR-HMD, it was highly difficult
to trace the arbitrary facial motions in real time with high estimation accuracy. By limiting
the number of recognizable facial expressions, it was possible to achieve the stable and fast
real-time prediction of facial motions. More specifically, our previous work achieved 85%
accuracy with 11 facial expressions [19]. However, it is to be noted that the purpose of the
present study was to track continuous changes in facial expressions and project them onto
the avatar face in real time. To this aim, every single recognition process at every 50 ms
should be highly accurate. Otherwise, the avatar face will be disrupted or distorted due to
the suddenly appearing single wrong prediction result. Therefore, 85% accuracy seemed
to be quite low to realize naturalistic facial tracking. Since our current study reduced the
number of recognizable facial expressions to six, the classification accuracy reached 96.65%,
which was 11.65% higher than that in our previous study. With this improved accuracy
achieved by sacrificing the number of recognizable facial expressions, our system could
demonstrate the stable and robust performance of real-time facial motion capture such as
that shown in the demonstration video. Nevertheless, we still believe that the classification
accuracy can be further improved by developing new algorithms in future studies, thereby
allowing the increment of the number of facial expressions classifiable in our FER system.

In the regression step of the two-step prediction procedure, vBSWs were created and
used instead of the actual BSWs recorded with fEMG data. The actual BSWs collected
in this research were recorded with a webcam, and thus, they cannot be directly applied
to VR users whose eyes are covered with a VR-HMD. By assuming that the intensity of
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facial expression has a linear relationship with the amplitude of the fEMG signal, we
multiplied smoothed fEMG signals by a unique combination of weights to generates the
vBSWs. The weights represent the contribution of each BSWs to certain facial expressions,
and the weights of each facial expression were determined by empirical analysis of the
actual BSWs recorded for three participants. Not only facial expressions but also eye gaze
is an important factor that reflect human emotion and intention, as people can sometimes
recognize others’ intention through the eye gaze direction. This importance also applies
in virtual environments. Research has shown that intentionally controlled eye gaze and
eye blinks of an avatar provide high-quality avatar realism and help people become more
immersed in the virtual environment [12]. In this regard, the present study employed
eyeball tracking and eye blink detection to realize more realistic avatar face reconstruction.

There are some limitations that need to be addressed. Although the developed system
classifies various facial expressions, some important facial motions that express a user’s
emotion, such as the ‘oh’ face and the ‘upset’ face, were not included in the current expres-
sion list. Additionally, the eyeball movement tracking only traces horizontal movements
due to the difficulty of distinguishing vertical eyeball movements and eye blinks. A future
study will be conducted on these excluded facial expressions. For example, there are several
studies that aim to eliminate eye blink artifacts from all-direction EOG [27]. Additionally,
the commonly applied EOG baseline removal algorithm was implemented simply by aver-
aging hEOG value in the most recent 10 s, but there are potentially better algorithms [29,30]
that might be applied in future studies. In addition to these limitations, there can be some
threats to validity, which might be a potential drawback in practical applications. One
example is the test–retest reliability issue: whenever the user of this system re-wears the
device, the locations of electrodes on the face would be slightly shifted, which might lead
to degradation of the overall performance. The employment of domain adaptation strategy
may be a potential solution to address this issue [15]. Another possible issue might be
the limited processing power of mobile edge devices, which might hinder the real-time
processing of fEMG and realistic avatar visualization. Simplification of the realistic avatars
seems to be the only available solution at the current level of technology [31]; however, as
the processing power of mobile edge devices is rapidly increasing, it is expected that this
issue can be overcome in the near future.

Although several studies attempted to recognize facial expressions without a camera
in a VR environment, only a few of them achieved the high-accuracy classification of facial
expressions in real time [32]. To the best of our knowledge, there is no system that replicates
facial expressions, eye blinks, and eyeball movements in an all-in-one platform using the
same electrodes. In addition, our research is the first one to achieve naturalistic facial
regression prediction among the studies based on fEMG approach with limited electrode
locations. In summary, the system developed in this study is superior in many ways,
including its low cost, light weight, and capacity of tracking facial expressions and eye
movements at the same time with the same set of electrodes. In view of this, we believe that
our study is the first step towards a practical EMG-based facial tracking system that can be
commercialized in the near future. As seen in the Results Section, the system successfully
regenerated whole facial motions in real time, and future studies will allow us to expand
the boundaries of classifiable facial expressions and make the system capable of tracking
every possible facial expression that a human can make. We believe that the future system
will be a powerful tool for representing users in the virtual reality environment and will be
a valuable and competitive technology in the VR-SNS field.

5. Conclusions

In this study, we implemented a machine-learning-based real-time facial motion
prediction system that can trace various facial motions of VR users and project them onto a
3D avatar face in real time. Our system does not require any extra cameras to recognize
the facial motion, and it can be realized with only ten surface electrodes for the precise
prediction of five lip motions, two eyebrow motions, horizontal eyeball movements, and
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eye blinks. As a result, the re-enacted facial expressions of an avatar showed high similarity
when they were compared to those of the real face, with the mean Pearson correlation
value of 0.88. As also seen in the demonstration video, the system showed very stable
reconstructions of facial expressions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23073580/s1, Table S1: List of all blendshape weights from
f-clone system; Table S2: List of all facial gestures reconstructed in this study and blend shape weights
related to each facial expression; Table S3: Detailed structure of fEMG dataset for calibration.
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