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Abstract: Hexagonal grid layouts are advantageous in microarray technology; however, hexagonal
grids appear in many fields, especially given the rise of new nanostructures and metamaterials,
leading to the need for image analysis on such structures. This work proposes a shock-filter-based
approach driven by mathematical morphology for the segmentation of image objects disposed in
a hexagonal grid. The original image is decomposed into a pair of rectangular grids, such that
their superposition generates the initial image. Within each rectangular grid, the shock-filters are
once again used to confine the foreground information for each image object into an area of interest.
The proposed methodology was successfully applied for microarray spot segmentation, whereas
its character of generality is underlined by the segmentation results obtained for two other types of
hexagonal grid layouts. Considering the segmentation accuracy through specific quality measures for
microarray images, such as the mean absolute error and the coefficient of variation, high correlations
of our computed spot intensity features with the annotated reference values were found, indicating
the reliability of the proposed approach. Moreover, taking into account that the shock-filter PDE
formalism is targeting the one-dimensional luminance profile function, the computational complexity
to determine the grid is minimized. The order of growth for the computational complexity of our
approach is at least one order of magnitude lower when compared with state-of-the-art microarray
segmentation approaches, ranging from classical to machine learning ones.

Keywords: hexagonal grids; shock-filter; machine learning; image segmentation; computational
complexity; gene expression; microarray

1. Introduction

In digital-image processing and computer vision, image segmentation represents
the process of dividing an image into multiple segments, representing non-overlapping
pixel areas with homogeneous features. The resulting image segments are meaningful for
defining objects according to human visual perception within the image under analysis. In
biomedical and material science applications, when digital images are used to characterize
either multiple biological samples or material structural patterns, the image segments
(objects) are often disposed using a grid layout. By the grid layout, one can understand a
network of lines that cross each other to form a series of geometrical figures which confine
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all image objects according to their pattern. Hexagonal grid layouts are used when printing
space needs to be efficiently managed. An eloquent example is the microarray technology,
where the hexagonal grid is considered advantageous compared to the rectangular grid,
since it allows more DNA specific probes to be printed onto the same surface [1]. Moreover,
images illustrating the hexagonal grid layout of the material structure are registered in
cases of different applications. In cell-cluster-array fabrication, self-assembled hexagonal
superparamagnetic cone structures induce a local magnetic field gradient which inhibits
the cancer cells’ migration [2]. In material science applications, benefits such as increased
optical performance or material resistance are added by hexagonal grid structures. The
performances of the pixelated CsI(Tl) scintillation screens in X-ray imaging are enhanced
by using a hexagonal array structure for the micro-columns’ shapes [3]. Microlens arrays
consisting of circular nanostepped pyramids disposed in hexagonal arrangements have
shown efficient bidirectional light focusing and maximal numerical apertures [4]. Consid-
ering the above cases, imaging techniques such as grid alignment and registration can be
employed to determine the locations of objects in images. After targeting the resulting
locations, further analysis by means of image segmentation is performed in order to extract
the features of the image objects. Much research effort has been devoted to the development
of image segmentation methods, and a wide range of applications exist in the field of image
analysis and understanding. In medical image analysis for example, segmentation plays an
important role in tasks such as visualization, measurement and reconstruction of shapes
and volumes [5–7]; medical diagnosing [8,9]; and even image guided-surgery [10]. Recent
research has proposed a large variety of techniques for image segmentation, which can
be mainly classified as region-based segmentation, feature-based clustering or machine
learning ML-based segmentation. Clustering-based techniques divide the image pixels
based on their intensities into homogenous clusters while ignoring the spatial informa-
tion, which makes them sensitive to image artifacts [11]. Considering its efficiency among
the clustering-based algorithms, fuzzy C-means (FCM) has been widely used for image
segmentation [12]. Improved variants which make use of the spatial information have
been proposed to overcome the aforementioned limitations [13]. Regarding the machine
learning approaches for image segmentation, both supervised and unsupervised ones are
available. Unsupervised learning has the advantage of automatic segmentation without
any prior knowledge of the object features within the training dataset [14]. Computation-
ally expensive tools such as support vector machines, and probabilistic models such as
Markov-random fields or Gaussian mixtures [15,16], are nevertheless used. The supervised
ML techniques for image segmentation are more accurate and reliable, mainly since the
input data are labeled and well known. Despite their computational complexity, deep
learning algorithms, decision trees and Bayesian networks are broadly used in applied
research [17]. Thus, computer-aided medical diagnosis is carried out on the basis of deep
learning algorithms [18–21]. Bayesian networks [22–24] successfully conduct the detection
of different geometries related to objects of interest in medical images, such as coronary
arteries and retinal vasculature. A decision tree classifier can be used to obtain an adap-
tive threshold for the optic disc segmentation [25]. The advantages of both decision trees
and conditional random fields have also been exploited [26,27]. In order to overcome
the disadvantages of the supervised training, implicit deep supervision is assured by the
hyper-densely connected convolutional neural network (CNN) proposed for natural image
classification tasks [28,29], whereas level-set segmentation leads to semi-supervised CNN
segmentation [30]. Considering various imaging technologies, there are cases when image
objects are disposed of using a specific grid layout within the same image. In these cases,
prior to image segmentation, a grid alignment or image registration procedure is mandatory.
Thus, we focus on the registration and segmentation of hexagonal-grid-layout images.

As referred to the aforementioned image processing tasks (i.e., grid alignment and
segmentation), when taking into account the large variety of state-of-the-art segmentation
approaches, the main challenge is to choose the appropriate image-processing methods for
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feature extractions while considering both accuracy and computational complexity. In this
context, the main findings are presented as follows.

1.1. Main Findings

The present paper proposes a set of image-transformation methods based on shock-
filters applied on hexagonal-grid-layout images, aiming for both grid alignment and
segmentation of the image objects. The PDE formalism of the shock filter, together with
mathematical morphology, is used to evolve image profiles in order to determine the
grid layout, by identifying a pair of sub-images, each containing a rectangular grid. The
superposition of the two sub-images generates the initial image. Within each rectangular-
grid-layout image, another procedure of profile evolution based on the same shock-filter
formalism is used to confine the foreground information for each image object into an area
of interest. For accurate segmentation of non-homogenous or irregular image objects, pixel
intensity refinement classifies pixels to foreground or background, to better fit the true
shape of the object. The proposed image-processing workflow was successfully applied
to hexagonal-grid-layout microarray images, the hexagonal array structure of pixelated
scintilation screens and hexagonal nanodisk–nanohole structure arrays. For microarray
images classified as having a hexagonal grid layout, in spite of their advantages and
intensive use [31,32], relatively few image-processing methods have been proposed. In [1],
a spot-indexing algorithm successfully located microarray spots for hexagonal grids with
different spacing and rotation. Giannakeas et al. also proposed a growing concentric
hexagon algorithm [33], which detects spots in microarray images with a hexagonal grid
layout. As compared with existing approaches, the main benefits of the proposed work are
underlined as follows:

• The image-processing workflow represents a general solution for both rectangular
and hexagonal grid alignment, which has been successfully applied to both medical
images and images of material structures.

• The shock-filter-based grid alignment also delivers segmentation information, and
guided by an autocorrelation procedure, it estimates the locations of missing objects
within the hexagonal grid layout.

• The computational complexity required to determine the grid layout is minimized, taking
into account that the PDEs are targeting the one-dimensional luminance function profiles,

• The segmentation accuracy was evaluated by computing the means and standard
deviations of distances between the annotated and detected centers and showed
improved results compared with state-of-the-art research.

In order to underline the main findings, the paper is organized as follows. Firstly,
in the introductory section, the shock filters in the context of image segmentation and
grid alignment are shortly summarized. Section 2 describes the shock-filter-segmentation
approach applied for hexagonal-grid-layout microarray images. The results are shown
in Section 3, in terms of segmentation accuracy, and the same section underlines the
results obtained using the proposed methodology for two other types of hexagonal-layout
images. In addition, the computational complexity of our approach is evaluated in the
context of existing classical and machine learning solutions for grid alignment. Finally, the
Conclusions section summarizes the main results.

1.2. Shock-Filter Fundamentals

An important task in image processing is to separate image areas containing back-
ground from foreground information. A shock-filter-based approach involves a process of
selectively applying erosion or dilation in a localized manner in order to create a “shock”
between two image areas, one belonging to a maximum and the other to a minimum. By
iterating this process according to time increments, the resultant image reveals disconti-
nuities only at the edges of the initial image. Moreover, the image areas delineated by
the underlined edges become uniform in terms of pixel intensity values, delivering image
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segmentation information. Commonly, image enhancement processes, such as the one
described before, are modeled through a partial differential equation (PDE).

Taking account of the importance of total variations in TV principles which appear
for shock calculations in fluid dynamics, Osher and Rudin [34] have applied these ideas
to image processing. This was revealed to be a useful method to restore discontinuities in
images, such as edges. Their method relies on total variation techniques subject to a certain
nonlinear and time-dependent partial differential equation:

∂tu = −|∇u|F(L(u)), (1)

where L(u) is a second-order, nonlinear elliptic operator whose zero-crossings correspond
to edges. The filtering process (the edge enhancement process) is represented by the
evolution of the initial image data u0(x) into a steady-state solution u∞(x) as t → ∞,
through u(x, t), t > 0. The total variation of the solution,

TV(u) :=
∫

D
|∇u|dx, (2)

at any given state, is preserved and satisfies a maximum principle.
The steady state solution is achieved relatively fast, making it a good candidate for

microarray image segmentation. As mentioned in [34], it is an O(kN) method, where N is
the number of points and k the number of time iterations. It was pointed out by [35] that
the one-dimensional Equation of (1) with F(u) := sgn(u), i.e.,

ut = −sign(uxx)|ux|, (3)

is based on the image-enhancement algorithm of Kramer and Bruckner [36], which was
proved to converge after a finite number of iterations.

From a morphological perspective, such a filter aims to produce a flow field which is
directed from the interior of a region towards its edges, where it develops shock, gener-
ating a piecewise constant solution with discontinuities only at the edges of the original
image. However, TV preserving methods suffer from fluctuations due to noise, which also
create shocks. Therefore, Alvarez and Mazorra [37] considered the operator L(u) = uxx
in (1) to be the Gaussian-smoothed version L(G ∗ u) = G ∗ uxx, which supplemented the
evolution with a noise-eliminating mean-curvature process, for which they proved that the
discrete scheme is well-posed and satisfies a maximum—minimum principle. Smoothed
morphological operators (dilations, erosions) for shock filters were also employed in [38] to
enhance contours through smoothed ruptures, while preserving homogeneous regions.

2. Shock-Filter-Based Approach for Microarray Image Segmentation

Genes represent DNA sequences which determine particular characteristics in living
organism, as follows: the genetic information is transmitted from nucleus to cytoplasm
by an intermediate molecule called mRNA, which is further on translated into functional
gene products known as proteins. Genes’ expression levels are reflected in the amounts
of respective mRNA present in each cell, providing information on the cell’s biochemical
pathways and its functions. By measuring mRNA levels for fully sequenced genomes
printed on a solid surface, microarray technology is known to be a valuable tool for
determining genes’ functionality and expression levels in different conditions [39].

The workflow of a microarray experiment aiming at gene expression estimation starts
with labeling mRNA samples with different fluorescent markers and hybridized onto the
same solid surface. Depending on researchers’ needs, gene expression analysis is performed
by a one-color or a two-color experiment [40]. After hybridization, laser scanning is
performed using one or two light sources with different wavelengths, one for each marker.
The fluorescence induced by each light source is captured, and a composite image is
produced. The microarray image thus obtained represents a collection of microarray spots,
each spot corresponding to a specific gene.
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Current technologies allow accurate fluorescence quantification [41], considering dif-
ferent numbers of spots at different densities printed onto a microarray slide, offering a
broad view that represents all known genes and their transcripts in the human genome.
Two spot layouts can be distinguished: the rectangular grid layout and the hexagonal grid
layout, corresponding to the single-density and double-density microarrays, respectively.
Commonly, microarray manufacturers use single-density microarrays, where spots are
disposed in a rectangular grid. Nevertheless, taking into account that no matter the grid
format, sensitivity and performance are preserved, the hexagonal grid is considered ad-
vantageous compared to the rectangular grid, since it allows more probes to be printed
onto the same surface. Later-stage image-processing techniques, including object regis-
tration and segmentation, are used to estimate gene expression. Logical coordinates are
determined for each spot of the microarray image, and the segmentation classifies pixels
either as foreground, representing the DNA spots, or as background. A great deal of
research has been conducted for processing microarray images having a rectangular grid
layout. Bariamis et al. [42] used a SVM approach for automatic grid alignment. That,
and an approach consisting of optimal multilevel thresholding, followed by a refinement
procedure and hill climbing [43,44], lead to accurate grid detection. For spot segmenta-
tion, adaptive pixel clustering [45,46], snake fisher models [47,48], 3D spot modeling [49],
bio-inspired algorithms [50] and Markov random field modeling [51] were proposed by
state-of-the-art research. Nevertheless, considering the reduced publications tackling the
hexagonal-grid-layout images [1,33,52], as underlined in the main findings sub-section, we
propose a general approach for hexagonal- and rectangular-grid-layout microarray images.

2.1. Materials and Methods

The microarray scanning process delivers 16x bit gray-scale images, in TIFF format,
in which spot fluorescence levels are captured as intensities of the image pixels which fall
within the microarray spot. To identify the position, intensity and background intensity
values of each microarray spot, preprocessing techniques, image registration and image
segmentation approaches are applied. The preprocessing methods aim at image enhance-
ment based on logarithmic and top-hat image transforms to further improve the accuracy
of spot detection. Further on, using the shock-filtered image profiles, each spot line is
detected, and making use of a refinement procedure based on morphological filtering, the
original image is decomposed into two sub-images, each of them containing a rectangular
grid of spots. Next, the segmentation classifies pixels as belonging to the microarray spot
or to the image background using the same PDE formalism specific to the shock filters, and
the segmentation accuracy metrics are computed. The entire workflow can be depicted in
Figure 1. The subsequent sub-sections detail the proposed image-processing techniques for
automatic hexagonal-grid-layout microarray image analysis.

Figure 1. Image-processing workflow for hexagonal-grid-layout image registration and segmentation.
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2.2. Preprocessing

Weakly expressed spots and image rotation are common characteristics of the mi-
croarray images delivered by the scanning process. Thus, to enhance weekly expressed
spots, a logarithm point-wise transform was applied on the image, followed by an intensity
adjustment procedure so that the intensity histogram would fit the full dynamic range of
the image (the dynamic range was from 1 to 216). Moreover, a top hat transform was used
to reduce the background influence on the microarray spots [53]. In case of misaligned
input image, a rotation detection and correction algorithm (the Radon transform) was
employed [54]. Figure 2 shows the results of the aforementioned preprocessing techniques
for the US218398 microarray image.

Figure 2. Image preprocessing techniques applied to the AT218398 microarray image: (a) original
image, (b) logarithmically transformed and normalized image, (c) top-hat transformed image.

2.3. Grid-Line Detection for Image Registration

Let IP = pi,j be the preprocessed, M× N-pixel microarray image, with pi,j being the
16-bit intensity of the pixel found on row i and column j within the microarray image. The
vertical image profile was computed as described by the equation

V(i) =
1
N

N−1

∑
j=0

pi,j, i = 0, . . . , M− 1, (4)

whereas the horizontal profile is described by

H(j) =
1
M

M−1

∑
i=0

pi,j, j = 0, . . . , N − 1. (5)

The vertical profile is evolved further on using the shock-filter partial differential Equa-
tion (3) given by

ut = −sign(uxx)|ux|, (6)

where ux and uxx are the first- and the second-order derivatives of the image profile. The
initial value of u at time t = 0 is the image’s luminance function profile V(i).

Let the shock-filtered profile of the preprocessed microarray image vertical profile
be denoted by SFP = V(i). The inflexions points are marked within the SFP, and their
locations respect a specific pattern which reveals the borderlines for the separation of lines
of spots. Figure 3 shows how the spots’ line separation is performed. The total number of
lines of spots (see the line presented in Figure 3d), within the overall microarray image is
considered to be n. The positions of all inflexion points detected along the profiles are stored
in an uni-dimensional vector pos, and the resultant vector size is 2n. To define each line of
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spots, the positions of four inflexions points are considered. Thus, as shown in Figure 3a,
the uneven lines of spots are defined as the positions 4u− 1, 4u, 4(u + 1)− 1 and 4(u + 1)
within the pos vector. u ranges from 1 to n/2− 1. In a similar manner, the positions 4u− 3,
4u− 2, 4u+ 1 and 4u+ 2 define the even lines of spots. The average position between 4u− 1
and 4u and the average position between 4(u + 1)− 1 and 4(u + 1) mark the positions of
the horizontal separation’s lines for the uneven line of spots denoted by u. As presented in
Figure 3b, the continuous lines over the 900-rotated section of the original image are the
separation lines for spot line u. Based on the aforementioned separation lines, all even and
uneven lines of spots were detected. An example of such a line is presented in Figure 3c. It
can be observed that the detected uneven lines of spots also include half of the spots within
the neighboring even lines of spots. A similar situation describes the even lines of spots.
In order to decompose the microarray image in two sub-images, one including the even
lines of spots and the other one with the uneven line of spots, mathematical morphology
is applied.

Figure 3. Hexagonal grid segmentation process: (a) horizontal profile of (b) the preprocessed microar-
ray image, (c) selected lines based on separation lines, (d) morphological exclusion of neighboring
spots, (e) final rectangular even spots Iev and (f) segmentation of the rectangular image.
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As denoted by Figure 3e, each microarray spot is defined by an elliptic shape charac-
terized by the horizontal radius a and the vertical radius b, confined in a rectangular area.
In the subsequent step, the average horizontal and vertical radii a and b considering all
spots are estimated based on the autocorrelation applied on vertical and horizontal profiles
of the image, described by Equations (4) and (5), respectively. A structuring element having
an elliptical shape with a and b radii was defined. The upper and lower parts of each line of
spots were padded with b/2 lines of pixels; each pixel has the lowest intensity value. The
resulting image was morphologically opened with respect to the defined structural element.
The outcome was similar to the lines of spots from Figure 3d, where the half spots from the
neighboring lines were excluded. Further on, the original image was reconstructed once
using the even lines of spots and once using the even lines of spots. Each resulted sub-image
is characterized by a rectangular grid layout of its microarray spots (see Figure 3e). The
sub-images containing the even lines of spots and uneven lines of spots are denoted by Iev
and Iuev, respectively.

By applying the shock filter to the original vertical profile, the inflexion points at the
positions 4u and 4(u + 1)−1 within the vertical profile (see Figure 3a,d) can determine
the locations on the vertical axes for all the spots from the column of spots denoted by
u. Within the sub-image containing the column u, the horizontal profile h, as referred to
in Figure 3d, is evolved using shock filters to determine the positions of spots on the x
axis. The autocorrelation-based approach applied on the h image profile, described in [55],
is used to estimate the positions of missing spots. Consequently, for each microarray
spot position within the initial hexagonal grid, an area of interest, denoted by S, which
confines the microarray spots, is determined according to Figure 3e. On each area S,
image segmentation is applied next to determine the pixels which belong to the microarray
spots and which belong to the spot’s local background. The aforementioned procedure is
consistent with the “cookie cutter” approach used by the software platform Agilent Feature
Extraction (FE) and detailed in [56].

2.4. Spot Segmentation

The shock filters deliver segmentation information by identifying simple geometric
objects of rectangles for the entire set of microarray spots. For accurate segmentation of
spots with spatial non-homogeneous intensity distribution and irregular shapes, a simple
threshold procedure is introduced for the S area. As demonstrated in [55], pixels intensity
refinement yields a rearrangement of pixels to the foreground and background that better
fits the true shape of the spots.

3. Results and Discussions

Our study included a set of four microarray images used for one-color analysis of
gene expression data performed using Agilent Technologies (G2505C scanner) on homo
sapiens samples. The samples were printed on microarray glass slides formatted with four
high-definition 44K, arrays and the images within the dataset have a hexagonal grid layout.

3.1. Microarray Image Registration and Segmentation Accuracy

We evaluate the results obtained using the proposed hexagonal grid alignment pro-
cedure compared with state-of-the-art results and with the results delivered by Agilent
Feature Extraction Software (FE). Spot centers were annotated by FE for each microarray
image from our dataset. The value di representing the distance between an annotated
spot’s center and the one determined using our proposed approach was computed for
each spot (i) included in the image under analysis. The mass center’s locations (mi) was
determined for each spot Ii, and compared to the mass center’s location (mFE

i ) determined
by FE software. The mean Euclidean distance mE between the two mass centers for the
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whole population of spots was used as a metric for the accuracy evaluation. The mean
Euclidean distance mE was measured in pixels, and it is denoted by the equation

mE =
1

Ns

Ns

∑
i=1
|mi −mFE

i |, (7)

Table 1 shows the average distance d = 1.52 for the whole population of spots included
in our dataset and underlines that the proposed approach delivered the lowest standard
deviation for the distance d distribution over the whole population of spots compared with
state-of-the-art hexagonal grid alignment approaches. The methodology’s accuracy given
by the percentage of spots correctly positioned by the grid alignment procedure on the
selected images was 100%.

Our proposed automatic image processing approach for hexagonal-grid-layout mi-
croarray images is evaluated in terms of accuracy and reproducibility, with regard to the
whole population of spots within the microarray dataset. The mean spot intensity value Ii
was computed by subtracting the mean intensity value of the background pixels and the
mean intensity value of pixels which fall within the microarray spots. The range of i is from
1 to NS, where NS is the total number of spots within the microarray image. The results are
compared with the ones delivered by the Agilent Feature Extraction software (FE) for the
same set of images. Consequently, the accuracy estimation of our proposed segmentation
method was performed independently on each microarray image from our dataset.

The regression ratio (R) represents an independent measure defined by the slope of
the least-squares best-fit regression line of the fluorescence intensity values for each pixel
against each other for a given microarray spot. The regression ratio indicates individual
spot quality. Considering the regression pixels used to calculate R values, the coefficient
of determination R2 for the least-squares-regression fit of a microarray spot is defined as
the square of the correlation coefficient and ranges in value between 0 and 1 [57]. For
validating our approach, we correlated the coefficients of determination computed by our
approach with the ones determined by FE for the entire population of microarray spots
within each microarray image. Let R2 be the coefficient of determination computed using
the proposed approach and R2

FE be the coefficient of determination annotated by FE. The
correlation coefficient, together with the mean difference between our results and the FE
results, is described by:

r = Pearson(R2, R2
FE), (8)

agvdi f f =
1

Ns

Ns

∑
i=1
|Ri − R2

FE|, (9)

The Pearson coefficient exceeded values of 0.98, and hence, indicated a high correla-
tion of our data (intensities) with the reference values. Moreover, the reproducibility of
the segmentation technique was quantified by means of mean absolute error MAE and
coefficient of variation CV, as presented in Equations (10) and (11), according to [58,59],
respectively. The lower the MAE and CV values are, the better the performance of the
proposed method. r = 4 replicates of the microarray experiment were used for evaluation.
MAE indicates the spot sameness of the spot’s intensities, Equation (10), where Ij is the
mean spot intensity over the j experimental replicates and I is the overall mean, computed
from the means of the spots within all the r replicates.

MAEspot =
1
r

r

∑
j=1
|Ij − I|, (10)

Spots intensity variations are expressed by the CV parameter denoted by Equation (11),
based on the standard deviation σ of spot intensity with subtracted background and the
mean spot intensity ν.

CVspot =
σ

ν
. (11)
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Table 1. Evaluation of the image registration and segmentation accuracy.

Exp. ID r(Ii, IFE
i ) avgdi f f avg. MAE avg. MAEFE CV CV FE

FE18398 0.988 0.075 0.420 0.412
FE18399 0.993 0.029 0.395 0.406
FE18400 0.982 0.093 536 524 0.414 0.385
FE18401 0.994 0.046 0.392 0.397

The small CV values correspond to small variation among the pixel intensity values for
given microarray spots, showing the reliability of the proposed grid alignment procedure
together with the spot segmentation approach. As referred to for the MAE values given in
Table 1, smaller values are obtained compared with the full dynamic range of the microarray
spot (i.e., spot intensity values range is 1 to 216).

To evaluate the performance of the proposed methodology for spot detection com-
pared with the one already available, the means and the standard deviations of the distances
between the centers of the Agilent annotations and the detected spots centers were com-
puted for the entire datasets included in Table 1 and denoted by FEdata. Moreover, the
accuracy of the detection denoted by the ratio of correctly identified microarray spots
and the total number of spots was also computed. The results are included in Table 2,
together with the results delivered by all approaches referenced in [52], employed for the
detection of microarray spots disposed in both rectangular and hexagonal grids. A mean of
1.52 pixels with a standard deviation of less than 1 pixel and a spot detection accuracy of
100% underline the superior performance of our approach.

Table 2. Results of the proposed grid alignment methodology: means and standard deviations of
distances between annotated and detected centers, and accuracy.

Reference/ Method Description Image, Grid Type Image Size (M, N)/ Spot Metric Value
Dataset Number of Spots Diam.

SMD Gridding based on support vector Real, Rectangular grid 1980 × 1917 10 Mean 2.52
[42,60] machines and genetic algorithms 9196 Std 2.59

Acc 96.4
Nycter K-nearest neighbor Synthetic, 3188 × 9552 14 Mean 1.77
[61] Rectangular grid 576,756 Std 1.16

Acc 98.9
CNV370 Voronoi diagrams Real, Rectangular grid 2800 × 2800 6 Mean 1.88
[52] 9216 Std 0.82

Acc 99.8
Nycter Gridding based on support vector Real, Rectangular grid 2800 × 2800 14 Mean 1.91

machines and genetic algorithms 9216 Std 1.03
Acc 99.3

SMD Voronoi diagrams Real, Synthetic with various sizes 14 Mean 1.94
Nycter rectangular and Std 2.32
[52] hexagonal grids Acc 97.5
FEdata Shock filter driven by mathematical Real, Hexagonal 1650 × 4320 14 Mean 1.52
(present) morphology 9196 Std 0.68

Acc 100
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3.2. Shock Filters as a General Approach for Hexagonal-Grid-Layout Registration

Hexagonal grid layouts are becoming increasingly popular as the fields of nano- and
meta-materials develop. In cell-cluster-array fabrication, self-assembled hexagonal super-
paramagnetic cone structures induce a local magnetic field gradient which inhibits the
cancer cells’ migration [2]. For materials science applications, benefits such as increased op-
tical performance and material resistance are added by hexagonal grid structures. Microlens
arrays consisting of circular nanostepped pyramids disposed in hexagonal arrangements
have showed efficient bidirectional light focusing and a maximal numerical aperture [4].
Considering the above cases, imaging techniques such as grid alignment and registration
can be employed to determine the locations of image objects and to analyze and validate
the respective structures of the materials in question.

Thus, in pixelated CsI(Tl) scintillation screens for X-ray imaging, the resolution for
the pixelated screen with the hexagonal array structure is approximately 8.5% higher
than for the screen with the square array structure [3]. Moreover, ultrathin hexagonal
nanodisk–nanohole hybrid structure arrays have been employed for developing a novel
plasmonic metasurface for subtractive color printing [62]. For the hexagonal-grid-layout
image segmentation approaches, a crucial challenge is to develop a robust method which
targets various types of hexagonal layout. In order to underline the generality of our
proposed approach, both the hexagonal array structure of pixelated CsI(Tl) scintillation
screens and the ultrathin hexagonal nanodisk-nanohole hybrid structure were processed
using the proposed workflow. The obtained results are presented in Figure 4.

Regarding the main limitations of the proposed approach, the small size of the datasets
considered for evaluation is mentioned. Nevertheless, the similarities between the seg-
mentation accuracy metrics delivered by our approach and the ones delivered by the
commercial Agilent Feature Extraction Software for over 100,000 microarray spots (Table 1)
show the reproducibility of the results. The generality of the approach has also been proven
by the results presented in Figure 4 for two other types of hexagonal grid layout. Since the
propose approach was designed for microarray images, extensive testing and validation
procedures are needed for segmentation procedures applied for other types of hexagonal-
grid-layout images (e.g., ultrathin hexagonal nanodisk-nanohole hybrid structure arrays,
pixelated CsI(Tl) scintillation screens), which are outside the the scope of current paper.
Another drawback of the proposed method is that images with skewed, rotated or irregular
hexagonal layouts require special attention. Rotation correction using the Radon transform
is included within the proposed workflow, but irregular and skewed layouts are still not
addressed. De-skewing algorithms are available [63,64], whereas for the irregular layouts,
correction algorithms are to be designed based on the specifics of the irregularities.

Figure 4. (a) Preprocessed images registered from hexagonal-array structure of pixelated CsI(Tl) scin-
tillation screens (top) and hexagonal nanodisk–nanohole hybrid structure arrays (bottom). (b) Dual
image decomposition based on shock filters driven by mathematical morphology; (c) segmentation.
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3.3. Computational Complexity Analysis for the Hexagonal-Grid-Layout Image Segmentation

A large variety of image segmentation approaches are available, from complex ones
such as deep learning approaches to reduced complexity ones which perform on image
profiles, for example. Moreover, as detailed in [65,66], an interest in reducing the complexity
of machine learning algorithms is shown. Thus, the user has to carefully evaluate the image
analysis task and choose the appropriate processing approach. For hexagonal-grid-layout
image segmentation, the computational complexity is estimated for the state-of-the-art
approaches and compared with the proposed approach, in order to offer an overview of
available methods from the computational complexity perspective. The comparison is
detailed as follows.

Firstly, we estimated the computational complexity for our proposed approach for
hexagonal-grid-layout microarray image registration. Considering a given M×N-pixel image,
the obtained results are compared with both the classical state-of-the-art approaches [1,33,52]
and the machine learning approaches [67,68] for microarray spot segmentation. The results
are summarized in Table 3. In our case, the computational cost for the image registration
procedure is detailed as follows:

(i) The morphological opening procedure and the autocorrelation spot size estimation
cost are given by the upper bound function f (M, N) = (2Se MN + 4MN)s, with s
representing one computational step, and Se representing the size of the structural
element used for morphological filtering.

(ii) The computational complexity of the shock-filter-based procedure for grid alignment
is based on the number of microarray spots found on each line and in each column of
spots, denoted by α and β, respectively. Let d be the average of the microarray spot
diameter and 2d be the average width for a line or a column of spots. We computed for
each spot line and spot column, the horizontal and vertical image profiles, respectively,
with the total complexity of 2αdM + 2βdN = 4MN. Shock filters were applied to
each of the determined profiles having a complexity of p(αM + βN), where pαM
represents p iterations performed on the number of α profiles (i.e., one profile for
each line of spots), and each profile was of size M. This led to the estimation of
the computational cost given by f (M, N) = 6MNs + pd(αM + βN)s, with p > d.
Consequently, the order of growth for the total computational cost was approximated
to O(2Se MN + p(αM + βN)), and it represents the total computational complexity
of the proposed method.

In [1,33] the Voronoi diagrams are used for the grid alignment in for hexagonal-
grid-layout microarray images. According to the analysis performed in [69], the
computational complexity is given by the order of growth of the computational cost
O( f (S)) = O(S2log(S)), where S represents the total number of spots (i.e., for our im-
ages S = 44,000). The main disadvantage is that a unique region is obtained if weekly
expressed spots are grouped together in the same area. This is overcome by the ap-
proach proposed in [52], where a preliminary step is added to the Voronoi diagram
algorithm. This step detects all the highly expressed spots, which represent starting
points for growing similar hexagonal areas for weakly expressed spots. In terms of the
computational cost, the following term dMN is added to the cost function, leading to
the total computational cost of f (M, N, S) = S2log(S) + dMN.

Considering the machine learning approaches, the computational cost is given by both
the training and prediction steps. Thus, according to Table 3, the order of growth for the
machine learning-based grid alignment procedure has two terms, corresponding to the
training and the prediction. For support vector machines, the total computational cost for
grid alignment is given by f (n, M, N) = n(MN)2 + nNM, where n is the number of grid
lines [70].
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Table 3. Computational complexity analysis for microarray grid alignment.

Reference Method Cost Arguments Order of Growth

[1,33] Voronoi diagrams S O(S2 log S)

[52] Growing concentric
hexagons S, (M, N) O(S2 log S + dMN)

[43,71] Support vector machines (M, N) O(n(MN)2 + nMN)
[72] Evolutionary algorithms S, (M, N) O(S2 + dMN)

[67,68] Deep neural Networks - -

present Shock filters driven by
morphology Se, (M, N)

O(2Se MN + p(αM +
βN))

Notes: S—represents total number of spots within the image under analysis (in round number 44,000); the pair
(M, N) = (1650, 4320) corresponds to the image size in pixels; Se = 144 represents the size of the structuring
element; the parameters denoted by lowercase letters are at least one order of magnitude smaller then the lowest
one, Se.

For the evolutionary algorithms, the gridding approach for microarrays [72] differs
from the classical ones, since it does not involve any 1D projection of the image. The
approach includes a measure of fitness for possible grids to achieve a robust grid align-
ment against high levels of image noise and a high percentage of weakly expressed spots.
Considering the fitness function, the evolutionary algorithm locates the regular grid that
best fits a set of spot center coordinates. According to [73], as referred to the algorithm’s
performance in terms of time complexity, the order of growth can be reduced to O(m2),
with m being the total number of graph edges. By approximating m with S (m > S), the
total number of spots, and considering the preliminary computational steps which consist
of image dilation and an approximate spot spacing calculation [72], the order of growth for
the computational complexity of O(S2 + dMN) is obtained.

Deep neural networks applied for microarray image analysis are discussed next in
terms of computational complexity. To our knowledge, state-of-the-art research does not
include deep neural networks applied for microarray grid alignment. Nevertheless, deep
learning is used for bio-medical image segmentation [66], and, more precisely, it is also
applied for microarray spot classification [68]. Since such approaches do not serve as grid
alignment tools, the computational complexity levels of the deep learning approaches used
for microarray spot segmentation were computed but not added to the Table 3 summary
of grid alignment approaches [67,68]. Calling s the number of training samples, f the
number of features and nli the number of neurons in layer i, we have the approximation
for the computational complexity given by O(s3 + f nl1 + nl1 nl2 + . . .), considering both
the training procedure and the prediction. Taking into account the increased complexity,
there is a great interest in reducing deep learning complexity, as shown in [66]. Herein, it is
demonstrated that the computational complexity of the convolutional neural networks can
be reduced by a factor of eight while achieving accurate bio-medical image segmentation.
Even so, the computational complexity of our approach, which delivers segmentation
information, as the results underline, is at least one order of magnitude lower than that of
the deep learning approaches.

Let us consider the size of the image under analysis given by the (M, N) pair, with
M = 1650 and N = 4320. As referred to in Table 3, we underline the cost arguments S,
Se and n having the values 44,000, 144 and 120, respectively. Consequently, as denoted in
Table 3, reduced computational complexity is achieved by the proposed grid-alignment
approach, despite the iterative nature, considering that shock filters are applied on 1D
image profiles. Thus, if the training procedure is excluded, the computational complexity
of the proposed approach is similar to that of the support vector machine [43,71], whereas
compared with the other approach, the computational complexity is at least one order of
magnitude lower. It is to be noticed that the grid alignment is accurately performed for
weekly expressed spots, due to the autocorrelation refinement procedure, and the accuracy
is comparable with the machine learning approaches for grid alignment.
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4. Conclusions

In this paper, we presented a novel segmentation approach for estimation of gene
expression levels based on shock filters, making it applicable to both hexagonal and rectan-
gular grid layouts. For hexagonal grids, the original image is divided into two rectangular
grid images, such that their overlap constitutes the initial image. The proposed method
was validated using specific quality measures such as the coefficient of variation and mean
absolute error, on a dataset which includes hexagonal-grid-layout microarray images. The
spot segmentation results obtained were compared with the ones delivered by Agilent Fea-
ture Extraction platform. Correlation coefficients between spot features (e.g., foreground
intensity) and the mean distance between spot location showed very good agreement.
Moreover, the computational cost of the described method was analyzed and compared
with state-of-the-art microarray spot segmentation methods, ranging from classical to deep
learning ones. Significantly lower computational complexity was achieved compared with
the discussed methods. The segmentation accuracy, however, was comparable with those
of machine learning approaches.
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