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Abstract: In this paper, we propose a compact and low-power mixed-signal approach to imple-
menting convolutional operators that are often responsible for most of the chip area and power
consumption of Convolutional Neural Network (CNN) processing chips. The convolutional opera-
tors consist of several multiply-and-accumulate (MAC) units. MAC units are the primary components
that process convolutional layers and fully connected layers of CNN models. Analog implementation
of MAC units opens a new paradigm for realizing low-power CNN processing chips, benefiting from
less power and area consumption. The proposed mixed-signal convolutional operator comprises
low-power binary-weighted current steering digital-to-analog conversion (DAC) circuits and accumu-
lation capacitors. Compared with a conventional binary-weighted DAC, the proposed circuit benefits
from optimum accuracy, smaller area, and lower power consumption due to its symmetric design.
The proposed convolutional operator takes as input a set of 9-bit digital input feature data and
weight parameters of the convolutional filter. It then calculates the convolutional filter’s result and
accumulates the resulting voltage on capacitors. In addition, the convolutional operator employs a
novel charge-sharing technique to process negative MAC results. We propose an analog max-pooling
circuit that instantly selects the maximum input voltage. To demonstrate the performance of the
proposed mixed-signal convolutional operator, we implemented a CNN processing chip consisting
of 3 analog convolutional operators, with each operator processing a 3 × 3 kernel. This chip contains
27 MAC circuits, an analog max-pooling, and an analog-to-digital conversion (ADC) circuit. The
mixed-signal CNN processing chip is implemented using a CMOS 55 nm process, which occupies a
silicon area of 0.0559 mm2 and consumes an average power of 540.6 µW. The proposed mixed-signal
CNN processing chip offers an area reduction of 84.21% and an energy reduction of 91.85% com-
pared with a conventional digital CNN processing chip. Moreover, another CNN processing chip is
implemented with more analog convolutional operators to demonstrate the operation and structure
of an example convolutional layer of a CNN model. Therefore, the proposed analog convolutional
operator can be adapted in various CNN models as an alternative to digital counterparts.

Keywords: mixed-signal convolutional operation; analog multiplier; neural network accelerator;
convolutional neural network; artificial intelligence; neuromorphic engineering

1. Introduction

Convolutional Neural Networks (CNNs) have proven helpful in various applications
ranging from character recognition to object detection. However, neural network resource
usage is soaring with the continuous increase in feature complexity. This makes the
deployments of CNNs on the existing CPU/GPU infeasible due to their size and power
requirements. Furthermore, various Internet of Things (IoT) applications of CNNs have
scarce energy sources and thus require solutions to lower power consumption in order
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to ensure the longevity of the devices [1]. As a result, there is a trend towards exploring
high-performance neural processing units or accelerators with low power consumption.

Recently, neuromorphic architectures have been developed upon non-von Neuman
architecture that can emulate the biological human brain network. Compared with tra-
ditional CPU/GPU designs established upon von Neuman architecture, neuromorphic
architectures often provide superior power efficiency and parallelism [2]. Recent presenta-
tions include several neuromorphic and accelerated systems that make use of SNN [3–6]
and CNN architectures [7–9].

Computing convolutional operations in the digital domain involves multipliers and
adders, i.e., the Multiply-and-Accumulate (MAC) operation. For concurrent processing,
the number of multipliers required equals the filter size, which can result in large area
consumption. Moreover, summing the outputs of these multipliers involves multiple
cascaded adders. Thus, digital MAC units occupy a massive area with higher power
consumption. This area and power constraint caused the researcher’s interest to drift
towards finding the new paradigm of analog kernels for CNN, which can not only perform
convolution but can also occupy significantly less area and consume less power. Therefore,
exploring unconventional architectures for the MAC unit is necessary.

A swarm of recent studies has focused on developing accelerators for CNNs [10–15],
which attempt to improve the area, power consumption, and delay. In addition, some
researchers are exploring mixed-signal approaches for CNNs [12,15], where some are
integrating the analog compute units directly with the image sensor [13,15].

A 3 × 3 analog Convolutional Unit (CU) is implemented in [12], which requires
differential analog input for weights and image values. Similarly, the analog CU of [10]
is not a good choice for directly replacing the conventional digital CUs as it requires
additional DACs to convert the filters and image values to analog. An analog light-weight
CNN integrated with a CMOS image sensor is presented in [13], capable of performing
face detection. In [13], only a 2 × 2 switched-capacitor CU is realized, which can be
inadequate for even slightly complex feature extraction applications. A mixed-signal
cellular neural network accelerator is presented in [14], targeting MNIST and CIFAR-10
datasets. Reference [14], however, does not natively support filter sizes larger than 3 × 3.
Moreover, the cellular structure of [14] is not compatible with fully connected layers.

This paper presents and implements a compact mixed-signal CNN processing chip in a
55 nm CMOS process. The proposed analog convolutional operator (ACO) is implemented
for CNNs, comprising low-power MAC units, which directly expect digital inputs for
weights/filter values and image pixels. A compact and low-power multi-channel analog
convolutional operator unit (ACU) is proposed and implemented, consisting of three con-
volutional operators, a max-pooling circuit, and an ADC circuit to replace conventional
digital processing elements inside the CNN. The proposed ACO can also be adapted to fully
connected layers. Furthermore, an example convolutional layer based on a 3 × 3 convolu-
tional kernel of a CNN model has been constructed in a CNN processing chip to illustrate
the structure and functionality of the proposed ACU. This paper elucidates the architecture
and design methodology for mixed-signal CNN processing chip implementation, elemental
circuit designs, and simulation results. Firstly, in Section 2, the complete architecture of
the mixed-signal CNN processing chip implementation is illustrated. Subsequently, in
Section 3, the design and implementation of the underlying CMOS circuits for the pro-
posed analog convolutional operator are presented and validated by simulations. Section 4
describes the complete implementation of the proposed mixed-signal CNN processing
chip and simulation results. Finally, in Section 5, the overall performance is discussed and
compared with other digital and analog CNN accelerators before a conclusion is drawn in
Section 6.
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2. Mixed-Signal Processing of Convolutional Neural Network
2.1. Architecture of Analog Convolutional Operator

Figure 1 shows the overall structure and use of the mixed-signal CNN containing
an analog convolutional operator (ACO), which can replace a conventional digital convo-
lutional operator. The digital values of input image pixels and filter weights are directly
applied to the ACO through a digital parallel interface. The ACO can perform MAC
operations by containing n multiplier circuits for a convolutional layer with a filter size of
n = H f ilter × W f ilter. An accumulator circuit sums together the output of the n multiplier
circuits. In addition, the 2 × 2 max-pooling layer is realized by a max-pooling circuit, which
takes four convolutional result values as inputs and selects the maximum value as output.
Finally, the result of the max-pooling is converted back to the digital domain using an ADC
for further output feature map processing.

Figure 1. Mixed-signal block diagram of the architecture of the analog convolutional operator.

2.2. Multi-Channel Analog Convolutional Operator Unit

Figure 2 illustrates an example architecture of a three-channel analog convolutional
operator unit (ACU). It comprises three analog convolutional operators that replace a
conventional digital processing element (PE) array used in conventional digital CNN chips.
In Figure 2, the digital input data of three channels and corresponding filter weight pa-
rameters are fed independently to each convolutional operator. In this work, we use an
implementation of each convolutional operator consisting of nine multipliers for realizing
a 3 × 3 convolutional computation since it is most common in various CNN models. How-
ever, the proposed architecture is not limited only to a 3 × 3 structure. The outputs of the
three convolutional operators are summed together and accumulated in an analog memory
consisting of capacitors. The capacitors in the analog memory maintain the accumulated
values in the form of voltage levels. In this work, we use an analog memory consisting
of four capacitor pairs to store four convolutional computations for four neighboring
3 × 3 kernels on the input data.

The convolution results are immediately used to compute the analog max-pooling
operations, which are often employed by convolutional layers in many common CNN
models. The four output voltages of the capacitors are fed directly to the max-pooling
circuit to compute a max-pooling operation of a 2 × 2 kernel. This work shows an example
implementation of a 2 × 2 max-pooling circuit. The proposed max-pooling circuit can be
easily extended to process various kernel sizes.
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Figure 2. Multi-channel analog convolutional operator unit comprising three input channels.

Finally, the output of the max-pooling operation is converted to digital value using a
lower-power Successive Approximation Register (SAR) ADC. In the proposed analog con-
volutional operator unit, moving the max-pooling layer before the ADC and right after the
four convolutional operations exploits the benefits of analog MACs while offering at least
four times the reduction in analog-to-digital conversions. Moreover, this will inherently
curtail the precision requirements of the system by discarding the small computational
values. The proposed analog convolutional operator unit integrates the operations of a
MAC, a max-pooling, and an ADC to perform one-shot calculations for the convolutional
and max-pooling layers. Therefore, the proposed analog convolutional operator unit finds
the advantages of area, power, energy, and speed.

3. Circuit Design of Analog Convolutional Operator
3.1. Analog Multiply-and-Accumulate Circuit

The proposed analog convolutional operator aims to replace a digital convolutional
operator while maintaining the input and output data in a digital domain. The digital
inputs are converted to analog, and the analog outputs of the multiply-and-accumulate
(MAC) circuit are converted back to digital. We propose a compact and low-power analog
convolutional operator circuit consisting of several multipliers and an accumulator circuit.
The multiplier circuit, designed for 4-bit input [16] and optimized and expanded to 8-bit
input here, uses a pair of binary-weighted current steering digital-to-analog converters
(DACs), which take the digital voltage values as inputs and produce current values as the
output. Figure 3a illustrates the structure of the proposed multiplier. The multiplier tightly
integrates two current steering DACs, each of which takes operand A and B, respectively.
The first (left) DAC is supplied with a fixed bias voltage and generates an output current
IA, which is proportional to the digital code provided by operand A. Next, a current mirror
circuit is used to generate a bias voltage for the second (right) DAC based on the output
of the first DAC. As a result, the current IA.B produced by the second (right) DAC is
proportional to the product of operands A and B. Finally, the output current of the second
DAC is converted to voltage using M19.
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Figure 3. Analog MAC unit: (a) current steering DAC-based multiplier; (b) accumulator summing
and integrating all the multipliers output currents.

The accumulator circuit that follows the multipliers is shown in Figure 3b. The
accumulator circuit converts output voltages from n multiplier circuits into corresponding
currents. The outputs OUTx of n multipliers are connected to the nodes OUT0, OUT1, . . .,
OUTn of the accumulator. These currents are summed together at node ‘x’, which is
used to charge the accumulation capacitor CACC. Before the start of computation, the
accumulation capacitor is discharged through NMOS Mreset by applying the reset signal.
After accumulation, the expression for the final capacitor voltage can be derived from
Equation (1).

VCACC. =
Q

CACC.
(1)

Here, Q represents the charge stored in the capacitor while the inputs are applied and can
be expressed as Equation (2).

Q =
∫ T

0
Ix · dt = Ix × T (2)

In Equation (2), Ix represents the summed current, and T is the duration for which
this current is applied (multiplier has valid inputs). Therefore, the final voltage on the
accumulation capacitor can be expressed by Equation (3).

VCACC. =
Ix × T
CACC.

(3)

To avoid saturation or under-utilization of capacitor voltage, choosing a proper combi-
nation of Ix, T, and CACC. is important. The current Ix can be indirectly controlled using
the bias voltage, while the duration of accumulation T can be determined by the digital
controller described later. To ensure low power consumption, all the MOSFETs are kept
at sub- or near-threshold gate voltages. This puts a constraint on the exploitable range of
the bias voltage. The proposed MAC unit employs a configurable array of accumulation
capacitors to achieve the adjustment of capacitance.
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3.1.1. Multiplier Circuit Design for Compactness

The area of the conventional binary-weighted DAC circuits increases exponentially as
the resolution of inputs increases. In contrast, in the proposed multiplier circuit, to increase
the input resolution to 8-bit for operands without increasing the area, a 4-bit current steering
DAC is used as a fundamental building block. The proposed 8-bit multiplier circuit is
shown in Figure 4. This design is derived from the two DACs of Figure 3a, where each DAC
is further constituted from two 4-bit DACs. The first (left) DAC in Figure 4 is connected to
the 4 MSBs and 4 LSBs of operand A, respectively. Similarly, the MSBs and LSBs of operand
B are tied to the two 4-bit DAC units of the second (right) DAC.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 18 
 

 

3.1.1. Multiplier Circuit Design for Compactness 

The area of the conventional binary-weighted DAC circuits increases exponentially 

as the resolution of inputs increases. In contrast, in the proposed multiplier circuit, to in-

crease the input resolution to 8-bit for operands without increasing the area, a 4-bit current 

steering DAC is used as a fundamental building block. The proposed 8-bit multiplier cir-

cuit is shown in Figure 4. This design is derived from the two DACs of Figure 3a, where 

each DAC is further constituted from two 4-bit DACs. The first (left) DAC in Figure 4 is 

connected to the 4 MSBs and 4 LSBs of operand A, respectively. Similarly, the MSBs and 

LSBs of operand B are tied to the two 4-bit DAC units of the second (right) DAC. 

 

Figure 4. The 8-bit multiplier design constituted from two 4-bit current steering DAC circuits. 

The layout design of the 8-bit multiplier constituted from the four 4-bit DAC units is 

illustrated in Figure 5a. Each 4-bit DAC in the multiplier is constructed by placing 15 unit 

cells in a matrix structure to ensure better matching compared with a conventional binary-

weighted DAC, which is depicted in Figure 5b. As a result, the proposed multiplier circuit 

provides a symmetric and compact design that occupies a small area of 375 μm2. Moreo-

ver, the increase in resolution linearly increases the area, which is in contrast to the expo-

nential increase in area in a conventional binary-weighted DAC circuit. 

 
(a) (b) 

Figure 5. (a) The 8-bit multiplier layout design consisting of four 4-bit current steering DAC circuits; 

and (b) the layout design of a 4-bit DAC circuit. 

3.1.2. Simulation Results for the Multiplier 

The proposed 8-bit binary-weighted current steering multiplier was simulated to ver-

ify the operation, and the results are illustrated in Figure 6. Here, the incrementing digital 

input data, with a step size of 15, are applied, shared by both multiplier operands. The 

simulation shows the output current 𝐼𝐴×𝐵  of the multiplier (blue waveform) and the dig-

ital product results of operands A and B (red waveform). It can be observed that upon 

applying the digital input data, the output current rapidly transitions to a value that 

closely matches the product of operands A and B. In addition, to have low power con-

sumption, all the MOSFETs used in the MAC unit have high threshold voltage, which 

offers low leakage and static current. Since the circuit deals with nano-amperes of current, 

any leakage would significantly impact the accuracy of the result. The proposed 8-bit 

A
[6

]

A
[5

]

GROUND

1x2x4x

M0 M1 M2

M8

A
[7

]

VBN1H

Operand A(MSBs)

A
[4

] M3

8x

A
[2

]

A
[1

]

1x2x4x
M4 M5 M6

M9

M14 M15 M16

A
[3

]

VBN1L

Operand A(LSBs)

C
u

rr
e
nt

 M
ir

ro
r

A
[0

]

M7 M17
8x M20

VBP1H VBP1L

VBP1H

B
[6

]

B
[5

]

1x2x4x

M21 M22 M23

M29

M25 M26 M27

B
[7

]

VBIASH

Operand B(MSBs)

B
[4

] M24

M28
8x

VBP2H

VBP1L

M32

B
[2

]

B
[1

]

1x2x4x

M33 M34 M35

M41

M37 M38 M39

B
[3

]

VBIASL

Operand B(LSBs)

B
[0

] M36

M40
8x

VBP2L

VBP1L
VBP1H

VBN2H VBN2L

C
u

rr
e

nt
 M

ir
ro

r

M18

M19

M30

M31

C
u

rr
e

nt
 M

ir
ro

r

IA IA·B

α·IA

IA

α·IA

IA·B

M10 M11 M12 M13

25um

1
5

u
m

OPEARND A
4MSBs

OPEARND B
4MSBs

OPEARND A
4LSBs

OPEARND B
4LSBs

4-BIT DAC UNIT

1x

2x

4x

8x

Figure 4. The 8-bit multiplier design constituted from two 4-bit current steering DAC circuits.

The layout design of the 8-bit multiplier constituted from the four 4-bit DAC units
is illustrated in Figure 5a. Each 4-bit DAC in the multiplier is constructed by placing
15 unit cells in a matrix structure to ensure better matching compared with a conventional
binary-weighted DAC, which is depicted in Figure 5b. As a result, the proposed multiplier
circuit provides a symmetric and compact design that occupies a small area of 375 µm2.
Moreover, the increase in resolution linearly increases the area, which is in contrast to the
exponential increase in area in a conventional binary-weighted DAC circuit.

Figure 5. (a) The 8-bit multiplier layout design consisting of four 4-bit current steering DAC circuits;
and (b) the layout design of a 4-bit DAC circuit.

3.1.2. Simulation Results for the Multiplier

The proposed 8-bit binary-weighted current steering multiplier was simulated to
verify the operation, and the results are illustrated in Figure 6. Here, the incrementing
digital input data, with a step size of 15, are applied, shared by both multiplier operands.
The simulation shows the output current IA×B of the multiplier (blue waveform) and the
digital product results of operands A and B (red waveform). It can be observed that upon
applying the digital input data, the output current rapidly transitions to a value that closely
matches the product of operands A and B. In addition, to have low power consumption, all
the MOSFETs used in the MAC unit have high threshold voltage, which offers low leakage
and static current. Since the circuit deals with nano-amperes of current, any leakage would
significantly impact the accuracy of the result. The proposed 8-bit multiplier consumes
1.44 µW of power to multiply two operands with a maximum product value of 255 × 255.
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3.1.3. Accumulator Circuit Design

The accumulator circuit in the proposed convolutional operator is designed using
MOSFETs to steer the output current of the multiplier to be accumulated upon capacitors,
as shown in Figure 3b. In the example circuit presented in this work, a four-capacitor array
CACC is implemented to store the accumulation value of four different input image pixel
values convolved with filter values with stride movement value 1. The four capacitors in
array CACC accumulate, respectively, the current amount representing the four neighboring
convolution results, which are passed over to the max-pooling circuit to select the maximum
of the four convolution results. Each convolutional operation is conducted over a set of data
in a 3 × 3 matrix of C channels out of the total input data channels, where C is set to three in
our implementation in this work. For the first layer of the CNN, the input data matrix is the
input image, while for other layers of CNN, the input data are the feature data produced
by the previous layer. Firstly, the first convolution result is obtained as follows: The three
ACOs of the proposed analog convolutional operator unit simultaneously convolve the
three 3 × 3 filter kernels over the top-left 3 × 3 matrix selected from the input data with
three input channels. The result of the first convolution is stored in the first capacitor
in array CACC in the form of voltage VACC. For the second convolution, the 3 × 3 filter
kernel shifts in the right direction over the input data by a stride value S and stores this
convolutional result in the second capacitor in CACC. In this work, we use a stride value S
of 1. In a similar fashion, the 3 × 3 filter kernel moves down for the third convolution, and
then it moves left for the fourth convolution. These results are stored in the third and fourth
capacitors in CACC, respectively. In the implementation of CACC, the metal–oxide–metal
(MOM) capacitors are employed to benefit from their higher capacitance density and linear
current–voltage (CV) curve [17]. Each capacitor is implemented using configurable parallel
capacitors, so each can be configured to have a size from 300 fF up to 700 fF in steps of 10 fF.
Before accumulation, each capacitor’s voltage is reset to a reference voltage Vref of value
400 mV by a reset signal provided by a digital controller. Afterward, the digital controller
generates a start accumulation signal that enables the current from the ACOs to accumulate
in the respective capacitors of CACC.

3.1.4. Accumulator Circuit for Negative Values

In general, MAC operations of a convolutional layer of CNN models must handle the
accumulation of both positive and negative MAC values. Conventional analog convolu-
tional operators, however, do not provide efficient ways to compute the negative MAC
values and accumulate the negative and positive MAC values into convolution results.
In contrast, our proposed analog convolutional operator can handle both negative and
positive MAC values as follows.

The proposed MAC unit implements a charge-sharing technique to achieve the multi-
plication of negative values, as illustrated in Figure 7. Each of the four capacitors in array
CACC is split into a pair of two capacitors, each having a capacitance of 700 fF in the current
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implementation. The first capacitor (C1) of the pair accumulates the current IW+ from
the positive multiplication values. The second capacitor (C2) of the pair accumulates the
current IW− from the negative multiplication values. For this purpose, a sign bit is added to
the 8-bit value of operands to present the operands in a 9-bit signed magnitude format. The
lower than 8-bit values are directly applied to the multiplier, while the 9-bit value (MSB),
as a sign bit, is utilized for steering the multiplication currents either onto the positive
capacitor (C1) or negative capacitor (C2). The operation comprises the sampling mode and
subtracting mode. During the sampling mode, the equivalent currents IW+ and IW− are
accumulated as voltages VC1 and VC2, respectively, in capacitors C1 and C2 connected
in parallel formation. During the subtracting mode, on the other hand, the connection of
capacitors C1 and C2 is changed to series formation, and the charge sharing generates the
subtraction result Vout at the output,

Vout = VC1 − VC2.

Figure 7. Subtraction of negative multiplications result from positive multiplications result.

To explain the operation of the subtraction, Figure 8 illustrates the simulation result
of subtracting VC1 and VC2, which are the voltage results from two multipliers. In this
example, the first multiplier takes a maximum positive operand A and B value (255 × 255)
to produce the highest output value. In contrast, the second multiplier takes a maximum
negative and positive value (−255 × 255) to produce the lowest negative value. The
subtraction example operates as follows. Firstly, the digital controller gives a reset signal,
which discharges all the accumulation capacitors to the Vref value (400 mV). Secondly, the
digital controller gives a Start Accumulation signal, which triggers the accumulation of
currents in the capacitor pairs. As a result, the current IW+ charges the capacitor voltage
VC1 up to the equivalent VC1+, while IW− charges VC2 up to VC2+. Finally, the digital
controller gives a subtract signal, which subtracts the two voltages between VC1 and
VC2, and then generates an equivalent Vout. The proposed analog MAC unit utilizes the
existing accumulation capacitors to implement the charge-sharing technique for negative
multiplication. Therefore, it does not require extra circuitry to implement the multiplication
of the negative values, unlike the conventional methods of using complementary circuits.

3.2. Analog Max-Pooling Circuit

The proposed ACU employs a 12-bit SAR ADC to convert the convolution results to
digital values. The ADC takes 14 clock cycles to complete an analog-to-digital conversion,
which can limit the overall throughput of the ACU. To improve the throughput, we pro-
pose an analog max-pooling circuit that can be performed in the analog domain before
conducting ADC. For example, in a max-pooling of size 2 × 2 with stride 1, an analog
max-pooling can reduce the required conversion operations of the ADC by four times,
reducing the energy consumption of the ADC by four times. The proposed max-pooling
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circuit is designed based on a voltage-mode max-voltage selection circuit, as shown in
Figure 9a [18,19]. In this work, we implement the max-pooling circuit for a 2 × 2 pooling
size since many CNN models employ a 2 × 2 max-pooling. It accepts four input voltages
and provides an output voltage corresponding to the input voltage’s maximum voltage
value. The four accumulation voltages of the four accumulation capacitors are applied to
the inputs of the max-pooling circuit to perform one-shot computations. The simulation
results are illustrated in Figure 9b, where the maximum voltage Vout is indicated by a
black curve.

Figure 8. Simulation results illustrating the subtraction via charge sharing.

Figure 9. Analog max-pooling unit: (a) implemented voltage-mode max-voltage selection circuit;
(b) simulation results for max-pooling circuit showing Vout tracking maximum Vin.

3.3. Analog-to-Digital Converter

The proposed ACU intends to replace the digital convolutional operators while keep-
ing the input and output memories unchanged; therefore, the output of the ACU must be
converted back to digital for storing the outputs in memory and further processing them for
the proceeding layers of CNN. For this purpose, a 12-bit Successive Approximation Register
(SAR) ADC, introduced in [17], is employed by the ACU implementation presented in this
work. To ensure minimal size and power consumption, the SAR ADC is implemented
by further employing a split capacitor array DAC structure while eliminating the need
for the sample and hold circuit by utilizing the accumulation capacitors to hold the input
voltage. As a result, our implementation of the ADC achieves higher performance, reduces
kick-back noise, provides rail-to-rail dynamic range, and significantly reduces area and
power consumption. Furthermore, the complete implementation of the ACU also realizes
auxiliary circuits, including an on-chip oscillator capable of generating clock signals up to
300 MHz and output buffers to drive observing outputs.
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4. Implementation of Analog CNN Processing Chip

In this work, to demonstrate the performance and advantage of the proposed archi-
tecture, we implement a set of analog convolutional operators in a mixed-signal CNN
processing chip. In this section, we first describe an implementation of a small ACU chip
comprising three ACO circuits, and then present an implementation of a mixed-signal
CNN processing chip consisting of eight ACU blocks.

4.1. Operation of On-Chip Digital Controller

To prove the feasibility of the proposed ACU, a mixed-signal CNN processing chip
is implemented. The proposed ACU is controlled by an on-chip digital controller, which
triggers each step of the analog convolutional operations and the max-pooling operations,
as illustrated in Figure 10. It also communicates with an external master processor through
a 32-bit parallel interface to receive and transmit data. For each input of data, the digital
controller takes a 3 × 3 image and filter weight data from the parallel interface and
stores them in the input data memory, which are then sent to the ACU for convolutional
computations. Upon each completion of convolution, the digital controller stores the ADC
output in the output data memory. Once all convolutions are completed, it reads the
convolution result data and transmits them to the external processor.

Figure 10. The block diagram of the 32-bit digital parallel interface for the mixed-signal CNN
processing chip.

4.2. Fabrication of ACU Chip

The ACU chip consisting of the proposed analog convolutional operator unit and the
digital controller is realized in a 55 nm CMOS process. Figure 11 illustrates the micrograph
of the fabricated chip and demarcates the layout design of the ACU chip’s active area,
which occupies a chip core area of 0.252 mm2. The analog convolutional operator unit
comprises three channels of analog convolutional operators, a max-pooling unit, and a
SAR ADC occupying the 0.0559 mm2 active analog core area of the chip. In addition, the
ACU chip incorporates an oscillator and output buffers. The average power consumption
measured from the ACU chip is 540 µW.
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Figure 11. Micrograph and the demarcated layout of the ACU chip for mixed-signal CNN processing
chip implementation.

4.3. Simulation Results of ACU Chip

To elaborate the operations of the analog convolutional operator unit and digital con-
troller, this section shows the simulation results using four continuous sets of convolutional,
max-pooling, and ADC operations. Figure 12 illustrates the timing diagram for the input
data and control signals. The analog convolutional operator unit operates on the digital
input data and filter weights, which are the operands A [0:8] and B [0:8] for the MAC units.
Three digital control signals for each accumulation capacitor pair in the capacitor array are
applied to trigger the reset, start accumulation, and subtraction operations. Firstly, a reset
signal discharges all four accumulation capacitors to the Vref value, which is configured to
400 mV in our experiment. Afterward, a start accumulation signal triggers the accumulation
of the currents generated by the multiplier in the accumulation capacitors. During this
period, the input data of both operands A and B for all 27 multipliers of three convolutional
operators are kept valid. Finally, a subtract signal triggers the subtraction of the positive and
negative accumulation voltages, as explained earlier in Section 3.1.4. During this period,
the first accumulation capacitor provides the output voltage corresponding to the first
convolutional operation. In the same fashion, the sequence of three control signals is re-
peated for all four accumulation capacitors one after another to perform four convolutional
operations.

Figure 12. Timing diagram showing the control signals and the applied input signals for the
two operands.

Figure 13 shows the simulation results of the analog max-pooling operations followed
by analog convolutional operations. After the convolutional operation of 3 × 3, it performs
a 2 × 2 max-pooling operation followed by an ADC operation. The example of Figure 13
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applies the identical operands of A [8:0] and B [8:0] to all nine multipliers in each analog
convolutional operator for the sake of simplicity. Each of the four convolutional operations
takes as input 64 × 64, 128 × 128, 64 × 64, and −32 × 32, respectively. Upon receiving
the first start accumulation signal, the multiplier produces a current value equivalent to the
product of 64 × 64 and charges the respective accumulation capacitor CACC, providing an
equivalent voltage VACC0. Afterward, upon receiving the subtract signal, the output voltage
of 423 mV is obtained, which represents the first convolutional operation as indicated by
the brown waveform. Similarly, the second convolutional operation for the input operands
of A [8:0] = 128 and B [8:0] = 128 produces a resulting voltage VACC1 of 554 mV as indicated
by the blue waveform, which is equivalent to 128 × 128. For the third convolutional
operation, the resulting voltage VACC2 of 423 mV is obtained (purple waveform), which is
equivalent to 64 × 64. Lastly, for the fourth convolutional operation, the resulting voltage
VACC3 of 356 mV is obtained (orange waveform), which is equivalent to −32 × 32. The four
accumulation voltages corresponding to four convolutional operations are directly applied
to the max-pooling circuit, which selects the maximum voltage and produces a Vmax_out of
555 mV (red waveform). Afterward, upon receiving a start_ADC signal (black signal), the
ADC converts the max-pooling output into a 12-bit digital value. To verify the accuracy of
the ADC, an ideal DAC is added to the simulation, which converts the digital value back
to the analog value, resulting in 556 mV (green waveform). The error between the digital
and analog values is as small as 1 mV. The SNDR and ENOB of the ADC are measured as
68.45 dB and an 11.07-bit value, respectively [17].

Figure 13. Simulation results verifying the operation of analog convolutional operator unit.

4.4. Architecture of Mixed-Signal CNN Processing Chip

In this work, to demonstrate the scalability of the proposed analog convolutional
operator unit (ACU), we implemented a mixed-signal CNN processing chip consisting
of eight ACU blocks. Figure 14 shows the overall architecture of the mixed-signal CNN
processing chip that comprises eight ACUs, a common digital controller, a clock oscilla-
tor, and a high-speed interface for the host CPU. Each ACU contains three channels of
convolutional operators, which can simultaneously perform a convolutional operation
upon three channels of the input data and weight parameters and produce feature data for
the corresponding output channel. Similarly, the eight ACUs can perform simultaneous
convolutional operations for eight output channels upon receiving the following data for
three input channels. The eight output channels, called convolutional filters, take the
same three input channels using eight different weight parameters. The common digital
controller shared by the eight ACUs provides input image and weight data to all the ACUs.

After convolutional computation, each of the eight ACUs calculates eight parallel
max-pooling results and converts them to digital values using eight ADCs. Therefore, the
proposed implementation can produce eight channels of concurrent output feature maps.
The kernel size of the proposed ACU is not limited to 3 × 3, but it can be easily increased
by increasing its number of MAC units. Therefore, the proposed analog convolutional
operator unit is suitable for realizing various CNN models on hardware.
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Figure 14. Overall architecture of an example mixed-signal CNN chip consisting of eight analog
convolutional operator units with 3 input channels each.

4.5. Example Implementation of Mixed-Signal CNN Processing Chip

The mixed-signal CNN processing chip is fabricated in a 55 nm CMOS process.
Figure 15 lays out the micrograph of the fabricated chip and demarcates the layout of
the active core area of the chip, which occupies a chip core area of 2.75 mm2. The compact
design of the eight ACUs, which are tiled together with minimal routing, occupies only a
very small area of 0.4784 mm2. The average power consumption of the mixed-signal CNN
processing chip is as low as 1.4424 mW. The compact area and low power consumption
of the CNN processing chip demonstrate the advantage that the proposed architecture
can be easily extended to accommodate large-scale CNN models with a large number of
convolutional filters and layers.

Figure 15. (a) The micrograph of the mixed-signal CNN processing chip, (b) the demarcated full chip
layout, and (c) the zoomed-in structure of the one ACU.

5. Performance Analysis

To demonstrate the performance and cost of the ACU chip in comparison with con-
ventional architectures, we compare the implementation result of the ACU chip with an
implementation of a digital neural network processing unit (NPU) [20] in Table 1. The NPU
is implemented using the same 55 nm process technology as the proposed mixed-signal
CNN. The NPU comprises 288 processing elements (PEs), each of which is composed
of an 8-bit MAC operator. While the proposed ACU chip can be extended to cover the
whole CNN model, we restrict our experiment only to the first layer of the CNN model
for proof of concept. We consider an example CNN model called YOLOv2-tiny which
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consists of nine convolutional layers. For simplicity, we analyze the computation of only
the first layer of the YOLOv2-tiny model. Since the proposed ACU chip comprises 27 MAC
units with a 9-bit configuration for a three-channel 3 × 3 convolutional filter, we have
downscaled the digital NPU to a small implementation consisting of 27 MAC PEs to make
a fair comparison.

Table 1. Performance comparison of the proposed analog convolutional operator unit with digi-
tal counterpart.

Parameter
Digital NPU [20] Analog Convolutional Operator Unit

288 MAC PEs 27 MAC PEs 27 MAC Units ADC Total

Area 3.84 mm2 0.384 mm2 0.056 mm2 0.0046 mm2 0.0559 mm2

Power 21 mW 1.96 mW 534 µW 6.6 µW 540.6 µW
Energy 2895.9 µJ 321.72 µJ 25.8 µJ 0.31 µJ 26.19 µJ

Table 1 compares the area, power consumption, and energy consumption of the ACU
chip and the NPU implementations. It can be observed that the proposed ACU chip
consumes 85% less chip area and 72.4% less power consumption. For the digital NPU with
the full CNN model, it takes 137.9 ms for inference computations through all the layers for
a 416 × 416 input image when operating at 200 MHz. After scaling down for the first layer
of the CNN model, the digital NPU consumes an average energy of 321.72 µJ. On the other
hand, for the case of the proposed ACU chip, it takes 48.5 ms, when operating at 200 MHz,
for inference computations of the first layer of the CNN model for a 416 × 416 input image.
Therefore, it consumes 26.19 µJ of average energy, which is 92% less than the energy
required by the digital NPU. Hence, the proposed analog convolutional operator unit can
provide a significant reduction in area, power, and energy consumption compared with its
digital counterpart.

Table 2 compares this work with other state-of-the-art analog implementations of
convolutional operators. Here, the chip area and power efficiencies are calculated based on
the method described in [21]. The mixed-signal cellular neural network presented in [14]
realizes the AlexNet CNN model and achieves high computation speed (GOPS). However,
it is less energy efficient than other works due to the use of operational transconductance
amplifiers as a primary computing unit. The hybrid architecture of [22] incorporates
64 analog convolutional operators integrated with an on-chip CMOS image sensor array
for object detection. It occupies a considerable amount of chip area, which is 123× less
area efficient than the proposed ACU chip. Its analog convolutional operator constitutes
a 4-bit multiplier, which consumes a high power of 18.75 µW, leading to a high energy
consumption of 61.98 µJ. In contrast, the proposed MAC unit consumes only 1.44 µW of
power, leading to an energy consumption of 26.19 µJ, which makes it 2.5× more energy
efficient. The CMOS image sensor integrated with a light-weight CNN presented in [13]
consumes less power and thus provides relatively high energy efficiency. However, it
suffers from excessively low computation speed due to its low frequency of 2 × 2 kernel
operations. Furthermore, it requires excessive chip area as it constitutes 180 computing
units, each occupying 4250 µm2 of area, integrated with an on-chip pixel memory. The
in-memory computing circuit based on capacitors presented in [23] employs an energy recy-
cling technique to achieve high power efficiency. However, our proposed ACU chip area is
2× smaller than [23] when normalized to a 28 nm technology node with the same number
of MAC operators. Moreover, the evolving state-of-the-art quantization techniques [20]
and the recent low-precision accelerators [22,23] pave the way for analog circuits to operate
without requiring high resolutions. The proposed ACU chip demonstrates a relatively
smaller chip area and lower power consumption than most of the previous works. There-
fore, the proposed architecture is a promising alternative to conventional digital NPUs and
previous analog convolutional operator circuits.
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Table 2. Performance comparison with the state-of-the-art works.

Parameter [14] [22] [13] [23] This Work

CMOS Technology (nm) 32 65 110 28 55

Target Neural Network CNN CNN CNN CNN CNN

Weight Resolution 4 4 - 4 9

Clock Speed (MHz) - 100 0.398 3 151 200

No. of Computing Units 1024 64 180 32 27

Area of 1 Computing Unit (µm2) - 99,000 4250 943.921 375

Power of 1 Computing Unit (µW) 10 18.75 1.46 - 1.44

ADC Resolution 7-bit SAR - 4-bit single slope 6-bit SAR 12-Bit SAR

Test Chip Area (mm2) - 15.84 7.65 2 0.031 0.0559

Power Consumption (mW) - 0.6198 0.96 0.316 0.5406

Computation Speed (GOPS) 251 5.61 0.071 56 5.4

Computation Density (GOPS/mm2) - 0.815 0.0092 1806 96

Power Efficiency (GOPS/W) - 9060 1 74 177,000 1 9988

Energy Consumption (µJ) 75 61.98 15.36 - 26.19
1 Data converted to GOPS. 2 Value contains an on-chip pixel array. 3 Frequency calculated at 60 fps.

6. Conclusions

This work proposes a mixed-signal CNN processing chip implementation that aims to
replace the digital convolutional units of conventional CNN accelerators. The proposed
analog MAC unit comprising symmetric binary-weighted current steering DAC circuits
offers a better matching compact and low power consumption design. The proposed
3 × 3 analog convolutional operator unit tightly integrates a MAC unit, a max-pooling
circuit, and an ADC to perform convolutional operations. The pooling operation before
an ADC in the analog domain reduces the number of ADCs and improves the speed by
one-shot convolutional computations. Therefore, the proposed implementation consumes
26.19 µJ of energy, which is 92% less than the fully digital NPU implementation. The
presented analog implementation occupies 0.0559 mm2 of chip area and consumes 540 µW
of power. Hence, the mixed-signal CNN system-on-chip (SoC) promises to be a beneficial
replacement as a computing unit in conventional digital CNNs.
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