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Abstract: Traffic state data are key to the proper operation of intelligent transportation systems
(ITS). However, traffic detectors often receive environmental factors that cause missing values in
the collected traffic state data. Therefore, aiming at the above problem, a method for imputing
missing traffic state data based on a Diffusion Convolutional Neural Network–Generative Adversarial
Network (DCNN-GAN) is proposed in this paper. The proposed method uses a graph embedding
algorithm to construct a road network structure based on spatial correlation instead of the original
road network structure; through the use of a GAN for confrontation training, it is possible to generate
missing traffic state data based on the known data of the road network. In the generator, the
spatiotemporal features of the reconstructed road network are extracted by the DCNN to realize the
imputation. Two real traffic datasets were used to verify the effectiveness of this method, with the
results of the proposed model proving better than those of the other models used for comparison.

Keywords: graph embedding; deepwalk; generative adversarial network; diffusion convolutional
neural networks; data imputation

1. Introduction

Today, improvements in the economic level and the rise in per-capita vehicle ownership
have improved travel efficiency while further accelerating the pace of social development.
This increasing vehicle ownership presents great challenges in the use of road network
resources, such as the rising incidence of traffic congestion and accidents in urban areas.
Therefore, the macro-level control of traffic resources is particularly important. In daily life,
travel modes and the macro-level control of traffic management departments depend on
data gathered through traffic detection systems. These datasets are utilized across various
sectors, including predicting traffic flows and their distributions. Due to both external
factors (rainstorm, power failure, signal disturbance, etc.) and internal factors (internal
failure, need for repair, etc.) the detectors arranged in the traffic network may not always be
able to collect data at all times [1]. For example, in California’s performance measurement
system (PEMs), the data missing rate sampled every day is 15% [2], while the data missing
rate sampled by the Texas Transportation Research Institute is between 16% and 93% [3].
However, many subsequent traffic control and road network resource allocation tasks are
based on the assumption of complete and accurate data. Timely provision of complete
data is an important guarantee for the stable completion of various downstream tasks [4].
Therefore, it is of practical significance to utilize traffic state data to deduce and generate
the missing data. This process can aid in the completion of subsequent tasks within the
ITS, ensuring the accurate management of traffic resources even when road network data
are missing.
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Three primary categories of missing data exist [5]. When the traffic state data are
missing completely at random (MCAR), the deletion probability of all observations is the
same, that is, the missing points are a random subset of the full dataset. On the other hand,
when data are not missing at random (MNAR), as the name implies, there is a connection
between the missing data and some other value. Finally, missing at random (MAR) means
that the tendency of data points to be lost is related to other observed data in the dataset,
and not to the lost data.

Numerous approaches have been suggested for addressing missing data, and can be
broadly categorized into three types [6–8]: prediction, interpolation, and statistical learning.
Prediction approaches [9–11] rely on past data to construct a model to estimate the data.
However, these approaches only utilize past data, which can lead to accuracy problems.
Interpolation approaches [12–14] substitute adjacent or previous data for the missing data.
When the daily traffic state data are similar, these approaches can perform satisfactorily’
however, these change with time in the real world. Statistical learning approaches [6,15]
typically presuppose a data probability distribution, conduct iterative processes to derive
model parameters, and subsequently utilize the available data to deduce the corrupted or
missing points. However, these approaches may generate inaccurate imputation results
when the traffic state data do not adhere to a particular distribution.

Tp address the existing problems with the above approaches, we propose a method
for enhancing the accuracy and stability of imputation results. The primary contributions
of the proposed method are outlined below:

1. Deepwalk is used to reconstruct the road network and obtain the node set with the
highest spatial correlation of each node as the neighborhood of the node reconstructed
to improve the temporal and spatial correlation.

2. DCNN is used to capture the dynamic spatial characteristics and consider the forward
and reverse traffic flow diffusion to further enhance adaptability and accuracy.

3. During experimental analysis, two real datasets and several classical missing traffic
state data imputation models are selected for comparative experiments to verify the
accuracy and robustness of the proposed model.

2. Related Work

Generation models can use missing data for training in order to understand the
distribution of sample data. This approach minimizes the challenge of acquiring sample
data and generates data that closely resemble real samples [16]. Therefore, its applications
span various domains, including image generation [17], text classification [18], and image
conversion [19]. At present, the main generation models are the Generative Adversarial
Network (GAN) [20] and Variational Autoencoder (VAE) [21] models.

GANs were first proposed by Goodflow in 2014. A number of subsequent models have
been proposed on this basis, such as Deep Convolutional Generative Adversarial Network
(DCGAN) [22], Conditional Generative Adversarial Network (CGAN) [23], and Infor-
mation Maximizing Generative Adversarial Network (InfoGAN) [24]. When contrasted
with conventional neural networks, these models excel at feature extraction and offer a
robust structure to learn complicated high-dimensional distributions. These methods find
extensive applications across diverse fields [25–28].

A GAN includes a generator G and discriminator D. The generator extracts a feature
distribution and attempts to generate data that approximate the real data. Meanwhile,
the discriminator evaluates whether the input data originate from real data. The objective
of a GAN is represented by Equation (1):

min max Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1− D(G(z)))] (1)

where Pz(z) and Pdata(x) represent the standard and training data distributions, respectively.
GANs have recently found broad application in the transportation sector. For example,

a GAN was applied to predict the distribution of travel times using trajectory data in [29].
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Xu applied a GAN to car-following considering missing data [30]. The internal GAN
structure based on a graph convolution network was used to generate traffic speed data
in [31]. A pattern-sensitive network utilizing a GAN was introduced for traffic flow
prediction in [32]. During training of GANs, the generator and discriminator may encounter
problems such as non-convergence, unstable training, and vanishing gradients. Arjovsky
proposed the WGAN (Wasserstein Generative Adversarial Network) [33] to overcome
these issues.

Graph-based analysis tasks have found extensive utilization in real-world scenarios,
such as social networks, transportation networks [34,35], multi-agent networks [36], and
more. Networks with a graph structure are usually high-dimensional and difficult to
deal with; lately, however the dimensionality reduction of graph structures has devel-
oped greatly thanks to graph embedding algorithms. Graph embedding maps graph data
into low-dimensional vectors to represent the graph topology. This embedding facilitates
further work, including node clustering [37], link prediction [38], node classification [39],
and network visualization [40]. Classical graph embedding methods include Deepwalk [41],
node-to-vector (Node2vec), and structural deep network embedding (SDNE) [42–44]. Deep-
walk first constructs a random walk sequence through the graph structure relationship to
obtain the node’s local context information, then takes the obtained sequence as a sentence
in word2vec, and learns the low-dimensional representation vector of the node through
skip-gram [45]. Deepwalk can maintain good performance even when the training dataset is
sparse. Because Deepwalk uses a random walk to obtain the local node sequence, the nodes
passing through the node’s walk path are selected with equal probability. The more adja-
cent nodes in the graph two points have, the closer the proximity of the nodes embedded
in the vector.

3. Methodology

The overall framework for the imputation method of traffic state data based on DCNN-
GAN is shown in Figure 1. First, the traffic state data matrix containing missing data is
obtained by masking the original data. Second, the potential representation vector in the
road network is obtained using Deepwalk. After finding the detector with the highest
relevance, the adjacency relationship of all detectors is reconstructed to obtain a new
adjacency matrix. Finally, the spatial features of the graph structure are extracted in the
generator part of the GAN using DCNN and the complete data are generated through
adversarial training of the GAN to achieve imputation.

Figure 1. The detailed process of DCNN-GAN.
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3.1. Data Definition

The road network is defined as G = (V , E), which includes detector nodes
V = (v1, v2, . . . , vN) and edges E = eij

N
i,j=1, where N = |V| represents the total count

of detectors. The connection relationship between the detectors is obtained from the
adjacency matrix A ∈ RN×N . If a link exists between detector i and detector j, then
eij = 1 and Aij = 1; otherwise, eij = 0 and Aij = 0. The traffic state data are expressed as
xi = (xi1, xi2, . . . , xiT), where xit represents the data of detector i at time t and T indicates
the duration of data collection.

During data preprocessing, the traffic state data are divided according to H as the
minimum time, and the data are divided into T/H samples based on the length T of
each detector to construct the traffic state dataset X ∈ R(T/H)∗H∗N . The mask matrix
M ∈ R(T/H)∗H∗N , which shares the same dimensions as X, is set comprising values of
0 and 1. The traffic state data matrix containing missing data X̂ = X ∗M is obtained by
multiplying the corresponding elements X and M.

3.2. Road Network Reconstruction

The Deepwalk algorithm was proposed in 2014, and was initially applied to graph
embedding. This method can express the nodes within a graph as a vector with potential
features by acquiring the hidden characteristics of the network. It comprises two primary
parts: random walk and skip-gram.

First, a random walk is carried on the original road network G = (V , E). Let Wvi

represent the path (similarity sequence) obtained from a random walk from node vi;
then, the similarity sequence of nodesWvi =

{
W1

vi
,W2

vi
, . . . ,W k

vi

}
is obtained, whereW j

vi

represents the jth node in the random walk process with node vi as the starting point and k
represents the length of the random walk. The nodes which the random walk selection
path pass by can be described as follows. Starting from the initial point of the walk, each
subsequent node randomly selects an edge connected to the current node and moves to the
next node along the selected edge. For each detector, the random walk is repeated η times
to obtain η walk paths, and the length of the path of each random walk is k.

Next, using the sequence obtained via random walk, skip-gram is employed to learn
the embedded representation of the nodes. First, it is necessary to map node vi to a vector
representation through the mapping function Φ : vεV → R|V|×d. In this way, each node is
mapped into a d-dimensional vector in order to learn its potential spatial representation
within the road network. We want to maximize the probability that the nodes within
the random walk sequence appear in the context window of the missing nodes, that is,
Pr(Φ(vi)|(vi−w, . . . , vi+w)), where w represents the size of the selection window. The
optimization objective function is expressed as Equation (2):

min− log[Pr(Φ(vi)|(vi−w, . . . , vi+w))]. (2)

The complex formula above can be transformed into Equation (3) by Pearson correlation:

Pr(Φ(vi)|(vi−w, . . . , vi+w)) =
i+w

∏
j=i−w

Pr(Φ(vi)|vj). (3)

In the skip-gram algorithm, layered softmax is used to can avoid calculating the
softmax of all words when calculating the probability, improving the training efficiency
of the model. A Huffman tree is used to replace the mapping from the hidden layer
to the output softmax layer, which is constructed according to the frequency of nodes.
The count of leaf nodes in the Huffman tree is the count of nodes. In the Huffman tree,
the negative class (recorded as 1) represents walking along the left subtree, while the
positive class (recorded as 0) represents walking along the right subtree. Using a Huffman
tree reduces the amount of calculation and makes higher-frequency nodes easier to find.
Let up ∈ {vi−w, · · · , vi+w}; then, the path from the root node Φ(vi) to the leaf node up in
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a binary tree can be represented by a tree node path b1, b2, · · · , b|log|V|| and b|log|V|| = up.
Therefore, Pr

(
up | Φ(vi)

)
can be expressed as Equation (4):

Pr
(
up | Φ(vi)

)
=

log|V|

∏
r=1

Pr(br | Φ(vi)). (4)

Pr(br | Φ(vi)) can be modeled by the binary classification problem formed by the
allocation of parent node br; the following Equation (5) is obtained, where φ(br) denotes
the parent node allocated to tree node br:

Pr(br | Φ(vi)) =
1

1 + e−Φ(vi)·φ(br)
. (5)

Through the above optimization calculation and the objective optimization function in
Equation (3), the vector representation of the potential network structure can be obtained.
When applied to the traffic network, each detector can obtain the detector set with the
highest relationship to it in space. Therefore, Deepwalk graph embedding is performed
for each detector to obtain m road segment sets with the highest relationship and the
obtained road segment sets are used as the reconstructed adjacency detector of the detector.
We let the reconstructed road network adjacency matrix be Ã→ R|V|×|V| and record the
reconstructed road network as G̃ =

(
Ṽ , Ẽ

)
.

3.3. Generation of Traffic Data

After extracting the representation information of each detector using Deepwalk and
reconstructing the adjacency relationship of the detectors, the generation of missing traffic
state data is realized via GAN. The framework of the GAN includes a generator G and
discriminator D. The generator G learns the data distribution mapped from the input
data, and the discriminator D tries to determine whether the data are from the real data
distribution or the generated data distribution. During model training, the generator G and
discriminator D continuously improve their learning ability; as the generator G generates
more realistic data distributions, the discriminator D further improves its discrimination
ability and finally becomes able to generate effective data distributions. Due to a number
of problems, traditional GANs are difficult to train; thus, we adopted the Wasserstein GAN
(WGAN) for model training.

The generator imputes the complete data by learning the features of the graph structure
through a diffusion convolution neural network (DCNN), then uses a sparse adjacency
matrix to reduce the computational complexity. The reconstructed graph G̃ =

(
Ṽ , Ẽ

)
is

obtained by road network reconstruction. Because the reconstructed adjacency relationship
no longer has symmetry, the connection relationship of the nodes in the road network
changes from undirected to directed. The DCNN accurately captures traffic flow by
modeling traffic flow as a process diffusing across the graph. For each node on different
diffusion steps, DCNN obtains the spatial dynamic information of the nodes, that is,
the neighbor information in the road network is extracted from 1 to S through the diffusion
step. Diffusion step 1 represents the neighbor node of the node, diffusion step 2 represents
the second-order neighbor node of the node, and so on. After merging the information
extracted by each diffusion step, the spatial aggregation information is obtained, which
is extracted by DCNN. In addition, because reverse diffusion can enhance the model’s
adaptability to acquire the impact of the traffic flow both upstream and downstream,
the diffusion process includes forward diffusion and reverse diffusion.

The complete generator calculation process is shown in Equations (6)–(8):

HG
l1 = σ

(
WG

l1 · X + bG
l1

)
(6)
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HG
l2 = σ[(

S−1

∑
s=1

WG
s,1(D−1

O )
s
+ WG

s,2(D−1
I )

s
)HG

l1] (7)

Ĝ = f
(

WG
l3 · H

G
l2 + bG

l3

)
(8)

where WG
l1 , WG

l3 , bG
l1, bG

l3 respectively represent the weight and bias of the hidden layer, WG
s,1,

WG
s,2 represent the parameters of the forward and reverse diffusion convolution kernel,

S is the maximum diffusion step, DO and DI represent the out-degree and in-degree
matrix, D−1

O and D−1
I represent the transfer matrix of the forward and reverse diffusion

process, respectively, σ and f represent different activation functions, HG
l1 denotes the

features extracted by the first layer, HG
l2 represents the features extracted by the diffusion

convolution layer, and Ĝ denotes the output of the generator.
The discriminator, which is composed of multi-layer full connection layers, is mainly

responsible for distinguishing whether the data is real or generated data using the calcula-
tion formula in Equations (9) and (10):

HD
l = σ

(
WD

l · H
D
l−1 + bD

l

)
(9)

D̂ = WD
o · HD

LD
+ bD

o (10)

where D̂ is the output of the discriminator, LD denotes the number of layers of the fully
connected layer, l ∈ [1, LD], HD

l−1 is the extracted feature of the former fully connected
layer, HD

0 denotes the initial input (X or Ĝ), and σ is the activation function.
After defining the generator and discriminator models, their respective loss functions

need to be designed in order to facilitate the effective training of the models. The loss
function of the generator is mainly composed of the basic loss function and the data repair
loss function, while the loss function of the discriminator is the difference between the real
data and the generated data, as shown in Equations (11) and (12):

lossG = −D̂(Ĝ) + α(Ĝ− X)2, (11)

lossD = D̂(Ĝ)− D̂(X). (12)

4. Experimental Results
4.1. Experimental Design

To ensuring that the experimental results reflected a real scenario, two real-world
datasets were selected for experimental verification and analysis. These datasets were the
PEMS-BAY flow dataset from California and the Seattle speed data set. The PEMS-BAY
dataset consists of data collected from 24 detectors in zone 7 of the PEMS open source
website from California. The data sampling period is 5 min, including flow data from 1 May
2014 to 30 June 2014; therefore, each detector contains 17,568 sampling data. The Seattle
speed dataset is collected from 323 detectors on four continuously connected highways in
Seattle: I-5, I-405, I-90, and sr-520. It records the traffic speed data for the entire year of 2015
at a 5 min sampling interval. Figure 2 shows the detector distribution in the Seattle speed
data set.

To better simulate a real data loss scenario in the experiment, the data loss modes
in the dataset were divided prior to the experiment into missing completely at random
(MCAR) and missing completely at random in time (MCART) through mask masking.
MCAR refers to data loss that occurs randomly in space and time, while MCART means
that all detectors are missing data at a certain time or time interval. Figure 3 shows the
real data distribution of the PEMS-BAY dataset on 1 May 2014 and Figrue 4 shows the data
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distribution of complete random deletion under different deletion rates and completely
random deletion over time.

In Figures 3 and 4, the abscissa represents the time point, the ordinate represents
the detector ID in the road network, and the brightness of the midpoint in the thermal
diagram represents the height of the traffic flow, with brighter color indicating greater
flow values. The heatmaps in Figures 3 and 4 only represent the traffic flow, and do not
include vehicle speed. It can be seen that the peak flow starts after 8:00 and the low peak
flow starts after 19:00. In Figure 4, the left side shows the data distribution of traffic flow
data under complete random deletion and the right side shows the data distribution of
the traffic flow data under complete random deletion in time. As the missing data rate
increases, the number of missing grids in the thermodynamic diagram increases gradually.
The stability of the model with an increasing deletion rate can be verified. The deletion
rates selected in this experiment were 10%, 40%, and 70%.

Figure 2. Distribution map of detectors in the Seattle speed dataset.

Figure 3. Original complete observed data on 1 May 2014 from the PEMS-BAY dataset.
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(a)

(b)

(c)

Figure 4. Data distribution of the detectors in the PEMS-BAY dataset under different missing rates
and missing modes on 1 May 2014. (a) Data distribution with 10% missing rate; (b) data distribution
with 40% missing rate; (c) data distribution with 70% missing rate.

4.2. Model Settings and Evaluation Criteria

The parameters of the DCNN-GAN model are mainly composed of two parts: Deep-
walk and GAN. In the Deepwalk module, for PEMS-BAY dataset, the number of highly
relevant detectors selected was m = 4; for the Seattle dataset, the number of highly relevant
detectors selected was m = 10. In the Deepwalk module, the fixed parameters were the size
of the context window of the node w = 5, number of random walks of each node 10, length
of random walks k = 40, and embedded vector dimension d = 64.

In the GAN module, the parameter settings of PEMS-BAY dataset and Seattle dataset
were the same. The generator included the full connection layer and DCNN layer. In the
DCNN layer, the diffusion convolution step was set as the best parameter in K ∈ [1, 2, 3, 4].
The number of hidden layer units in the full connection layer of the first layer of the
generator was 512, the number of hidden layer units in the DCNN layer was 256, and the
number of hidden layer units in the full connection layer of the third layer of the generator
was 128. Except for the output layer, the activation function of each layer was the ReLU
function; the activation function of the last layer of the generator was the sigmoid function.
The discriminator included three fully connected layers, in which the number of hidden
layer units in each layer was 512, 216, and 128, respectively. Except for the output layer,
the activation function of hidden layers was the ReLU function. Because WGAN was
used for countermeasure training, the output layer in the discriminator did not use an
activation function.
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The dataset was divided into a training set and test set, with the first 80% of the data
used to train the model and the other 20% used to test the effectiveness of the model.
The training batch size of the model was 512 and the number of training rounds was 20,000.
The following model performance evaluation indicators were selected: mean absolute
error MAE, root mean square error RMSE, and mean absolute error MAPE. The calculation
formulas are shown in Equations (13)–(15):

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (13)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (14)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (15)

where n represents the amount of missing data, y represents the real data corresponding to
the missing data, and ŷi represents the repaired data output by the model.

4.3. Baseline Methods

The deduction effect of the model can be further verified by selecting an appropriate
and effective comparison model. In this experiment, typical algorithms for data repair were
selected for comparative experiments. The comparison models were DSAE (denoising
stacked auto encoders) [46], Bayesian Gaussian CANDECOMP/PARAFAC (BGCP) [47],
and GAN.

The DSAE model had two hidden layers, the number of hidden layer units was 128
and 64, the training batch size of the model was 128, and the number of training rounds
was 1000. For the BGCP model, the third-order tensor (number of detectors, days, and time
interval) was used as the model input. For the GAN model, the generator and discriminator
used three fully connected layers as the hidden layer. Because WGAN was used for training,
the output layer in the discriminator did not use an activation function. The training batch
size was 512 and the number of training rounds was 20,000.

4.4. The Effect of DCNN and Best Diffusion

First, in order to prove the influence of the DCNN layer in DCNN-GAN on the the
spatial dependence of the road network and select the best diffusion convolution step S,
a parameter determination experiment was carried out on the PEMS-BAY dataset. Several
diffusion convolution steps were selected for comparison; the evaluation indexes were
RMSE, MAE, MAPE, and training time. In this experiment, the other parameters were the
same except for the diffusion convolution step.

It can be seen from Table 1 and Figure 5 that when the diffusion convolution step s
increases, the repair error of the model shows a downward trend as a whole. When S = 2,
the repair error of the model is the lowest. When the diffusion convolution step increases
further, the error increases. This may be due to the difficulty of transmitting more effective
highway data spatial information for nodes with more than a two-order neighborhood
in the road network when the diffusion convolution step increases. The training time of
the model changes little when the diffusion convolution step size increases. Therefore,
a diffusion convolution step size of S = 2 was selected as the experimental parameter in
the follow-up experiment.
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Figure 5. Relationship between model training time and number of diffusion convolution steps.

Table 1. Effect of diffusion convolution steps on the results in MCAR missing mode.

Diffusion Convolution Step Size 1 2 3 4

RMSE 25.77 25.25 25.63 25.38
MAE 19.23 19.04 19.18 19.07

MAPE 7.94 7.75 7.88 7.82

4.5. Experiment and Analysis of PEMS-BAY Dataset

In order to prove the effectiveness of Deepwalk embedding learning in the model,
the reconstructed road network obtained by Deepwalk embedding learning and the orig-
inal road network without Deepwalk embedding learning were compared under differ-
ent data loss rates. The comparison index was MAPE. The experimental comparison
results are shown in Figure 6. In the figure, DCNN-GAN represents the experimental
results reconstructed by graph embedding, while DCNN-GAN (no embedding) indicates
the experimental results on the original road network. In MCAR and MCART deletion
mode, the experimental results of DCNN-GAN are better than those of DCNN-GAN
(no embedding).

In MCAR mode, when the deletion rate is less than 40%, the prediction performance
of DCNN-GAN and DCNN-GAN (no embedding) remains relatively stable. When the
deletion rate exceeds 40%, the repair error gradually increases. This is because in MCAR
mode, when the data deletion rate is too high the surrounding detectors are in the state
of high data deletion; as a result, too little information is obtained in space and time.
DCNN-GAN is always better than DCNN-GAN (no embedding).

In MCART mode, it can be seen that as the deletion increases rate, the repair effect
of DCNN-GAN grows significantly better than DCNN-GAN (no embedding). As the
data deletion rate increases, the repair error of DCNN-GAN gradually tends towards
stability, because the model reconstructs the adjacency matrix according to spatial corre-
lation. In MCART mode, when the time period of the missing data gradually increases,
the model is able to maintain its repair performance through spatial dependence, showing
good robustness.
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Figure 6. The influence of image embedding on the repair of missing data.

Table 2 compares the repair error results of DCNN-GAN and other models in MCAR
and MCART modes. It can be seen that the prediction performance of DCNN-GAN in
these two modes always remains optimal with the increasing data deletion rate. In MCAR
deletion mode, the average MAPE of DCNN-GAN with a deletion ratio from 10% to 70%
decreases by about 24.59% compared with DSAE, 5.25% compared with GAN, and 27.89%
compared with BGCP. In MCART deletion mode, the average MAPE of DCNN-GAN with
a deletion rate from 10% to 70% is about 25.02% lower than that of DSAE, 13.95% lower
than GAN, and 13.42% lower than BGCP. Under the different data deletion rates of the two
data deletion models, the prediction error of DCNN-GAN is always lower than the other
models, and remains stable.

Table 2. Comparison of experimental results under MCAR and MCART missing data modes on PEMS-
BAY dataset.

Missing Type MCAR MCART (%)

Model DSAE GAN BGCP DCNN-GAN DSAE GAN BGCP DCNN-GAN

RMSE 32.49 27.91 31.87 25.69 32.08 28.89 29.34 25.18
10 MAE 24.78 20.47 22.6 19.16 24.15 20.64 21.46 18.67

MAPE 9.65 8.15 9.02 7.81 9.21 8.68 8.66 7.39
RMSE 34.57 28.12 35.38 26.19 33.94 29.82 29.51 25.21

20 MAE 25.15 20.88 24.82 19.74 24.78 20.97 21.55 18.67
MAPE 9.96 8.82 9.77 8.12 9.67 8.85 8.68 7.69
RMSE 35.29 29.15 38.24 25.55 34.64 30.67 29.89 26.09

30 MAE 25.62 21.53 26.59 19.16 25.13 20.14 21.68 19.41
MAPE 10.34 8.72 10.36 8.10 10.15 8.74 8.87 7.92
RMSE 37.28 30.31 39.35 26.34 36.67 31.78 39.57 29.17

Missing rate (%) 40 MAE 26.67 22.18 28.27 19.4 25.82 22.33 22.39 21.16
MAPE 10.85 9.28 11.09 8.21 10.63 9.48 9.34 8.63
RMSE 38.32 31.13 42.32 30.96 37.24 31.87 30.77 28.71

50 MAE 27.29 20.07 30.59 21.31 26.45 22.29 22.96 21.37
MAPE 11.24 8.43 11.89 8.74 10.96 9.44 9.75 8.79
RMSE 39.56 32.84 45.13 31.11 38.42 32.74 31.52 30.23

60 MAE 27.86 21.96 32.37 21.33 27.53 23.31 23.58 22.33
MAPE 11.59 9.44 12.61 9.17 11.25 10.28 10.55 9.19
RMSE 41.38 47.08 47.65 44.70 39.74 34.02 32.17 30.88

70 MAE 28.43 25.93 34.12 25.74 28.19 24.04 24.27 22.85
MAPE 12.16 11.24 13.32 10.84 11.82 11.54 10.83 9.18

In order to further compare the deduction and generation results of DCNN-GAN,
the deduction and generation results of DCNN-GAN and GAN were compared, and the
repair performance of DCNN-GAN was further described by comparing the thermal
diagram of original data with the thermal diagrams of DCNN-GAN and GAN after data
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repair in the two missing data modes. Figures 7–9 show the thermal diagram of the original
data and the comparison of repair results between DCNN-GAN and GAN.

Figure 7. Original completed observed data for 30 June 2014 from PEMS dataset.

Figure 8 shows the repair prediction results of DCNN-GAN and GAN in MCAR
deletion mode. It can be seen that as the missing rate of the traffic state data increases,
the deduction results of GAN gradually encounter difficulty in characterizing the original
data. On the other hand, as the deletion rate increases, DCNN-GAN remains able to stably
characterize the original data distribution.

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. Comparison of repaired data for 30 June 2014 between DCNN-GAN and GAN under
MCAR mode: (a) data distribution with 10% missing rate; (b) data distribution with 40% missing
rate; (c) data distribution with 70% missing rate.

Figure 9 shows the repair results of DCNN-GAN and GAN in MCART mode. It can
be seen that as the data deletion rate increases, the repair results of DCNN-GAN remain
stable and continue to characterize the distribution of original data well. As the data loss
rate increases, the distribution of the data repaired by GAN begins to show more serious
fuzziness than with DCNN-GAN.

(a)

(b)

Figure 9. Cont.
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(c)

Figure 9. Data repair comparison for 30 June 2014 between DCNN-GAN and GAN under MCART
mode: (a) data distribution with 10% missing rate; (b) data distribution with 40% missing rate;
(c) data distribution with 70% missing rate.

4.6. Experiment and Analysis of Seattle Dataset

In order to verify the effectiveness and applicability of the DCNN-GAN model, a
comparative experimental analysis was carried out on the Seattle dataset. Similar to the
PEMS dataset, the deduction generation errors of different models on the Seattle dataset
are summarized in Table 3 to verify the deduction and repair performance of DCNN-GAN
model. It can be seen that the prediction error of DCNN-GAN on the Seattle dataset always
remains the best, and when the data loss rate is 70%, the prediction error of DCNN-GAN is
always less than 8%. In MCART loss mode, the error of DCNN-GAN is always less than
7%, and the MAPE error of the other models when the loss rate is 20% exceeds the error of
DCNN-GAN when the loss rate is 70%.

Table 3. Comparison of experimental results under the MCAR and MCART missing data modes
on the Seattle dataset.

Missing Type MCAR MCART (%)

Model DSAE GAN BGCP DCNN-GAN DSAE GAN BGCP DCNN-GAN

RMSE 5.09 4.28 4.70 3.32 5.72 4.15 4.76 3.12
10 MAE 3.94 2.97 3.09 2.19 3.67 3.11 3.14 2.08

MAPE 11.07 6.87 8.60 4.95 10.62 6.65 8.76 4.59
RMSE 6.22 4.38 4.71 3.39 5.81 4.28 4.77 3.22

20 MAE 4.15 3.05 3.09 2.22 3.72 2.97 3.14 2.17
MAPE 11.46 7.09 8.61 5.12 10.7 6.58 8.71 4.75
RMSE 6.56 4.52 4.72 3.5 5.71 4.28 4.79 3.33

30 MAE 4.38 2.98 3.10 2.26 3.67 3.05 3.16 2.24
MAPE 12.1 7.52 8.63 5.27 10.45 6.85 8.78 5.04
RMSE 6.96 4.69 4.74 3.66 5.75 4.63 4.77 3.40

Missing rate (%) 40 MAE 4.71 3.07 3.11 2.33 3.69 3.04 3.15 2.27
MAPE 12.98 7.84 8.67 5.55 10.68 7.17 8.74 5.10
RMSE 7.33 5.02 4.74 4.03 5.77 4.74 4.85 3.64

50 MAE 4.94 3.44 3.12 2.45 3.7 3.14 3.19 2.34
MAPE 13.69 7.94 8.67 5.96 10.72 7.25 8.87 5.49
RMSE 7.81 6.02 4.78 5.02 5.82 4.64 4.89 3.8

60 MAE 5.27 3.72 3.13 2.69 3.72 3.15 3.22 2.42
MAPE 14.7 8.50 8.74 6.52 10.79 7.71 8.93 5.76
RMSE 8.22 7.60 4.81 6.59 5.83 4.72 4.97 3.95

70 MAE 5.55 4.36 3.16 3.35 3.73 3.17 3.27 2.54
MAPE 15.56 9.01 8.82 7.96 10.76 8.34 9.08 6.11
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In addition, it can be seen that on both the PEMS and Seattle datasets, the repair errors
of the models are generally higher in MCAR missing data mode than in MCART mode.
This is because the spatiotemporal information in the traffic state data is more incomplete
in MCAR mode, increasing the difficulty of data deduction and repair.

Figure 10 shows the residual distribution of the observed and imputed data at different
loss rates. In each subfigure, the left and right figures respectively represent the residual
distributions of the MCAR and MCART patterns. When the deletion rate is from 10% to
70%, the data with a residual close to zero gradually decrease. When the data deletion rate
is as high as 70%, 16% of the residuals remain distributed near zero in Figure 10c. Moreover,
the distribution of our model changes little with different deletion rates, indicating that
the proposed model is stable. Overall, the proposed model has satisfactory performance in
both MCAR and MCART modes even when the deletion rate is high.

(a)

(b)

(c)

Figure 10. Residual distribution of the observed and imputed data with different missing data rates:
(a) data distribution with 10% missing rate; (b) data distribution with 40% missing rate; (c) data
distribution with 70% missing rate.
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4.7. Discussion

In this paper, we utilize DeepWalk to reconstruct the road network structure. We
use DCNN as the internal structure of the generator for better extraction of the spatial
features, and achieve effective data imputation through adversarial training using WGAN.
In experiments on two datasets, we compare the performance of the model under different
missing data modes and rates. The results demonstrate that DCNN-GAN can effectively
perform traffic state data imputation under both MCAR and MCART missing data modes
and maintain good performance even at higher missing data rates.

5. Conclusions

In this paper, a deduction and generation method based on DCNN-GAN for repairing
missing road network data is proposed to solve the problem of detectors installed in road
networks failing to capture data due to uncontrollable reasons. These data may be required
for subsequent work in traffic management. The method that we propose uses a graph
embedding algorithm to construct a road network structure based on spatial correlation
instead of the original road network structure; through the generation of a network for
confrontational training, it is possible to generate the missing data based on the known
data of the road network. In the generator part of the network, the spatiotemporal features
of the reconstructed road network are extracted by diffusion convolution to realize the
generation of missing data. In comparison experiments conducted on two real traffic
datasets, the proposed model’s data repair results are better than other comparison models.
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