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Abstract: In this study, we present an alternative solution for detecting crack damages in rotating
shafts under torque fluctuation by directly estimating the reduction in torsional shaft stiffness using
the adaptive extended Kalman filter (AEKF) algorithm. A dynamic system model of a rotating shaft
for designing AEKF was derived and implemented. An AEKF with a forgetting factor (λ) update was
then designed to effectively estimate the time-varying parameter (torsional shaft stiffness) owing to
cracks. Both simulation and experimental results demonstrated that the proposed estimation method
could not only estimate the decrease in stiffness caused by a crack, but also quantitatively evaluate
the fatigue crack growth by directly estimating the shaft torsional stiffness. Another advantage of the
proposed approach is that it uses only two cost-effective rotational speed sensors and can be readily
implemented in structural health monitoring systems of rotating machinery.

Keywords: crack monitoring; rotating shaft; torsional stiffness estimation; rotational speed sensors;
adaptive extended Kalman filter; forgetting factor update

1. Introduction

Rotating machinery (or turbomachinery) has steadily been in the field of interest
for industrial applications in internal combustion engines, power generators, turbines,
and high-speed machining [1]. Rotating machinery generally consists of a rotor and a
non-rotating part (stator), with torque transmitted through a rotating shaft. Cracks in
rotary shafts are among the most dangerous and significant defects. The crack occurs in
rotating shafts because of various mechanisms such as high and low cycle fatigue, stress
corrosion, or unbalanced force caused by the rotor offset [2]. The shafts of the above-
mentioned machines are typically subjected to harsh working conditions, such as loading
and temperature variations. Thus, successive failures can lead to enormous economic
and human resource losses. If a crack propagates continuously and is not detected in
advance, an abrupt failure may occur, leading to catastrophic consequences. Thus, real-
time monitoring of crack damage in the rotating shaft is essential.

Generally, contact sensors, which provide high data accuracy and convenience, can
be used to detect such cracks in a rotating shaft. However, rotating and internal parts are
generally difficult to measure directly. Thus, it is challenging to monitor shaft cracks using a
contact sensor, such as a strain gauge. Therefore, in recent years, fault diagnosis studies on
rotating machinery have focused on indirect detection methods through vibration response
characteristic analysis of components, such as bearings and gears. As a result, numerous
vibration-based crack detection techniques have been developed over the last decades [3].
These techniques include experimental signal-based and model-based methods. Several
model-based crack detection methods, such as wavelet transform [4], have been developed
to enhance fault diagnosis. Experimental signal-based methods using nonlinear vibration
responses have also been widely used for damage detection in structures [5,6].
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For more precise, reliable, and effective detection, various non-destructive techniques
(NDT), such as radiography, magnetic particle inspection, and ultrasonic methods, are
attempted to diagnose and monitor the behavior of rotating machines, although these
techniques consume more time and are expensive [7]. However, high-frequency amplitudes
are too small to detect cracks, and responses can be generated by assembly tolerances,
manufacturing state noise, and other defects.

These disadvantages of the current technology necessitate developing non-traditional
technology for detecting structural surface damage, such as cracks in the rotating
shaft [8–12]. Non-model-based crack detection has also been attempted as a statistical-
based data analysis method, using trained models from artificial neural networks [13]
and genetic algorithms [14]. Recently, machine learning has been studied as a solution
for detecting defects effectively without human experts [15]. However, this method is
data-inefficient because we cannot acquire sufficient experimental data on actual crack
sequences for large systems. Over the last decades, some research on structural health
monitoring has been conducted based on the adaptive extended Kalman filter algorithm
(AEKF) [16–20]. For example, the Kalman filter with the forgetting factor method had been
applied to several systems, such as a lithium-ion battery, to consider the variation of system
model parameters [21]. However, it is still necessary to study a new detection method,
although previous studies have shown promising results in detecting cracks in rotating
shafts.

Therefore, this study primarily aims to provide an alternative solution for detecting
crack damages in rotating shafts by directly estimating the change in stiffness using the
adaptive extended Kalman filter algorithm (AEKF) with a forgetting factor update. To the
best of our knowledge, we report for the first time that it is possible to achieve a new means
of detecting the torsional crack in a rotating shaft using AEKF with a forgetting factor
update algorithm. Cracks of varying geometry are caused by different types of stress-field
directions and are classified according to their orientation with respect to the shaft axis, as
shown in Figure 1a. The direction of the stress field depends on the type of stress (such as
bending or torsion) and geometric factors. When high cyclic stress is repeated, the crack
propagates such that the crack plane is perpendicular to the direction of the tensile stress
field. When bending stress is applied to the shaft, a stress field forms along the axis, and
the crack propagates into the shaft section, creating a transverse crack, which is frequently
called a breathing crack [22]. Torsional stress forms a tensile stress field in the direction
of 45◦ to the shaft axis. In this study, we focused on torsional slant cracks of shafts and
attempted to use Kalman-filter-based torsional stiffness estimation. When fatigue cracks
occur in rotating shaft systems under alternating torque excitation, the cracks gradually
grow larger over time as they are repeatedly opened and closed. As the cross-sectional area
decreases, the torsional stiffness of the shaft suddenly decreases, as shown in Figure 1b.
The AEKF-based estimator of shaft torsional stiffness using a dynamic model of rotating
machinery is described in Section 2. Simulation results using the proposed algorithm
under sinusoidal torque input are presented in Section 3. The simulation results were
experimentally validated, as described in Section 4.
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Figure 1. Characterization of fatigue cracks: (a) two types of crack propagation: transverse and 
torsion crack, (b) sudden torsional stiffness reduction. 
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Although there are various connecting structures, such as bearings and shafts, in a 
real rotating shaft system, the system model was formulated based on a dynamic circular 
shaft, to which torque and rotational speed were applied together. It is assumed to be a 
lumped-parameter model with two primary masses (i.e., a semi-definite system with a 
single natural frequency) because it is unlikely to excite the higher modes in our simple 
test bed system (single frequency excitation).  The system elements simulated the driving-
load motor dynamo for experimental verification of the proposed algorithm. The stiffness 
of the bellows coupling connecting the shaft and the damping effect of the bearing stand 
were neglected. As shown in Figure 2, the rotating shaft model comprised four 
components. The governing equation for the shaft rotation is given as follows: 

( )m m m m s m l mJ c k Tθ θ θ θ+ + − =  , (1) 

( ) 0s m l l lk Jθ θ θ− − = , (2) 

where mJ  is the moment of inertia (driving motor), lJ  is the moment of inertia (load 
motor), sk  is the torsional stiffness of the shaft, and mc  is the damping coefficient of the 
viscous friction of the driving motor. When torque is applied by the load motor, the 
angular velocity difference between the two sides is caused by the stiffness of the shaft 
connecting the two motors. It is necessary to express the dynamic model into a state-space 
model to implement the Kalman filter algorithm. 

x Ax Bu= + , (3) 

y Cx Du= + , (4) 
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Figure 1. Characterization of fatigue cracks: (a) two types of crack propagation: transverse and
torsion crack, (b) sudden torsional stiffness reduction.
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2. Design of Adaptive Extended Kalman Filters
2.1. Dynamic Modeling of Rotating Shaft

Although there are various connecting structures, such as bearings and shafts, in a
real rotating shaft system, the system model was formulated based on a dynamic circular
shaft, to which torque and rotational speed were applied together. It is assumed to be a
lumped-parameter model with two primary masses (i.e., a semi-definite system with a
single natural frequency) because it is unlikely to excite the higher modes in our simple test
bed system (single frequency excitation). The system elements simulated the driving-load
motor dynamo for experimental verification of the proposed algorithm. The stiffness of the
bellows coupling connecting the shaft and the damping effect of the bearing stand were
neglected. As shown in Figure 2, the rotating shaft model comprised four components. The
governing equation for the shaft rotation is given as follows:

Jm
..
θm + cm

.
θm + ks(θm − θl) = Tm, (1)

ks(θm − θl)− Jl
..
θl = 0, (2)

where Jm is the moment of inertia (driving motor), Jl is the moment of inertia (load motor),
ks is the torsional stiffness of the shaft, and cm is the damping coefficient of the viscous
friction of the driving motor. When torque is applied by the load motor, the angular velocity
difference between the two sides is caused by the stiffness of the shaft connecting the two
motors. It is necessary to express the dynamic model into a state-space model to implement
the Kalman filter algorithm.

.
x = Ax + Bu, (3)

y = Cx + Du, (4)

where x is the state vector, u is the input vector, and
.
x is the time derivative of the state

vector. In Equation (3), A is a state matrix, and B is an input matrix. In Equation (4), y is a
measurement variable, C is a measurement matrix, and D is a feed-forward matrix.
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Figure 2. Schematic of the rotating shaft model with shaft torsional stiffness.

The four state variables for stiffness estimation are selected as shown in Equation (5).
In this study, the time-varying stiffness is treated as a state variable, and it is assumed to
be linearly proportional to the crack sizes for designing Kalman filters, although it can
be changed by the nonlinear dynamics of the rotating shaft system [23]. θm − θl is the
difference in angular displacement on both sides and ωl is the angular velocity of the load
motor. The fourth state variable is the angular velocity of the driving motor. The driving
motor torque is an input for the system. From Equations (1) and (2), the state space equation
was derived as follows:
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x = [x1x2x3x4]
T = [(θm − θl)ωlksωm]

T , (5)

u = Tm, (6)

.
x = f (x, u) =


.
x1.
x2.
x3.
x4

 =


x4 − x2

x3x1
Jl
0

−cmx4−x3x1+u
Jm

, (7)

y = h(x) =
[

x2
x4

]
=

[
0
0

1
0

0
0

0
1

]
θm − θl

ωl
ks

ωm

. (8)

The reformulated system model f (x, u) is a nonlinear model, and the measurement model
h(x) is a linear model with an actual measurable angular velocity value as the output.
For the estimation of torsional stiffness, an extended Kalman filter (EKF) that linearizes
a nonlinear model is required, and an adaptive EKF (AEKF) with a P-adaptive loop is
proposed to improve estimation performance. As the proposed AEKF algorithm is based on
the discrete-time domain, the continuous equation was discretized using the Euler method,
as shown in Equation (9).

.
x =

x(k)− x(k− 1)
∆t

→ x(k) =
.
x(k)∆t + x(k− 1), (9)

where ∆t is the time step, and k and k − 1 represent the time instant at t = k∆t and
t = (k − 1)∆t, respectively. Substituting Equation (7) into Equation (9), Equations (10)
and (11) are defined as follows:{

xk = fk−1(xk−1, uk−1)
yk = hk(xk)

. (10)

2.2. Adaptive Extended Kalman Filters

Kalman filtering is a state-estimation technique developed by Rudolf Kalman in 1960.
It features a recursive structure and optimally estimates the state of a linear dynamic system
based on measurements contaminated by noises. Kalman filters are used in many industrial
fields, such as computer vision, robotics, and vehicular electronics [24,25]. The general
linear discrete-time system model required to design the KF is given as

xk+1 = Axk+Buk + wk
yk = Hxk + vk

, (11)

where wk is a multivariate Gaussian distribution system noise variable with a covariance
matrix, and vk is a multivariate Gaussian distribution measurement noise variable with
a covariance matrix. In this study, there was no input in the measurement model, and
the application of the EKF was based on the nonlinear model. The general discrete-time
equation is as follows: {

xk = fk−1(xk−1, uk−1) + wk−1
yk = hk(xk) + vk

. (12)

The extended Kalman filter assumes differentiability of the state-change function instead of
linearity of the model. The nonlinear system model was linearized using the Jacobian, and
the Jacobian matrix was calculated based on the previous estimate.

Ak−1 =
∂ fk−1

∂x

∣∣∣∣
x̂k−1

Bk−1 =
∂ fk−1

∂u

∣∣∣∣
x̂k−1

, (13)
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H(k) =
∂hk
∂x

∣∣∣∣
x̂k|k−1

. (14)

Matrices A and B of the rotating shaft system model linearized using Equations (13) and (14)
are as follows:

A∗ =
∂ f (x, u)

∂x
=


0 −1 0 1
x3
JL

0 x1
JL

0
0 0 0 0
− x3

Jm
0 − x1

Jm
Cm
Jm

, (15)

B∗ =
∂ f (x, u)

∂u
=
[
0 0 0 1

Jm

]T
, (16)

H =

[
0 1 0 0
0 0 0 1

]
, (17)

where (*) indicates the system model matrix linearized using the Jacobian.
The discrete-time EKF algorithm has the following form:

� Initial estimation stage at k = 0{
x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)
T ]

. (18)

where E represents the expected value of the random variable.

� Prediction stage

x̂(k|k− 1) = fk−1(x̂k−1, uk−1, 0)
P(k
∣∣k− 1) = A(k, k− 1)P(k− 1)AT(k, k− 1) + Q(k− 1)

. (19)

A matrix was differentiated using the Jacobian in Equation (13). In the prediction stage, the
variables predicted are a priori state variable and an error covariance matrix.

� Correction stage

K(k) = P(k|k− 1)HT(k) (H(k)P(k
∣∣∣k− 1)HT(k) + R(k))

−1
, (20)

x̂(k) = x̂(k
∣∣∣k− 1) + K(k)[y(k)− hk(x̂k|k−1, uk, 0)]

P(k) = [I − K(k)H(k)]P(k|k− 1)
. (21)

In general, it is difficult to estimate the time-varying parameter (shaft stiffness) using
the EKF because filter estimation relies on past data, and state estimation can diverge when
past data are not adequate for recursive estimation methods. In this study, an AEKF with a
forgetting factor (λ) was used to resolve this technical limitation [26]. The updated forget-
ting factor corrects the error covariance matrix, and the Kalman gain matrix is increased by
the inverse of the forgetting factor. In general, the forgetting factor is considered a constant
tuning parameter. However, convergence decreases when the uncertainty is large, such as
in a nonlinear model. In this study, an adaptive loop was employed for more weighting
to recent data using the residual between the measured and estimated values [27,28]. The
AEKF equation is identical to the EKF in Equation (19), except for the forgetting factor in
the error covariance equation.

P(k + 1
∣∣∣k) = λ(k + 1)A(k + 1, k)P(k)AT(k + 1, k) + Q(k), (22)
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with λ(k) ≥ 1. Thus, divergence is prevented by considering the influence of the
most recently measured data on the state and parameter. The performance of the AEKF
is the most important factor because it completely depends on the forgetting factor. The
residual z(k) is defined as the difference between the measured and predicted values of the
measurement. The residual is a white noise sequence when the optimal filtering gain is
used.

z(k) = y(k)− H(k)x̂(k|k− 1). (23)

For any gain, the covariance of the residuals is expressed as:

C0(k) = E[z(k)zT(k)] = H(k)P(k
∣∣∣k− 1)HT(k) + R(k). (24)

The auto covariance of the residual is

Cj(k) = E[z(k + j)zT(k)]
= H(k + j)A(k + j, k + j− 1)
×[I − K(k + j− 1)H(k + j− 1)] · · · A(k + 2, k + 1)
×[I − K(k + 1)H(k + 1)]A(k + 1, k)
×[P(k

∣∣k− 1)HT(k)− K(k)C0(k)]
∀j = 1, 2, 3, · · ·

. (25)

In general, Cj(k) in Equation (25) is equal to zero when Equations (20) and (24) are
substituted into Equation (25), implying that the residual sequences are uncorrelated when
the optimal gain is applied. However, the actual covariance of the residual C0(k) is different
from the theoretical covariance, owing to errors in the system model parameters and noise
covariance. Therefore, Cj(k) may not be equal to zero. In Equation (25), we can choose a
forgetting factor such that the last term of Cj(k) for all is zero.

P(k
∣∣∣k− 1)HT(k)− K(k)C0(k) = 0. (26)

In the optimal condition, S(k) and g(λ, k) are as follows:

S(k) = P(k
∣∣∣k− 1)HT(k)− K(k)C0(k), (27)

g(λ, k) =
1
2

n

∑
i=1

m

∑
j=1

S2
ij(k). (28)

The optimality of the Kalman filter can be determined through Equation (27), which is
a scalar function, and Sij(k) is (i, j) th element of S(k). As the smaller g(k) yields more
optimal filter, the forgetting factor λ(k) should be selected to minimize g(k).

Various studies have been conducted based on the least-squares estimation (LSE)
approach to better track time-varying parameters of dynamic systems. In this study, a
recursive estimation method with a forgetting factor update was introduced to track time-
varying parameters. The constant forgetting factor was optimally updated based on the
following Equation (i.e., the gradient descent method):

λl+1(k) = λl(k) + ϕ
∂gl(λ, k)
∂λl(k)

∀l = 0, 1, 2, . . . , (29)

with initial conditions
λ0(1) = 1, λ0(k) = λ(k− 1), (30)

where k is the time series and l is the iteration time of the time instant. ϕ is the step
length (i.e., learning rate, 0 < ϕ < 1). If Equation (31) is satisfied in the p-th iteration (i.e.,
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converges), the iteration is stopped, and the optimal forgetting factor is determined using
Equation (32). ∣∣∣λp(k)− λp−1(k)

∣∣∣ < ε. (31)

λ(k) = max{1, λp(k)}. (32)

However, the iterative numerical method does not guarantee real-time processing.
Finally, a one-step AEFK algorithm was used to resolve this computational burden. In the
given system, state Equations (12), (18), and (19) have the following assumption:

Assumption 1. Q(k), R(k) and P(0) are positive definite.

Assumption 2. The measurement matrix H(k) is fully ranked, and the optimal forgetting factor
can be calculated as

λ(k) = max{1, trace[N(k)]/trace[M(k)]}, (33)

where
M(k) = H(k)A(k, k− 1)P(k− 1)AT(k, k− 1)HT(k), (34)

N(k) = C0(k)− H(k)Q(k− 1)HT(k)− R(k). (35)

The C0(k) value was estimated using the recursive equation as follows:

C0(k) = G1(k)/G2(k), (36)

G1(k) = G1(k− 1)/λ(k− 1) + z(k)zT(k), (37)

G2(k) = G2(k− 1)/λ(k− 1) + 1 (38)

with initial conditions G1(0) = 0 and G2(0) = 0. The proofs of Equations (33)–(35)
was derived by substituting Equation (20), which derives the Kalman gain value into
Equation (26).

P(k
∣∣k− 1)HT(k)

×
{

I − [H(k)P(k
∣∣k− 1)HT(k) + R(k)]−1C0(k)

}
= 0

(39)

H(k)P(k
∣∣∣k− 1)HT(k) = C0(k)− R(k). (40)

Equation (40) implies that, with Assumptions 1 and 2, the optimality condition described in
Equation (26) is equivalent to Equation (24). Substituting Equation (14) into Equation (40),
and then reconstructing it yields the following:

λ(k)H(k)A(k, k− 1)P(k− 1)AT(k, k− 1)HT(k)
= C0(k)− H(k)Q(k− 1)HT(k)− R(k)

. (41)

The overall estimation process using the AEKF algorithm with a forgetting factor
update is shown in Figure 3.
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stiffness.

3. Estimation of Shaft Torsional Stiffness
3.1. Simulation Scheme

Based on the proposed algorithm, a situation in which cracks occur owing to shaft
damage was simulated using MATLAB®. The parameter values of the system model are
listed in Table 1. In this study, to mimic crack fatigue due to persistent cyclic excitation, a si-
nusoidal torque input was applied (frequency of 1 Hz, Tm(t) = 10,000 sin(2πt) Nmm). The
angular velocity measurement data from the simulation model was set to be contaminated
by the white Gaussian random noise v(k) = N(0, (10−3)

2
).

Table 1. Parameters for the estimation of torsional stiffness.

Parameters (Unit) Value

Inertia moment of load motor Jl(Nmm2) 580

Inertia moment of driving motor Jm(Nmm2) 180

Damping constant cm (Nmm·s/rad) 1000

Shaft torsional stiffness ks (Nmm/rad) 735,000

To evaluate the response time of the proposed estimator, step response to a sudden
downward step input is used for the crack initiation scenario, which corresponds to
large cracks in an experiment. Then, it was assumed that the torsional stiffness suddenly
decreased from 735,000 to 345,000 Nmm/rad in 10 s, as shown in Figure 4.
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Figure 4. Crack scenario for sudden shaft torsional stiffness drop (735,000→ 340,000 Nmm/rad).

The initial state value and error covariance for estimation are as follows:

x0 = [0 0 735, 000 0]
P0 = diag ([0.01 1 800, 000 1])

. (42)

The system noise covariance matrix Q and the measurement noise covariance R for
Equations (21) and (22) were tuned in various cases as follows, and the optimal estimates
were derived:

Q =


10−8

10−7

10−7

10−7

 , R =

[
10−3

10−3

]
. (43)

To evaluate the basic estimation performance of the AEKF, the root-mean-squared
error (RMSE) at the kth time instant was calculated for a more rigorous analysis.

RMSE(k) =

√√√√1
k

k

∑
i=1

(p(i)− p̂(i))2, (44)

where k is the time instant at t = k∆t, p(i) and p̂(i) are the true (i.e., Figure 4) and estimated
values, respectively. The steady-state mean of the RMSE (MRMSE) was then calculated to
exclude the effect of transient behavior. The basic estimation results for the sudden torsional
stiffness drop are shown in Figure 5. The AEKF accurately estimated the sudden torsional
stiffness change. In contrast, the EKF did not track the time-varying shaft stiffness change.
The forgetting factor was appropriately changed by the P-adaptive loop when the stiffness
rapidly decreased in 10 s. Additional scenarios with different reduction rates are applied
to the simulation model to investigate the effectiveness of the proposed algorithm. These
different scenarios allow for the evaluation of the tracking performance of the proposed
algorithm under the same conditions, such as process and measurement noise covariance
matrices. As shown in Figure 6, a gradual reduction from 1.5× 104 Nmm/rad starts at
approximately 5 s, drops to 0.4× 104 Nmm/rad at 35 s (simulating a situation where the
crack is propagating). When a crack growth is propagating and a gradual torsional stiffness
drop occurs, the AEKF can deal appropriately.



Sensors 2023, 23, 2437 10 of 18

Sensors 2023, 23, x FOR PEER REVIEW 10 of 19  

 

To evaluate the basic estimation performance of the AEKF, the root-mean-squared 
error (RMSE) at the kth time instant was calculated for a more rigorous analysis. 

2

1

1 ˆ( ) ( ( ) ( ))
k

i
RMSE k p i p i

k =

= −∑ , (44) 

where k is the time instant at t = kΔt, ( )p i  and ˆ ( )p i  are the true (i.e., Figure 4) and 
estimated values, respectively. The steady-state mean of the RMSE (MRMSE) was then 
calculated to exclude the effect of transient behavior. The basic estimation results for the 
sudden torsional stiffness drop are shown in Figure 5. The AEKF accurately estimated the 
sudden torsional stiffness change. In contrast, the EKF did not track the time-varying shaft 
stiffness change. The forgetting factor was appropriately changed by the P-adaptive loop 
when the stiffness rapidly decreased in 10 s. Additional scenarios with different reduction 
rates are applied to the simulation model to investigate the effectiveness of the proposed 
algorithm. These different scenarios allow for the evaluation of the tracking performance 
of the proposed algorithm under the same conditions, such as process and measurement 
noise covariance matrices. As shown in Figure 6, a gradual reduction from 

41.5 10 Nmm / rad×  starts at approximately 5 s, drops to 40.4 10 Nmm / rad×  at 35 s 
(simulating a situation where the crack is propagating). When a crack growth is 
propagating and a gradual torsional stiffness drop occurs, the AEKF can deal 
appropriately. 

 
Figure 5. Simulation result for tracking sudden torsional stiffness drop: (a) time response of torsional 
stiffness, (b) corresponding time history of forgetting factor, and (c) RMSE, (d) convergence history 
of covariance. 

Figure 5. Simulation result for tracking sudden torsional stiffness drop: (a) time response of torsional
stiffness, (b) corresponding time history of forgetting factor, and (c) RMSE, (d) convergence history of
covariance.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 19  

 

 
Figure 6. Simulation result for tracking gradual torsional stiffness drop for 30 s: (a) time response of 
torsional stiffness, (b) corresponding time history of forgetting factor. 

3.2. Robustness Analysis 
The robustness of the proposed estimation model under noise and parametric model 

uncertainty was analyzed by introducing perturbations to sensor noise and main 
parameters. To evaluate the robustness under noise and parametric uncertainties, the 
relative error to the nominal value (i.e., normalized performance measure) was 
quantitatively calculated. 

Perturbed Nominal

Nominal

Relative Error=
MRMSE MRMSE

MRMSE
−

. (45) 

As sensor information is inherently contaminated by electrical noise, the effect of electrical 
noise on the estimated performance was examined. The sensor data were contaminated 
by adding a white Gaussian random noise. A probability density function is shown in 
Figure 7a,b as an example. Considering the random noise (error) distribution can be fitted 
to a normal Gaussian distribution with variance ( 2 0.00197σ = , Case 1; 2 0.00298σ = , Case 
2), it was confirmed by white Gaussian random noise. The proposed AEKF appeared to 
be robust against the Gaussian random noise extracted from the sensor data because the 
estimation results appeared to be similar to the original data, with no significant 
discrepancy, as shown in Figure 7c,d.  

The estimation performance of the proposed AEKF model was evaluated under 
parametric uncertainty, such as the moment of inertia. The moment of inertia on both sides 
is an important model uncertainty because it depends on the size, weight, and connection 
structure of the coupling. The nominal value for the moment of inertia of the load motor 
(580 2Nmm ) was perturbed by −20% (464 2Nmm ) and +20% (696 2Nmm ), and the nominal 
inertia moment of the driving motor (180 2Nmm ) was also perturbed by −20% (144 2Nmm
) and +20% (216 2Nmm ). The damping coefficient varied under normal operating 
conditions (800~1200 Nmm·s/rad), depending on the bearing lubrication condition. As the 
estimation results were similar to the nominal values within a reasonable range under 
various parametric uncertainties, the robustness of the proposed model was 
demonstrated, as shown in Figure 8. 

Figure 6. Simulation result for tracking gradual torsional stiffness drop for 30 s: (a) time response of
torsional stiffness, (b) corresponding time history of forgetting factor.

3.2. Robustness Analysis

The robustness of the proposed estimation model under noise and parametric model
uncertainty was analyzed by introducing perturbations to sensor noise and main parame-
ters. To evaluate the robustness under noise and parametric uncertainties, the relative error
to the nominal value (i.e., normalized performance measure) was quantitatively calculated.

Relative Error =
|MRMSEPerturbed −MRMSENominal|

MRMSENominal
. (45)
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As sensor information is inherently contaminated by electrical noise, the effect of electrical
noise on the estimated performance was examined. The sensor data were contaminated
by adding a white Gaussian random noise. A probability density function is shown in
Figure 7a,b as an example. Considering the random noise (error) distribution can be fitted
to a normal Gaussian distribution with variance (σ2 = 0.00197, Case 1; σ2 = 0.00298,
Case 2), it was confirmed by white Gaussian random noise. The proposed AEKF appeared
to be robust against the Gaussian random noise extracted from the sensor data because
the estimation results appeared to be similar to the original data, with no significant
discrepancy, as shown in Figure 7c,d.
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The estimation performance of the proposed AEKF model was evaluated under
parametric uncertainty, such as the moment of inertia. The moment of inertia on both
sides is an important model uncertainty because it depends on the size, weight, and
connection structure of the coupling. The nominal value for the moment of inertia of the
load motor (580 Nmm2) was perturbed by −20% (464 Nmm2) and +20% (696 Nmm2),
and the nominal inertia moment of the driving motor (180 Nmm2) was also perturbed
by −20% (144 Nmm2) and +20% (216 Nmm2). The damping coefficient varied under
normal operating conditions (800~1200 Nmm·s/rad), depending on the bearing lubrication
condition. As the estimation results were similar to the nominal values within a reasonable
range under various parametric uncertainties, the robustness of the proposed model was
demonstrated, as shown in Figure 8.
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4. Experimental Validation
4.1. Experimental Set-Up

The proposed shaft health-monitoring method was experimentally validated using a
torque dynamo. An aluminum hollow-rod specimen (Do: 20 mm, Di: 18.2 mm, L: 550 mm)
was used for the rotating shaft, as shown in Figure 9. The torque dynamo comprises a
driving motor and torque-controlled load motor (Mitsubishi HG-SR152, 10 Hz bandwidth).
Sinusoidal torque (Tm(t) = 10,000 sin(2πt) Nmm) was applied at a rotating speed of
5.23 rad/s (50 RPM). For the shaft crack scenario, the shaft was exchanged in turn from
a normal shaft without cracks to a cracked shaft in the 45◦ direction (Figure 9b). The
crack depth was set to 5 mm to ensure that the shaft stiffness could suddenly drop from
the original value. To examine the possibility of applying a non-contact angular velocity
sensor (tachometer), the measurement model considered the angular velocity values on
both sides of the rotating shaft. The angular velocities of both sides were measured
using a photoelectric detector-type rotational velocity sensor (ONO SOKKI, model: LG-
930), which calculates the rotation speed by counting the light reflected on the gear per
rotation as a pulse. The real-time monitoring performance was evaluated using a dSPACE®

system (DS1104).
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In this study, the recursive least square estimator (RLSE) was used to identify the
unknown model parameters. The rotating shaft model expressed in Equations (1) and (2)
were reformulated in the matrix form as follows:

yk = hT
k θk + vk (46)

where

yk =

[
Tm
0

]
, hT

k =

[ ..
θm 0

.
θm (θm − θl)

0 −
..
θl 0 (θm − θl)

]
, θk = [Jm, Jl , cm, ks]

T (47)

In addition to the measured data from the sensors, other information was required for the
two matrices yk and hT

k . First, the input torque (Tm) in matrix yk was measured using an
in-line torque sensor (model: YDR-2K), as shown in Figure 9. The angular displacement
(θm − θl) and two angular accelerations (

..
θm,

..
θl) for the matrix hT

k was obtained by directly
differentiating and integrating using the low-pass filtering of the angular velocity signal.
The RLSE was then designed as follows:

� Initial estimates

θ̂0 = E[θ] (48)

P0 = E
[(

θ − θ̂0
)(

θ − θ̂0
)T
]

(49)

� Kalman gain calculation

Kk+1 = Pkhk+1

(
hT

k+1Pkhk+1 + w−1
k+1

)−1
(50)

� Parameter update

θ̂k+1 = θ̂k + Kk+1

(
yk+1 − hT

k+1θ̂k

)
(51)

� Covariance update
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Pk+1 =
(

I − Kk+1hT
k+1

)
Pk (52)

All parameters of the rotating system are successfully estimated because they converge
to a steady-state final positive value after 5000 iterations, as shown in Figure 10. The
identified system parameters of the rotating shaft model are listed in Table 2.
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Figure 10. Convergence histories in system identification: (a) inertia moment of load motor, (b) inertia
moment of driving motor, (c) damping constant, and (d) shaft torsional stiffness (inset: zoomed view
of A).

Table 2. Identified system parameters of the rotating shaft model.

Parameters (Unit) Value

Inertia moment of load motor Jl(Nmm2) 595

Inertia moment of driving motor Jm(Nmm2) 20

Damping constant cm (Nmm·s/rad) 280

Shaft torsional stiffness ks (Nmm/rad) 15,000

4.2. Results and Discussion

For the AEKF estimation model, the initial states were set, and the two noise covariance
matrices (Q and R) were tuned by trial and error, as listed in Table 3. The shaft stiffness
estimated using the proposed algorithm was compared in Figure 11. The estimated stiffness
became steady-state and converged after 15 s in both cases. In the case of the normal state
(no crack), the convergence value was identical to the system identification value (i.e.,
15,000 Nmm/rad). When the stiffness changes owing to the sudden drop of crack (crack
depth 5 mm) from 15,000 Nmm/rad (normal) to a certain value (abnormal crack, in this
case approximately 7500), the proposed algorithm can detect this sudden drop. However,
it was difficult to conform to the shift in shaft stiffness by naked eyes from the two angular
velocity inputs.
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Table 3. Tuning parameters for the AEKF estimation model.

P0 diag[0.1 1 650,000 1]

Q diag[1 2.1 2 2.1] × 10−5

R diag[9 9] × 10−8
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A different crack scenario was established to further investigate the effectiveness of
the proposed algorithm. The crack depth was further increased (11 mm) to suddenly drop
from 15,000 Nmm/rad to below 7500 Nmm/rad owing to the reduction in cross-sectional
area (the ratio of the crack segment area to the original cross-sectional area was 65%) [29,30].
Similar to Figure 11, the proposed algorithm can track this stiffness drop due to the heavy
crack, as shown in Figure 12. The proposed estimation model could not only estimate the
decrease in stiffness caused by a crack, but also quantitatively evaluate the fatigue crack
growth by directly estimating the shaft torsional stiffness. The robustness of the proposed
estimation model under noise uncertainty was evaluated by introducing the perturbations
in sensor noise. The original sensor signal was filtered by a digital moving average filter (no
phase delay). Two corrupted signals were generated; the low-pass filtering is small (Case
1, less contaminated) and off (Case 2, more contaminated, i.e., raw data). The probability
density distribution of sensor noise extracted from the original sensor signal was similar
to Gaussian distribution, as shown in Figure 13c. The proposed estimation model seemed
to be robust against the Gaussian random noise in all sensor data because the estimation
results appeared to be similar regardless of the degree of contamination, as shown in
Figure 13a,b. In the case of heavy crack (crack depth 11 mm), the proposed estimation
model turned out to be more robust against the Gaussian random noise, as shown in
Figure 13d. The robustness of the proposed estimation model under model uncertainty
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was not investigated in the experiment because it was unlikely to significantly change two
main model parameters (inertia moment of load and driving motor).
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5. Conclusions

In this study, the torsional crack in the rotating shaft was successfully detected in
real-time by estimating the reduction of torsional stiffness in the rotating shaft using the
AEKF approach with forgetting factor update. The main contributions of this study are
summarized as follows:



Sensors 2023, 23, 2437 17 of 18

� We concluded that the proposed approach is a promising alternative means for
detecting torsional cracks in rotating shafts despite the difficulty in tuning the Q
and R matrices of the AEKF.

� The proposed estimation model could not only estimate the decrease in stiffness
caused by a crack but also quantitatively evaluate the fatigue crack growth by directly
estimating the shaft torsional stiffness.

� Another advantage of the proposed approach is that it uses only two cost-effective
rotational speed sensors; therefore, it does not require noncontact-type torque sensors,
which are typically expensive and suffer from durability limitations.

With these advantages, the proposed approach can be readily implemented in struc-
tural health monitoring systems of rotating machinery. In future research, we will continue
to address some of the ongoing issues. In particular, the localization of cracks in rotating
shafts should be studied further. In addition, if the input variables cannot be measured,
an advanced algorithm should be applied to simultaneously estimate unknown input and
state variables.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s23052437/s1, Video S1: Crack Monitoring in Rotating Shaft Using Torsional Stiffness
Estimation with Adaptive Extended Kalman Filters.
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