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Abstract: In the context of the Internet of Things (IoT), location-based applications have introduced
new challenges in terms of location spoofing. With an open and shared wireless medium, a malicious
spoofer can impersonate active devices, gain access to the wireless channel, as well as emit or inject
signals to mislead IoT nodes and compromise the detection of their location. To address the threat
posed by malicious location spoofing attacks, we develop a neural network-based model with single
access point (AP) detection capability. In this study, we propose a method for spoofing signal detection
and localization by leveraging a feature extraction technique based on a single AP. A neural network
model is used to detect the presence of a spoofed unmanned aerial vehicle (UAV) and estimate its
time of arrival (ToA). We also introduce a centralized approach to data collection and localization. To
evaluate the effectiveness of detection and ToA prediction, multi-layer perceptron (MLP) and long
short-term memory (LSTM) neural network models are compared.
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1. Introduction

The IoT has achieved ubiquitous usage and permeates many facets of our daily lives.
IoT networks encompass billions of interconnected devices spanning the internet. Many
of these devices possess the ability to sense, process data, and communicate information
through various communication channels [1]. An IoT system fulfills four primary functions:
the collection of data from the physical environment using sensors, the processing of
collected data using embedded systems, the transmission of gathered data through open
shared mediums, and—finally—the analysis of the data [2]. A diverse range of devices can
be interconnected and communicate over the internet utilizing a multitude of technologies,
including wireless sensor networks (WSNs), low-power wide-area networks (LPWANs),
Bluetooth, Wi-Fi, long-term evolution (LTE), and a plethora of modern and advanced
communication technologies. The IoT has found applications across various domains,
including healthcare [3], agriculture [4], smart homes, smart cities, as well as military
and civilian sectors [5,6]. In all of these diverse fields, the precise knowledge of the data
collection and measurement locations is of paramount importance. Consequently, node
localization has emerged as a compelling and open research challenge that is driven by the
vulnerability of IoT systems to various attacks, particularly within the context of an open
shared communication medium.

Security threats within the IoT, including location spoofing attacks, have escalated
to the point of becoming significant and potentially disruptive. In IoT networks, where
objects or devices are interconnected for the purpose of accurate measurement, sensing,
and task execution, the ability to accurately report the location of collected data is of
utmost importance. These location data play a pivotal role in enabling a diverse range
of innovative services and functionalities within the IoT ecosystem. Numerous location
detection techniques can be employed to identify IoT nodes or objects within IoT systems.
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GPS is recognized as one of the most widely utilized techniques, providing high-precision
coordinates. IoT systems also utilize the ToA, difference time of arrival (DToA), and received
signal strength (RSS) to estimate the locations of devices [7–9]. While these techniques
contribute to improving the accuracy and reliability of IoT node detection and positioning,
it is essential to acknowledge their vulnerability to location spoofing attacks and signal
spoofing attacks.

Physical layer spoofing attacks can be categorized into passive and active attacks. First,
in a passive attack, the attacker receives or listens to the legitimate signal. Eavesdropping is
an example of such an attack. The eavesdropper does not propagate or transmit a signal to
the target node, making it hard to detect. Second, in an active attack, the attacker intends to
transmit unwanted signals to the target, injecting false signals into legitimate signals with
the aim of disrupting the communication channel or misleading the IoT device to detect or
locate its location. Jamming or signal spoofing attacks are examples of such attacks [10].

This paper primarily focuses on active attacks, specifically addressing one of the most
critical IoT location spoofing attacks. In this context, we introduce a novel dataset based on
the received power levels of both desired and undesired signals (spoofing signals). The
RSS obtained from APs is directly communicated to the target node, whereby it requires
location estimation. The research approach involves the development of a neural network
model that utilizes this derived dataset to detect spoofed UAVs based on the received
signals. Furthermore, we outline a method for locating the spoofer by collaborating with
APs, as well as by estimating distances based on the predicted spoofer’s ToA.

This research contributes to the advancement of spoofing signal detection and localiza-
tion by introducing a feature extraction method based on the received power from a single
AP. First, we propose a novel approach, where a single node AP is capable of extracting
signal features, which are then fed into a neural network model. This innovative technique
allows for efficient spoofing signal detection using a single AP. Additionally, the proposed
neural network model has the ability to estimate the spoofer’s ToA based on the received
power. This estimated ToA can then be used to estimate the distances from different points,
providing valuable information for improving existing localization techniques. By incorpo-
rating this estimated distance information, the localization accuracy of current methods
can be significantly enhanced. Furthermore, in order to accurately localize the spoofer or
detect its location, it is necessary to collect data from multiple APs. This study highlights
the importance of a centralized node, where the collected data from multiple APs can be
reported and utilized for localization purposes. This centralized approach enables more
robust and accurate localizations of the spoofer. The main contributions of this work are
as follows:

• Detecting spoofed UAVs and estimating their ToA based on the power received from
a single AP in an IoT environment.

• Locating the position of UAVs using the estimated distances between the UAVs and
different points, thereby leveraging the predictions.

• Conducting a performance comparison between the MLP and LSTM models, thus
resulting in the determination that the MLP model is capable of detecting the presence
of a spoofer and estimating its ToA with the received power.

The remainder of this paper is organized as follows. In Section 2, the relevant
literature on spoofing attacks in IoT networks is discussed. Section 3 describes the
system model. Section 4 provides details on the methodology and materials used,
including the two-way protocol and the dataset derived, as well as the feature extraction
process. Section 5 explains the comparison between the MLP and LSTM neural network
models. Finally, Sections 6 and 7 present the simulation results and the conclusions of
the paper, respectively.

2. Literature Review

The physical layer spoofing attack detection method, as presented in [11], relies
on a reinforcement learning model. This approach involves the detection of spoofing
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attacks during the authentication process, which then determines a test threshold through
reinforcement learning. Specifically, the method utilizes Q-learning and Dyna-Q techniques,
which are tailored for dynamic wireless networks. These techniques are applied to assess
the channel states of data packets, thus enabling the detection of spoofing attacks. The
overall process can be likened to a zero-sum authentication game that involves both the
spoofers and the receiver.

The investigation into detecting GPS spoofing attacks for UAVs presented in [12] focused
on a novel approach. In this study, the authors present a GPS spoofing detection method that
does not rely on prior knowledge and is based on a derived dataset. Notably, this approach
minimizes the need for extensive training data. The proposed model utilizes several key
features, including the relative position of the spoofer, variations in the spoofer’s distance,
and the angle of arrival of the signal. These features are instrumental in the detection process.

In [13], the authors introduced a technique for estimating the spoofer’s location based
on audibility information. This technique leverages a node’s two states: audible and
inaudible. By utilizing this audibility information, the problem of location estimation
can be re-defined as a stochastic censoring model. Subsequently, the authors derived
the maximum likelihood rstimator (MLE) based on the difference time of arrival (DToA)
principle. The detection of Wi-Fi spoofing attacks was the subject of investigation in [14].
The authors focused on detecting spoofing in Wi-Fi networks using on-site channel state
information (CSI) data. The PHYAlert method presented in this work achieved single-
station-based authentication in both stationary and mobile environments.

Detecting and locating spoofing attacks in IoT networks that are based on RSS and
the number of connected neighbors (NCN) is discussed in [15]. The authors leverage RSS,
delay parameters, and negative acknowledgments to identify spoofing attacks. The analysis
employs cluster analysis, which is divided into inter-cluster and intra-cluster detection.
In inter-cluster analysis, RSS is employed for detecting and localizing the attacker, while
intra-cluster analysis utilizes NCN for localization and detection. Clusters are composed of
nodes with similar interests and are maintained by a core node through a status declaration
(SD) message or Hello message. Each cluster is further divided into intra-cluster and
inter-cluster subsets. To detect spoofing attacks using RSS, the calculated energy between
two adjacent nodes is compared to a predefined threshold. If it surpasses the threshold,
spoofing detection is triggered. Once the attack is detected, the localization method is
initiated through unicasting, as unicasting is unreliable for larger distances in wireless
environments. For detecting and localizing spoofing attacks within a cluster, a neighbor
detection technique is introduced. In a cluster-based approach, a core node is selected based
on various parameters, such as its central position within the group. The prevention and
detection of GPS spoofing attacks on UAVs are discussed in [16]. The MLP model processes
flight parameters and various features, such as GPS coordinates, position and orientation
logs, and system and control status, to generate alarms signaling a GPS spoofing attack.
The intrusion detection system is capable of identifying the spoofer when reading the flight
parameters collected during one measurement cycle.

The abovementioned algorithms use centralized techniques to detect spoofing attacks
in two-dimensional space, as shown in Table 1; however, these approaches increase the
communication overhead in IoT networks. In our approach, we aim to detect the presence
of spoofed UAVs in a three-dimensional space, as well as predict the spoofer’s ToA using a
single node. Furthermore, we collaborated with other nodes to estimate the spoofer’s location.

Table 1. Comparison of the related literature.

Reference Objectives Techniques Evaluation Metrics Simulator Application

[11] Detection Reinforcement learning RSS Software
radio peripherals Indoor environments

[12] Detection SVM, deep learning method Navigation
parameters software package UAV
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Table 1. Cont.

Reference Objectives Techniques Evaluation Metrics Simulator Application

[13] Localization Location estimation technique Range, DToA Monte Carlo IoT

[14] Detection KNN CSI, OFDM Commercial
off-the-shelf (COTS) Wi-Fi

[15] Detection,
Prevention

RSS and Number of Connected
Neighbors (NCN) RSS Network simulator-2 IoT

[16] Detection MAVLINK Dataset Fight
system parameters

PX4 autopilot and
Gazebo robotics GPS

2.1. Neural Networks

Artificial neural networks (ANNs)—or, simply, neural networks (NNs)—represent a
specialized subset within the domain of machine learning (ML), forming the fundamental
core of deep learning (DL) algorithms [17]. NNs are constructed from information pro-
cessing units, referred to as neurons. Each neuron within a network is interconnected
and possesses associated weights and thresholds, which play a pivotal role during the
back-propagation process during training. This mechanism activates neurons and transmits
output data to adjacent layers [18]. The weight assigned to each connection signifies the
relative importance of a variable in contributing to the output, thereby influencing the data
before they are passed to the activation function. Subsequently, the output is compared to a
pre-defined threshold; if it surpasses this threshold, the neuron is activated, and the data
are relayed to the next layer. In a broader sense, NNs consist of one or more hidden layers
in conjunction with input and output layers. Achieving high accuracy and performance
hinges on several key factors, including the number of layers, the choice of optimizer, and
the quantity of nodes or neurons, all of which require careful consideration when designing
a neural network [19].

Various types of NNs exist, including convolutional neural networks (CNNs), recur-
rent neural networks (RNNs), MLP, LSTM networks, etc. [20]. Each NN type is meticu-
lously engineered to address particular types of tasks and data. Consequently, the judicious
selection of an appropriate neural network type for a given task represents a critical consid-
eration in the design and implementation of an artificial intelligence (AI) system. In this
research, the objective is to detect spoofed signals and estimate the ToA of the spoofer. To
achieve this, the performance of two distinct types of neural networks (NNs) are evaluated
and compared, with the aim of achieving high accuracy and improved results. Specifically,
we detail the MLP and LSTM models in the following subsection.

2.2. Multi-Layer Perceptron (MLP) Network

MLP are feed-forward neural networks with fully connected layers. This architecture
is the most common and practical [21]. Typically, an MLP consists of three layers: an
input layer, an output layer, and one or more hidden layers. The process begins with the
input layer receiving data, followed by the hidden layer processing it and the output layer
generating the output data. Each layer is connected to the next layer through weighted
edges and biases. During the training process, the weights are adjusted to minimize the
difference between the network’s output and the desired output, thus allowing the MLP to
learn [22,23].

Activation functions are strategically applied to the outputs of each node in our
model to facilitate their transformation into non-linear outputs. The considered MLP
model is illustrated in Figure 1, in which the seven scaled features are used as inputs. The
hidden layers consist of neurons with rectified linear unit (ReLU) activation functions and
a dropout rate of 0.2. The input layer is structured as X = (x0, x1, x2, . . . , xn), and, through
the following ReLU activation function, is used as follows:

f (x) = max(0, x) (1)
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The network’s output is computed based on the output of each unit. Specifically, the
output of the hidden layer is calculated as follows:

hj
i = f

ni−1

∑
k=1

wi−1
k,j hk

i−1, i = 2, . . . Nand j = 1, . . . ni (2)

where h represents the output of neuron j in a hidden layer i, f denotes the activation
function, w signifies the weight between neurons k in hidden layer i + 1, and n corresponds
to the number of neurons. The network’s output is computed as follows:

yi = f
nN

∑
k=1

wN
k,jh

k
N , y = y1, . . . , yj, . . . , yN+1 = F(w, x) (3)

where Y represents the vector of the output layer and F denotes the transformation function.

Figure 1. Multilayer perceptron architecture [22].

2.3. Long Short-Term Memory (LSTM)

Recurrent neural networks (RNNs) with LSTM are renowned for their capability
to learn and handle long-term data dependencies [24]. They are especially suitable for
processing sequential data, as they are explicitly designed to address the challenges posed
by long-term dependencies. The network incorporates specialized memory cells that enable
it to retain or discard information based on the encountered needs, thus allowing for the
storage of data over extended periods of time.

The architecture of an LSTM network is centered around the concept of a memory
block, each of which is composed of an input gate, an output gate, and a forget gate, which
are represented as i, o, and f , respectively, as visually depicted in Figure 2 [25]. These gates
play critical roles in regulating the behavior of the network. The input gate controls the
activation of the memory cell, while the output gate governs the activation of the remaining
components of the network [26,27]. Within this framework, two vital states are maintained:
the cell state, denoted by C, and the hidden state h. These states are central to the network’s
functioning and carry crucial information. Additionally, the architecture incorporates an
activation function σ and bias vectors b f , bi, bC, and bo, which are integrated into the
network. To clarify further, the functions ft, it, and Ct are described as follows:

ft = σ(W f = [ht−1, xt] + b f ) (4)

it = σ(Wi = [ht−1, xt] + bi) (5)

C̄t = tanh(WC = [ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗ C̄t (7)
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ot = σ(Wo = [ht−1, xt] + bo) (8)

ht = ot ∗ tanhCt (9)

Figure 2. Typical LSTM network [26].

3. System Model

We considered a wireless network with one target node T, whose location is to be
estimated, and N boundary nodes or APs, whose locations are known. A spoofing device
(or attacker) is assumed to be flying over the target area located at position Xs = [xs, ys, zs].
The AP and the target are deployed in a 2-D plane with locations X = [x, y], as shown in
Figure 3. The communication channel between the target and AP is modeled using the
power loss model [28,29], where the power decreases with increasing distance. A node can
communicate with the target node if both have the required signal-to-noise ratio (SNR),
which is defined as the difference between the received power and the total noise received
by the node (SNR = Pr − Noise) [30]. The SNR is a measure of how much stronger the
signal is than the noise, where a higher SNR means that the signal is more likely to be
received correctly [31,32].

In the presence of a spoofed UAV, the noise at the receiver increases, leading to a
decrease in the SNR. This increases the bit error rate (BER) [33]. Nodes under attack can be
classified into three categories based on their SNR: spoofed nodes that may communicate
with the AP and have an SNR > γ, edge nodes located at the edge of the spoofed area and
have an SNR ≈ γ, and unhearing nodes with an SNR < γ. The power received at a node
is described by the following equation:

Pr =
PtGtGr

4πd2 + χ (10)

where Pr is the received power, Pt is the transmitted power, Gt is the transmit antenna gain,
Gr is the receive antenna gain, d is the Euclidean distance between the transmitter and

receiver d =
√
(x2 − x1)

2 + (y2 − y1)2, and χ represents Gaussian noise with a zero mean.
To locate the target node, three anchor nodes, or APs, need to communicate with the

target node to collect localization information such as the ToA. This information is then
used by a localization algorithm at the central node. However, in the presence of a UAV,
the transmit signal from the target node may be deceived by the spoofing signal from the
UAV. This can cause a delay in the ToA and a decrease in the SNR, which may result in
significant localization errors.
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Figure 3. System model.

4. Materials and Methods
4.1. Two-Way Range (TWR) Protocol

The TWR protocol is a widely adopted method in IoT networks, particularly in
scenarios where time synchronization is unnecessary. Ultra-wideband (UWB) is a radio
technology, standardized as IEEE 802.15.4a, which enables the estimation of distance
between an AP and a target node [34]. This estimate is obtained by measuring the time it
takes for radio frequency (RF) signals to travel between them—known as time-of-flight
(ToF)—and subsequently multiplying that time by the speed of light (c) [35]. To estimate the
distance between the AP and the target node for localization purposes, the TWR protocol
employs the following procedure, as depicted in Figure 4. The AP initiates the process
by sending a request packet to the target node at the starting time (ttrans). After a specific
delay (tdelay), accounting for processing time and other hardware-related delays (which is
assumed to be known by both the AP and the target node), the target node responds to the
request message. Subsequently, the AP receives the response message and computes the
round trip time (tround) to the target node using the following formula [36,37]:

tround = 2 ∗ (tprop ∗ ttrans) + tdelay. (11)

At the AP, tround is measured by computing the difference between trece and ttrans,
which is expressed as tround = trece − ttrans. Based on tround, the AP can compute the
propagation time (tprop) and estimate the distance to the target node using the follow-
ing equations:

tprop =
tround − tdelay

2
(12)

d = tprop ∗ c (13)

In the context of estimating the distance between the AP and the target node, let d
represent the distance and c denote the constant speed of light, which is equal to 3× 108m/s.
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Figure 4. Mechanism of the two-way ranging (TWR) approach.

4.2. Feature Extraction Process

In the scenario where a UAV spoofer is present, the TWR protocol is susceptible to
deception, particularly in relation to the received request message and the replay time. The
adversary emits undesired signals S toward the target, leading to an elevation in the level
of noise experienced at the receiver. Consequently, the processing time required to decode
the noisy signal is increased. Furthermore, the transmission time for the response message
may also be extended due to the utilization of a channel by the adversary or the spoofer.
Consequently, this can result in an extension of the sensing time required to identify an
available channel. Therefore, the power received at the AP is considered have a significant
amount of noise due to the spoofing signal, as presented in the following equation:

Pr(AP) = Pt − 10nlog(d) + S (14)

In the presence of a spoofing signal S, which is considered noise at the receiving
side, the SNR at the AP from the target node decreases depending on the position of the
UAV spoofer. To estimate the ToA or (tprop), we utilized the power received at the AP by
employing the following approach. The spoofing signal received by the AP, including the
received power from the target node, can be presented as follows:

Pr(N, AP) = Pt(N)− 10nlog(dNAP) + S (15)

where the Pr(N, AP) is the total power received by the AP and S is the spoofing signal. To
estimate the (tprop) between two nodes in presence of a spoofer, we extended the concept
of the distance ratio β, which was described in [38], to estimate the ToA at different points.
The distance ratio concept is based on the received power and SNR level at the receiving
node. When the noise increases, the SNR decreases to reach the threshold value of the
system. This means that the AP is located at the edge of the spoofing region, as shown
in Figure 5, in which E is the edge node, N is the node, and AP is the AP. The distance
between the spoofer and the AP is denoted by dSN , and the distance from the spoofer to
the edge node is dSE. In this scenario, the edge node is assumed to be a virtual node in
order to estimate the ratio of the distance between the spoofer to the edge and from the
edge to the AP.
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Figure 5. Distance ratio (β) calculation.

In accordance with Equation (15), we posited the scenario where the AP resides at the
boundary of the spoofing region and may receive a spoofing signal while its SNR equals
the prescribed system threshold. As a result, the ToA at the AP coincides with the ToA
observed at the edge node E. In this context, the distances between the spoofer, AP, and
edge node remain uniform. For this scenario, the distance ratio is computed as follows:

β =
dSE
dSN
≈ 1 (16)

We also noted a relationship between the distance ratio, the received power, the system
threshold value γ, and the noise received (including the spoofing signal), as follows:

β = 10
γ−Pr(NAP)+SAB

10×n (17)

In our dataset, β serves as the foundational metric for training the deep learning model,
thus enabling the detection of the adversary’s presence and its subsequent localization.
Here, dSN signifies the distance between the target and the spoofer:

dSN = 10
P0−SAB

10×n (18)

Moreover, the following relationship connects the distance from the edge node to the
adversary with β:

(1− β) =

∣∣∣∣dEN
dSN

∣∣∣∣ (19)

Expanding upon Equations (13) and (15), we proceeded to formulate the ToA-based
received power as follows:

Tp(NAP) =
d0

c
∗ 10

P0−Pr(NAP)
10×n (20)

Hence, the estimate of the ToA at the AP from the spoofer was determined by the
overall power received at the AP, as expressed by the following equation:

Tp(SAP) =
d0

c
∗ 10

P0−SAB
10×n (21)
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Incorporating the spoofer’s signal introduces variations into the ToA values, thus
leading to the emergence of a perturbed or noisy ToA measurement. The total power
received by the AP, referred to as SAP, is illustrated in Figure 6. This measurement encom-
passes the power received across diverse spatial positions between the AP and the spoofer.
Furthermore, it incorporates both the accurate ToA and the ToA for the delayed estimation
using β, as demonstrated in Figure 7. Estimation of the ToA at both the edge nodes and
from the edge to the AP was accomplished through the utilization of β, as demonstrated
by the following equations:

Tp(SE) =
dSE

c
(22)

Tp(EAP) =
dEAP

c
(23)

The equations above outline the process for estimating ToA values. This process
incorporates relative distances and a constant speed of light.

Figure 6. (Left) Power received by the AP. (Right) The legitimate signal and spoofing signal plotted
against the UAV spoofer’s position on the (x, y, z) plane. The purple dots indicate the UAV’s position
over 500 steps.
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In order to estimate the ToA of the spoofer UAV, as well as to facilitate the localization
and detection of the spoofer using a deep learning model, we introduced the detection
dataset, as shown in the following section.

4.3. Dataset

For this study, we meticulously curated a dataset by harnessing the received power
data, alongside the development of a comprehensive system model and scenario simu-
lations using MATLAB. Subsequently, we implemented a deep learning model through
Python. Our investigative journey involved a series of experiments and simulations, which
were meticulously designed to capture both the authentic and spoofed signals originating
from various spoofer locations. The data collection process unfolded as the UAV spoofer
executed randomized maneuvers around the designated target node, covering a radius of
approximately 100 m. Furthermore, we introduced variations in the spoofer’s transmission
power, thus effectively diversifying our dataset. Additional adjustments were made to the
transmission power of the nodes, as well as variations in the inter-node distances.

Our dataset encompasses a set of seven distinct input features and two critical output
variables, as meticulously delineated in Table 2. These input features are leveraged by our
deep learning models to serve a dual purpose: first, to effectively discern the authenticity of
the received signals, and, second, to accurately estimate the (tprop) of the spoofer. Upon the
reception of any signal, the AP meticulously extracts the relevant feature values, which are
seamlessly integrated into the model’s analytical framework. The dataset used for testing
and training the model comprises precisely 2000 samples for testing and 8000 samples for
training. This dataset has been thoughtfully curated to ensure balance, whereby it contains
an equal number of authentic and spoofed flight times in the scenario.

Table 2. Sample data from the developed dataset.

SAP SNRNAP βββ Tp(NAP) dNAP dSE dEAP Tp(SAP) Status

−70.858 18.860 0.202 1.163 34.908 11.110 43.688 1.826 Authentic
−70.859 18.820 0.203 1.163 34.910 11.111 43.442 1.818 Authentic
−70.856 18.805 0.204 1.163 34.901 11.109 43.334 1.814 Authentic

...
...

...
...

...
...

...
...

...

−69.213 3.195 1.231 0.962 28.884 11.108 2.084 0.300 Spoofed
−69.158 3.024 1.255 0.956 28.702 11.110 2.260 0.295 Spoofed
−68.662 1.674 1.466 0.903 27.108 11.111 3.534 0.252 Spoofed

4.4. Pre-Processing and Re-Scaling

Prior to feeding the dataset into the deep learning model, a series of pre-processing
steps were meticulously applied to the samples. These pre-processing procedures included
the elimination of null and duplicate rows, thus ensuring the integrity of the dataset.
Furthermore, encoding techniques were adeptly employed to transform categorical data
into numerical representations. In our dataset, a binary classification was established
with only two categorical data classes, namely Authentic and Spoo f ed. To facilitate this
categorization, we encoded authentic signals as 0 and spoofed signals as 1, thus effectively
converting them into numerical values. Additionally, the ToA values underwent a scaling
transformation, whereby they were multiplied by a factor of 107. This scaling operation
was undertaken to alleviate the presence of extensive fractional values within the dataset,
thereby enhancing its suitability for deep learning analysis [39]. Furthermore, the datasets
underwent a standardization process using the min-max scaling method. This technique
effectively centers the features to have a mean of 0 and a STD of 1, and this achieved using
the following equation:

Z =
x− xmin

xmax − xmin
(24)
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where x represents the original data feature, xmin corresponds to the feature’s minimum
value, and xmax denotes the feature’s maximum value. This transformation effectively
re-scaled the features within the dataset to span a normalized range of [0, 1]. Consequently,
the minimum and maximum values of each feature or variable were precisely adjusted to
0 and 1, respectively, as illustrated in Table 3. The dataset features are described in Table 4.

Table 3. Sample of scaled data.

SAB SNRNAP βββ Tp(NAP) dNAP dSE dEAP Tp(SAP) Status

0.0182 0.6685 0.0807 0.9787 0.9787 0.4904 0.2969 0.3194 0
0.0181 0.6670 0.0813 0.9789 0.9789 0.6168 0.2952 0.3178 0
0.0188 0.6665 0.0815 0.9780 0.9780 0.3642 0.2945 0.3170 0

...
...

...
...

...
...

...
...

...

0.0185 0.6646 0.0823 0.9784 0.9784 0.5627 0.2923 0.3150 1
0.0177 0.6635 0.0827 0.9793 0.9793 0.9064 0.2911 0.3138 1
0.0192 0.6622 0.0833 0.9775 0.9775 0.4269 0.2894 0.3121 1

Table 4. Description of features in the developed dataset.

Abbreviation Description

SAB Total power received by AP
SNRNAP Signal-to-noise ratio at AP

β Distance ratio
TpSAP Propagation time between spoofer and AP
TpNAP Propagation time between target and AP
dNAP Distance between target and AP
dSE Distance between spoofer and edge node

dEAP Distance from edge to AP

5. Proposed Model Architecture

The MLP was set up and trained with seven input layers, four hidden layers, and
two output layers. The hidden layers comprised 164, 64, 32, and 16 units, each utilizing the
rectified linear unit (ReLU), as depicted in Figure 8. To prevent overfitting, a dropout rate
of 0.2 was applied at the end. The input layer incorporates seven units to feed the extracted
features to the model. The output layer consists of two units for detecting spoofing and
estimating the ToA with ReLU activation. We utilized the mean square error loss function,
Adam optimizer, and ran 800 epochs with a batch size of 25 samples.

Figure 8. MLP structure.
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On the other hand, the LSTM consists of three layers for sequence learning in addition
to a fully connected layer and a regression layer as the output. The initial layer is composed
of 128 hidden units, while the second and third layers consist of 64 and 32 units, respectively.
Training was conducted with a mini-batch size of 25 over 800 epochs, as depicted in Figure 9.
Throughout each phase, 80% of the data were allocated for training, 10% for testing, and
an additional 10% for evaluation purposes. The LSTM employs the same optimizer and
loss function as the MLP model. The model structure is designed to detect, estimate, and
localize spoofing attacks, as depicted in Figure 10.

Figure 9. LSTM structure.

Figure 10. Proposed architecture.
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Error Metrics

For our experiment, we employed the root mean square error (RMSE), mean absolute
error (MAE), and standard deviation (STD) as evaluation metrics. The equations below
illustrate the calculation process, where ȳi represents the estimated value, yi represents the
true value, and n represents the sample size. RMSE is utilized as a measure of how well the
model fits the data, and it is computed through the mean square function. It quantifies the
difference between predicted and actual values:

RMSE =

√
1
n

n

∑
1
(yi − ȳi)2 (25)

Regression models are evaluated using MAE as a metric. This calculation involves
taking the average of the absolute errors between the predicted and actual values. The
MAE provides a measure of the average magnitude of the errors in the predictions:

MAE =
1
n

n

∑
1
|yi − ȳi|2 (26)

The R-squared (R2) value, also known as the coefficient of determination, is utilized to
assess the goodness of fit of a regression model. It measures how closely the data points
align with the fitted line. The R-squared value is calculated as the ratio of the residual sum
of squares (RSS) to the total sum of squares (TSS):

R2 = 1− RSS
TSS

(27)

6. Simulation and Results

We evaluated the performance of deep neural network models using Python, while
the scenarios were simulated using MATLAB. Multiple receivers were randomly positioned
for the spoofer UAV as it flew in a three-dimensional space. It started at position (80, 50, 3),
and moved for 10, 000 steps while transmitting a spoofing signal at −32 dBm. The target
and three APs were located at the coordinates (45, 35), (30, 35), (60, 30), and (50, 55),
respectively, as shown in Figure 11. The transmission power was set to −35 dBm for both
the target and APs.

The dataset comprises 10, 000 samples, consisting of 7 input features and 2 output
features. Two deep neural network models—namely MLP and LSTM—were trained on
8000 measurement data points and evaluated on 2000 samples. During model training, the
signal status threshold δ, which is for classifying the dataset into authentic and spoofed cat-
egories, was determined by taking into account the following factors: the system threshold,
the SNR, and the distance from the spoofer.

δ =

{
max(βtrue) 6 β, Authentic
max(βtrue) > β, Spoo f ed

(28)

The true distance ratio βtrue was evaluated prior to the spoofer initiating signal trans-
mission, where SAP represents the background noise in the absence of the spoofer. Accord-
ing to Equation (16), β is estimated based on the amount of noise and power received by
the AP. The results of the performance comparison between the MLP and LSTM models
are summarized in Table 5 and Figures 12–14. Both the MLP and LSTM models used a
patch size of 25 with the Adam optimizer, and a patch size of 125 with the SGD optimizer.
Notably, the MLP algorithm outperformed the LSTM model, wherein it exhibited higher
accuracy and lower error rates in predicting signal status and spoofer ToA.
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Figure 11. Spoofer UAV hovering around the target area for 10, 000 steps. The red triangle represents
the target node, the cross line represents the AP, and the green circle depicts the trajectory.

Figure 12. The actual and predicted values of Tp and Status. Left figure represents scaled Tp, while
the right figure displays the scaled status.

Figure 13. Actual and predicted values of Tp and Status. Left figure represents the inverse of Tp,
while the right figure displays the inverse of status.
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Figure 14. (a) The MAE of the MLP model, (b) Loss of the MLP model, (c) MAE of the LSTM model,
and (d) Loss of the LSTM model.

Table 5. Comparison between MLP and LSTM models.

Patch Size = 25, Optimizer Adam

MLP LSTM

# of Epoch RMSE MAE std RMSE MAE std

10 0.050 0.508 0.426 0.375 0.512 0.155
100 0.025 0.513 0.430 0.369 0.512 0.155
400 0.024 0.514 0.430 0.370 0.511 0.155

Patch Size = 25, Optimizer SGD

MLP LSTM

# of Epoch RMSE MAE std RMSE MAE std

10 0.071 0.512 0.424 0.378 0.511 0.155
100 0.036 0.509 0.428 0.378 0.513 0.155
400 0.035 0.512 0.428 0.378 0.512 0.155

The performance of the MLP and LSTM frameworks in spoofing detection is summa-
rized in Table 6, and the results for ToA estimation are presented in Table 7. Both models
were trained using a batch size of 25 for 200 epochs when employing the Adam and SGD
optimizers. For spoofing detection, the MLP model outperformed the LSTM model sig-
nificantly in terms of F1 score, accuracy, and precision. Regardless of the optimizer used,
either Adam or SGD, the MLP consistently achieved higher scores compared to the LSTM
model. The MLP model demonstrated excellent performance with F1 scores close to 1,
thus indicating a robust balance between precision and recall. On the other hand, the
LSTM model showed lower scores, thereby suggesting an imbalance between precision
and recall. For ToA estimation, the MLP model consistently outperformed the LSTM model
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in both the mean squared error (MSE) and MAE. Regardless of the optimizer, whether
Adam or SGD, the MLP achieved lower MSE and MAE values compared to the LSTM. This
indicates that the MLP model provides more accurate estimations of the ToA compared to
the LSTM model.

Table 6. Results for the attack detection.

Adam Optimizer SGD Optimizer

Metrics MLP LSTM MLP LSTM

Accuracy 99.5% 55.93% 99.98% 55.93%
Precision 100.0% 55.93% 100% 55.93%

Recall 99.04% 100% 99.97% 100%
F1-Score 99.52% 71.74% 99.98% 71.74%

Table 7. Results for ToA estimation.

Adam Optimizer SGD Optimizer

Metrics MLP LSTM MLP LSTM

MSE 0.00047 0.0305 0.00077 0.03049
MAE 0.4929 0.4927 0.4925 0.4944

Distance Estimation and Localization

We utilized the predicted inverse ToA to estimate the distance between the spoofer and
the edge, as well as that between the edge and the AP using Equations (17)–(23). The esti-
mated distance and the predicted ToA, along with its status, are illustrated in Figures 15–17,
where 0 signifies authenticity and 1 indicates spoofing. The process of localizing the UAV
spoofer involves estimating its location based on predictions from both the LSTM and
MLP models, as shown in Figure 18. This localization technique, as presented in [40],
utilizes a collaborative approach with APs. The distance information is calculated using
Equation (13), wherein the (tprop) is obtained from the output of the deep learning models.
To evaluate the localization performance of both the MLP and LSTM models, a collaborative
approach with three APs was employed to determine the spoofer’s location. The evaluation
was carried out using key metrics, including the mean square error, STD, and MAE, as
summarized in Table 8. The MLP model outperformed the LSTM model significantly in
terms of localization errors. With a lower MAE of 2.26 compared to the LSTM’s significantly
higher MAE of 13.21, the MLP demonstrated superior accuracy. Similarly, the MLP showed
a lower RMSE of 3.06, while the LSTM had a higher RMSE of 15.63. Furthermore, the STD
of the MLP, at 2.25, was considerably lower than that of the LSTM, which was at 10.23.
These findings underscore the MLP model’s ability to yield more precise localization results
with smaller errors when compared to the LSTM model. In contrast, the LSTM model
revealed higher errors and higher variability in its predictions.

Table 8. Localization error results.

MAE Std RMSE

MLP 2.26 2.25 3.06
LSTM 13.21 10.23 15.63
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Figure 15. Illustration of the predicted and estimated distances obtained from the MLP model. A
comparison between the actual distances and the distances predicted by the model is also shown.
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Figure 16. Illustration of the predicted and estimated propagation time (Tp) values by the MLP
model. Additionally, it provides a comparison between the actual Tp values and the values predicted
by the model.
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Figure 17. Representation of the predicted and estimated status values obtained from the MLP
model. The signal status is indicated, where 0 represents an authentic signal and 1 represents a
spoofed signal.
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Figure 18. The XYZ coordinates estimated by MLP and LSTM. The coordinates predicted by the
LSTM model are represented by the triangle, square, and circle dashed lines, while the solid line
depicts the coordinates predicted by the MLP model.

7. Conclusions

In this paper, we presented a novel algorithm designed to detect spoofing signals
and accurately predict the ToA of a spoofer in IoT environments. Our algorithm is robust
against spoofer attacks and offers significant improvements with respect to the effectiveness
and efficiency of location spoofing signal detection and localization systems. The approach
begins by estimating the spoofer’s ToA based on the received power at the AP. It then
utilizes a feature extraction method using a single AP to detect and predict the spoofer’s
ToA. This allows for the estimation of the distances at different points relative to the
predicted ToA. Additionally, we collaborated with multiple APs to determine the positions
of the spoofed UAVs in 3D space.

The results of our study demonstrate the effectiveness of our proposed model in detect-
ing and localizing spoofing signals. By accurately detecting the presence of spoofing signals
and predicting the spoofer’s ToA, we can estimate distances at various points with respect
to the predicted ToA. This research contributes to the ongoing efforts to combat location
spoofing attacks in IoT-based applications. Our proposed method offers a reliable and
robust solution for detecting and localizing spoofing signals, thereby enhancing the security
and reliability of location-based services in IoT environments. By addressing the challenges
posed by location spoofing attacks, we can ensure the integrity and trustworthiness of IoT
systems, thus safeguarding their crucial applications and services.
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