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Abstract: Coronavirus has caused many casualties and is still spreading. Some people experience
rapid deterioration that is mild at first. The aim of this study is to develop a deterioration prediction
model for mild COVID-19 patients during the isolation period. We collected vital signs from wearable
devices and clinical questionnaires. The derivation cohort consisted of people diagnosed with
COVID-19 between September and December 2021, and the external validation cohort collected
between March and June 2022. To develop the model, a total of 50 participants wore the device for an
average of 77 h. To evaluate the model, a total of 181 infected participants wore the device for an
average of 65 h. We designed machine learning-based models that predict deterioration in patients
with mild COVID-19. The prediction model, 10 min in advance, showed an area under the receiver
characteristic curve (AUC) of 0.99, and the prediction model, 8 h in advance, showed an AUC of 0.84.
We found that certain variables that are important to model vary depending on the point in time to
predict. Efficient deterioration monitoring in many patients is possible by utilizing data collected
from wearable sensors and symptom self-reports.

Keywords: monitoring; wearable sensors; machine learning; mild COVID-19

1. Introduction

The COVID-19 pandemic has caused over 6.9 million deaths [1]. In addition to the
causative virus severe acute respiratory system, SARS-CoV-2 can cause complications in
other organ systems (e.g., cardiovascular, nervous, renal), which can also contribute to
death from this disease [2]. Since mortality in the severe group is 49% and they are at high
risk of complications such as severe pneumonia, acute respiratory distress syndrome, septic
shock, and organ failure [3–5], severe patients with COVID-19 often receive special care in
isolation facilities within hospitals. Therefore, many prior studies focus on severe groups
to predict mortality or prescreening using initial clinical symptoms [6–8].

From a management perspective, patients with low severity, that is, asymptomatic or
mild COVID-19 patients, do not require any special management other than quarantine or
management, such as sufficient rest [9]. However, some asymptomatic or mild COVID-19
patients may experience a rapid deterioration within a few hours, necessitating transfer to
an intensive care unit for critical treatment [5]. Therefore, early identification of COVID-
19 patients at risk of severe illness is critical to identifying which patients will receive
priority treatment, and early prediction can allocate medical resources cost-effectively and
potentially reduce fatality rates [10–12]. There are some indicators of deterioration, such
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as the early warning score (EWS), but they are not suitable for large-scale observations. A
monitoring solution for all patients with mild conditions is needed with a limited budget
and management staff [13]. In a way that uses fewer management staff, several studies have
attempted to predict the deterioration of COVID-19 patients. A previous study defined
deterioration based on a commonly used risk score for early recognition of patients with
severe infection and developed models to predict deterioration using machine learning
methods [14–17]. A limitation of this study is that it was conducted only on hospitalized
patients. For those under self-quarantine, visiting a high-level hospital means that they
have already experienced a clinical deterioration. There are also studies conducted on
non-severe people, but these studies also used data that were difficult to measure easily,
such as lab tests and computed tomography (CT) [18,19]. These studies are inadequate
to respond to the trend of the spread of infectious diseases, with the number of mildly ill
patients increasing. Therefore, a more popular deterioration prediction method that can be
used by many people is needed.

Currently, with the growth in sensor technology and the decreasing cost of wearable
sensors, monitoring patients using biometric data such as body temperature, respiratory
rate, and heart rate measured from wearable devices has been commercialized [20]. Wear-
able devices have the advantage of being able to safely and continuously monitor low-risk
patients at a relatively low cost because they can be continuously attached to the patient’s
body and measure vital signs. Accordingly, studies have been conducted to detect infectious
diseases, influenza [21], COVID-19 [20,22], and so on [23] using wearable devices. However,
most of those studies require a long measurement time, and performance measurements
were performed in experimental settings, not in actual clinical environments. In addition,
some patients show characteristics of repeated worsening and improvement [24,25], and
in the case of mild patients with COVID-19, indirect measures such as non-face-to-face
treatment can be taken rather than active measures such as immediate transfer as the
possibility of deterioration is high. Above all, previous studies focused on detecting the
presence of the disease, and the situation of predicting clinical deterioration in real time
was not considered, so the potential of a system using a wearable device that can monitor
continuously was not fully utilized.

In this study, we propose a machine learning based modeling approach for the pre-
diction of clinical deterioration using data that were easy to measure. Based on previous
research related to predicting deterioration of COVID-19 patients [14,17,26], we proposed
a fast and interpretable deterioration detection model using four algorithms: random
forest (RF) [27], eXtreme Gradient Boosting (XGB) [28], light gradient boosting machine
(LGBM) [29], and CatBoost algorithms [30]. This study was conducted to prepare for a
large-scale infection situation by analyzing the general public with mild COVID-19 and
conducting an evaluation that considered the actual situation by measuring data in real-
time and deriving predictions about clinical deterioration. The proposed model predicts
the deterioration of mild COVID-19 patients for two scenarios: a 10 min advance predic-
tion model for responding to deterioration within medical facilities and an 8 h advance
prediction model for responding outside of medical facilities.

2. Materials and Methods
2.1. Study Design and Population

This retrospective study was conducted at Seoul National University Hospital (SNUH).
This study obtained approval from the Institutional Review Board of SNUH (IRB number:
H-2105-158-1221). The study cohort consisted of patients who were aged 18 years or older
and diagnosed with COVID-19. The derivation cohort consisted of people diagnosed with
COVID-19 between September and December 2021, and the external validation cohort
consisted of people diagnosed with COVID-19 between March and June 2022. COVID-19
was diagnosed using real-time reverse transcription polymerase chain reaction (RT-PCR)
testing at local health centers. During the middle phase of the pandemic, from the second
half of 2021, all mild clinical cases were quarantined in their homes, and severe patients
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were transferred to hospitals in accordance with Korea’s COVID-19 patient management
guidelines. All patients participating in this study had mild or asymptomatic symptoms and
were quarantined at home according to these guidelines. Even patients in self-quarantine
often had pain, such as high fever or severe sore throat, and data in this study were derived
from a study conducted to manage and monitor these patients effectively.

2.2. Clinical Data Acquisition

Patients who participated in this study were instructed to wear wearable devices
all day and answer clinical questionnaires twice daily while in quarantine. These data
were recorded with two types of wearable devices: Garmin Venu sqr (Garmin Inc., Olathe,
KS, USA) in the form of a wristband and mobiCARE+Temp MT100D (Seers Technology,
Seongnam-si, Republic of Korea) in the form of a patch. Only body temperature was
measured on the wrist with a patch-type device, and heart rate per minute, respiratory
rate per minute, and saturation pulse oxygen (SpO2) were measured with a wristband-
type device. Body temperature, respiratory rate, and SpO2 were usually measured at
1 min intervals and heart rate was measured at 15 s intervals. Features extracted from
wearable devices used statistical values (mean, median, maximum, minimum, and standard
deviation) within the observation window.

When collecting the derivation cohort, all patients had to receive non-face-to-face
treatment from medical staff at least twice daily, and medical staff recorded the patients’ self-
measured blood pressure, respiratory rate, oxygen saturation, and symptoms complained of
by the patient. However, when collecting the cohort used for external validation, patients
self-reported clinical questionnaires twice daily. The questionnaire items were mainly
related to the symptoms currently being experienced and determined through research
and research conducted early in the pandemic [31,32]. The collected symptoms are shown
in Table 1. The clinical questionnaire concatenated that response times were at or before
the ranges.

Table 1. Demographic and health characteristics and comparison of deterioration and non-
deterioration groups reported by quarantined coronavirus patients on the first day.

Non-Deterioration
(n = 22)

Deterioration
(n = 28) p Value

Continuous variable, mean ± SD

Age 39.0 ± 15.141 40.107 ± 11.318 0.597
Systolic blood pressure 123.045 ± 14.147 124.214 ± 13.72 0.799
Diastolic blood pressure 82.545 ± 9.075 87.071 ± 9.718 0.068

Pulse rate 69.909 ± 11.309 77.679 ± 10.353 0.012
Respiratory rate 19.318 ± 7.779 17.643 ± 3.358 0.906

Temperature 35.973 ± 0.638 36.329 ± 0.546 0.041
Oxygen saturation 97.182 ± 1.259 97.071 ± 1.016 0.462

Categorical variable, n (% total)

Cough 12 (54.55%) 16 (57.14%) >0.999
Sputum 9 (40.91%) 17 (60.71%) 0.269

Fever 4 (18.18%) 4 (14.29%) >0.999
Rhinorrhoea 8 (36.36%) 14 (50.0%) 0.498
Sore throat 11 (50.0%) 19 (67.86%) 0.323
Dyspnoea 1 (4.55%) 3 (10.71%) 0.785
Chest pain 1 (4.55%) 3 (10.71%) 0.785

Nausea 0 (0.0%) 2 (7.14%) 0.581
Vomiting 0 (0.0%) 0 (0.0%) -

Abdominal discomfort 3 (13.64%) 3 (10.71%) >0.999
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Table 1. Cont.

Non-Deterioration
(n = 22)

Deterioration
(n = 28) p Value

Constipation 2 (9.09%) 4 (14.29%) 0.902
Diarrhea 2 (9.09%) 5 (17.86%) 0.634

Abdominal pain 2 (9.09%) 3 (10.71%) >0.999
Pain 4 (18.18%) 13 (46.43%) 0.073

Sleep disorder 5 (22.73%) 8 (28.57%) 0.886

2.3. Definition of Deterioration

Our main goal is to predict deterioration in advance, so we set two prediction times:
10 min in advance and 8 h in advance. Deterioration was defined as a body temperature
above 37.5 ◦C in this study [24]. Since the temperature measured at the wrist is slightly
lower than other parts and because these models predict the possibility of deterioration
rather than high fever, the threshold of body temperature is lower than in other studies [33].

2.4. Extraction of Outcomes and Features

The prediction model aggregated data over a certain time interval and then calculated
the risk of deterioration after the forecast periods. The features used in the deterioration
prediction model are measured using wearable devices and patients’ symptoms. Even
though the features were measured using the same device, the time intervals were different,
so the time range was based on values measured by the patch.

A detailed process of feature extraction is shown in Figure 1. For the deterioration
group in which deterioration was observed more than once during the isolation period, fea-
tures were extracted based on the time of deterioration. A model that predicts events after
T-hours using an observation window of N-hours used features extracted from vital sign
records between (T + N) hours and T hours before the event. For example, the deterioration
prediction model 8 h in advance used features extracted from the measurements between
9 and 8 h before deterioration. For the non-deterioration group, the same method was
applied to 500 randomly selected times. In the training set of the deterioration prediction
model 10 min in advance, there are 68,881 observations with a deterioration class and
90,757 observations with a non-deterioration class. In the deterioration prediction model
8 h in advance, there are 56,144 observations with the deterioration class and 69,188 obser-
vations with the non-deterioration class. It was not possible for us to adjust the number
of observation deterioration data, but we could adjust the non-deterioration observation,
so we chose 500 points to ensure that the two classes were balanced. Considering class
imbalance and usability in clinical settings, the observation time was set to 1 h.

The external validation dataset was composed in a different way from these training
data to evaluate the model’s performance in a clinical environment. These data were
aggregated using the same observation window based on the measurement by patch. An
N-hour observation window moved forward every 10 min, and a prelabel was assigned
according to the maximum value during the observation period. The final label is given
by shifting the prelabel by the prediction time. In the training set of the deterioration
prediction model 10 min in advance, there are 4925 observations with a deterioration
class and 65,168 observations with a non-deterioration class. In the deterioration predic-
tion model 8 h in advance, there are 3927 observations with the deterioration class and
62,062 observations with the non-deterioration class. Since the time when deterioration
is detected is significantly less, in reality, the dataset was imbalanced, with most samples
belonging to the non-deterioration label.
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Figure 1. Illustration of the feature extraction step from vital signs. (a) The process of extracting
variables used for training models. Separating patients who experienced deterioration from those
who did not and an observation window moved forward the prediction time; (b) The process of
extracting variables used for model evaluation. An observation window moved one-time step
through each patient’s signal data.

2.5. Development of the Model

The goal is to build a binary classification model that predicts whether a COVID-19
patient will have a deterioration after prediction. Five-fold cross-validation based on
patient number was used for model development. We divided these derivation data into
five folds, repeatedly trained on four folds, and tested with the remaining fold. Each fold
was arranged so that the number of patients who experienced deterioration was similar to
ensure balanced data organization. We ensured that data from one patient was not placed
in a different fold. Each fold consists of 5 or 6 people who experienced deterioration and
4 or 5 people who did not experience deterioration. The results were evaluated based on
the area under the receiver operating characteristic curve (AUC), and predicted values
were evaluated after integrating the folds. After developing models trained on derivation
data, we evaluated them by applying them to an external validation dataset. We compared
the performance of four machine learning algorithms, RF, XGB, LGBM, and CatBoost, to
determine which algorithm fits our data. Then, we selected subsets of features using a
recursive feature elimination algorithm [34]. Classification models were trained using
selected subsets and evaluated using various metrics to find the optimal combination.
The local interpretable model-agnostic explanation (LIME) method was used to identify
features that affect fever and different patterns depending on the time period to predict
across the entire feature space of the final model [35]. A final model using minimal features
identified meaningful clinical differences between patients.

2.6. Statistical Analysis

Data collected on the first day of admission were analyzed using Pearson’s chi-square
test to compare the differences between patients who experienced deterioration during
the measurement period and the other group. Continuous variables were non-regularly
distributed and were compared using the Mann–Whitney U test. COVID-19 symptoms
were analyzed and compared between cohorts and between groups that experienced
deterioration and those that did not use the chi-square test. The AUCs, accuracy, sensitivity,
specificity, positive predictive value (PPV), and negative predictive value (NPV) were
compared to evaluate the discriminatory power of the models. Except for the AUCs, the
evaluated values used the cut-off value of Youden’s index [36]. When comparing the AUCs
between the models, these data were resampled using the bootstrap method, and the
average and variance of the AUCs were calculated. The DeLong test [37] was performed
to compare the predictive abilities of models that used different feature combinations. All
tests were two-sided, and p < 0.05 was considered statistically significant. All statistical
analyses were conducted using Python v3.8.8 and SciPy v1.5.2.
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3. Results
3.1. Demographic and Clinical Characteristics

The derivation cohort consisted of people diagnosed with COVID-19 between Septem-
ber and December 2021. Data were collected for a maximum of 9 days and a minimum of
2 days from a total of 50 patients. The age of the 50 patients ranged from 20 to 66 years,
with a mean age of 39 years (SD 13.2). Patients wore the smart watch-type wearable device
for an average of 79.5 h (SD 45.3 h) and the patch-type device for an average of 73.9 h (SD
42.8 h) during isolation. The total time the deterioration was detected was 51.2 h, and the
average was 1.8 h per patient. Twenty-eight patients (56%) experienced deterioration dur-
ing isolation. All patients were primarily screened; none had severe dyspnoea uncontrolled
by medication. The general clinical characteristics of the derivation cohorts collected at
initial diagnosis, stratified by with and without deterioration, are summarized in Table 1.
The group that experienced deterioration during isolation had a higher pulse rate and
temperature than the group that did not and responded that they had pain when filling out
the clinical questionnaire.

3.2. Comparison of Predictive Performance

We investigated whether deterioration could be predicted using only values measured
by wearable devices. The measurements of temperature, respiratory rate, pulse rate, and
SpO2 were used, and the prediction performance of four classifiers based on an ensemble of
decision trees was compared. Considering clinical utility, we aimed to predict deterioration
10 min and 8 h in advance. A comparison of the AUC values, accuracy, sensitivity, specificity,
PPV, and NPV at optimized threshold values for each model is shown in Table 2. The
average AUCs of the model predicting deterioration 10 min and the model predicting
deterioration 8 h in advance were 0.992 and 0.815, respectively. Among the four classifiers,
the XGB algorithm showed the best results, with the highest AUC values at both times.

Table 2. Performance comparison of the four different tree-based models.

Forecast Range and
Model AUC Accuracy Sensitivity Specificity PPV NPV

10 min
RF 0.988 0.939 0.973 0.919 0.874 0.983

XGB 0.994 0.967 0.974 0.962 0.951 0.980
LGBM 0.992 0.961 0.951 0.967 0.944 0.972
CAT 0.992 0.959 0.951 0.963 0.938 0.972

8 h
RF 0.814 0.820 0.674 0.911 0.826 0.817

XGB 0.842 0.804 0.700 0.887 0.834 0.786
LGBM 0.794 0.847 0.658 0.964 0.920 0.819
CAT 0.808 0.807 0.653 0.904 0.809 0.806

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative
predictive value; RF, random forest; XGB, extreme gradient boosting; LGBM, light gradient boosting machine;
CAT, CatBoost.

3.3. Comparison of Different Feature Types and Model Development

Overall, we found that among models based on ensembles of decision trees, the XGB
model performed better than the other models for AUC. We also compared the performance
of XGB models using various feature combinations to determine the performance difference
between using only variables extracted from wearable devices and adding other self-
reported symptom values. A total of 36 features were extracted, and we tested various
combinations to find the optimal feature combination. Using only features obtained from
the clinical questionnaire resulted in poor prediction performance. The comparison results
between using all possible features, using only features extracted from wearable devices,
and using some selected features are shown in Figure 2. Using fewer than 36 features
gave better prediction performance. The model, including the selected variables, showed
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the best performance in the validation cohort. We selected nine features for the 10 min
in advance model and eleven features for the 8 h in advance model and this model is the
final model.
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Figure 2. Comparison of the area under the receiver operating characteristic curve (AUC) of different
feature combinations. Delong’s test was used for statistical performance comparison. Model pre-
diction of fever (a) 10 min in advance, (b) 8 h in advance. F refers to the final model, W refers to
the model using only features extracted from wearable devices, and A refers to the model using all
features. The black vertical lines represent the standard deviation.

To assess the contribution of each optimal feature, the LIME method was applied to
the final model, as shown in Figure 3. There is a difference in the features that provide
information on the probability of deterioration depending on long and short prediction
periods. For the 10 min deterioration prediction model, among nine features, the maximum
temperature during the observation times was the most decisive (Figure 3a,b). Factors
such as high respiratory rate, low heart rate, and coughing were of relatively low impor-
tance. On the other hand, in the 8 h deterioration prediction model, not only average
temperature but also symptom information such as chest pain and nausea were decisive
(Figure 3c,d). Additionally, we can see that although it is a respiratory disease, the virus is
related to gastrointestinal symptoms. Moreover, the Pearson correlations were derived to
provide insights into the relationship between individual features and model predictions,
as shown in Table A3. The 10 min prediction model showed maximum temperature and
maximum respiration rate as the main features, and the 8 h prediction model showed mean
temperature and min heart rate. Similar results were yielded in the order shown in Figure 3.

3.4. External Validation of the Proposed Models and Comparison of Their Predictive Performance

The characteristics of these collected data from the second clinical trial and the com-
parison with data from the first clinical trial are shown in Tables A1 and A2 in Appendix A.
Of the 181 patients, 122 experienced deterioration, and the average time with deterioration
was 6.7 h, which was longer than that of the derivation cohort. Data were collected for a
maximum of 6 days and a minimum of 3 days. The ages of the 181 patients ranged from
21 to 75 years, with a mean age of 37 years (SD 9.0). Patients wore the wearable devices
for an average of 64.5 h (SD 33.2 h) during the isolation. In the questionnaire answered in
the early stage of diagnosis, only fever showed a significant difference between the two
groups. When comparing the characteristics of the derivation cohorts and external valida-
tion cohort, there was a significant difference in the presence or absence of cough, sputum,
fever, sore throat, abdominal pain, and pain. The result of applying the previously trained
model to the external validation cohort shows a similar pattern, but a slight performance
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decrease can be seen when predicting deterioration 8 h in advance in Table 3. The best
combination explored previously also shows the highest AUC in both forecast times. It
has the characteristic of showing a lower PPV compared with earlier. When calculating
sensitivity for 122 patients who experienced a deterioration at least once in the external
validation cohort, the highest sensitivity was 0.999, the lowest value was 0.530, the average
was 0.888, and the standard deviation was 0.358. Additionally, we applied our final model
to a variety of forecast time frames in addition to 10 min and 8 h are shown in Figure A2.
The 10 min deterioration prediction model has a higher AUC than the 8 h model when the
prediction time is longer than 7 h (Figure A2a). The 8 h deterioration prediction model
has higher sensitivities than the 10 min model when the prediction time is longer than 3 h
(Figure A2b).
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Figure 3. The importance of the final model using local interpretable model-agnostic explanation with
optimal features. Negative values indicate parameters suggesting non-deterioration, and positive
values indicate parameters suggesting deterioration. (a) is the 10 min deterioration prediction model
with a non-deterioration case. (b) is the 10 min deterioration prediction model with a deterioration
experienced case. (c) is the 8 h deterioration prediction model with a non-deterioration case. (d) is 8 h
deterioration prediction model with a deterioration experienced case.

Table 3. Predictive performance in the external validation cohort using compact features.

Prediction Model AUC Accuracy Sensitivity Specificity PPV NPV

10 min
W 0.970 0.917 0.931 0.916 0.430 0.995
C 0.572 0.733 0.399 0.756 0.100 0.949
A 0.968 0.929 0.912 0.931 0.498 0.993
F 0.973 0.921 0.926 0.920 0.468 0.994

8 h
W 0.649 0.760 0.431 0.777 0.094 0.962
C 0.512 0.168 0.936 0.127 0.054 0.973
A 0.689 0.702 0.576 0.718 0.213 0.927
F 0.690 0.713 0.548 0.735 0.215 0.925

AUC, area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative
predictive value; W, model using only features extracted from wearable devices; C, model using only clinical
questionnaire answers; A, model using all features; F, model using selected features.
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4. Discussion

In this study, we proposed machine learning algorithms that predict the deterioration
of patients with mild COVID-19 conditions 10 min and 8 h in advance with wearable device
data. First, algorithms can be applied even if the device changes because we used the value
of wearable devices, and it is versatile because it uses only characteristics that can be easily
measured outside the hospital. Second, we found that the variables that need to be collected
are different depending on the purpose of monitoring and the prediction interval to predict
deterioration. Third, as we performed an external validation test in an environment where
the algorithm would actually be used, we confirmed that both algorithms showed high
accuracy. Fourth, utilizing the proposed algorithm will be useful for patient management
and non-face-to-face treatment.

The strength of this study and the proposed algorithms is that anyone can participate,
no matter what wearable device they have. It is useful because it targets the most common
patients with mild symptoms and uses only the values from wearable devices. In fact, we
used two different devices: a Seer Patch that attaches to the body and a Garmin device in
the type of smartwatch. Since there is no need for difficult agreement with the manufacturer,
such as adjusting sensor values, any device that can store and transmit values can be used
to predict and monitor deterioration. Adding a specific algorithm to a medical device is
difficult, but the devices used are not medical devices. Additionally, the number of users
of wearable devices containing multiple sensors and functions is increasing every year.
The deterioration monitoring applied in this study targeted the general public and used
common devices, so it has a low barrier to entry for participation.

We found that features that should be considered vary depending on the time we want
to predict deterioration in advance (Figure 3). This means that when applying the prediction
model to an actual monitoring situation, the variables to measure and methods to measure
will be different depending on the monitoring purpose. In particular, as the prediction
time becomes longer, it is better to add symptom information that can be obtained from the
patient’s answer, in addition to vital signs measured by wearable devices. This point can
also be seen through the model’s additional validation results for a variety of forecast ranges.
As we showed earlier, the longer the prediction time, the lower the prediction performance
(Figure A2). We showed that the performance of the 8 h deterioration prediction model
improves over the 10 min model as the prediction time increases, which supports the fact
that longer prediction times require more clinical questionnaire information. In previous
research studies, especially in cases where the time point was far from the event to be
predicted, only symptom information was often collected by self-reports [21,38,39]. These
results suggest that if the prediction interval is long, non-face-to-face treatment with medical
staff will have the same effect as monitoring. However, this study showed that it is effective
to use variables extracted from wearable devices even though we have long prediction
times. This suggests that it can be an alternative to overcome difficulties that may arise
during non-face-to-face treatment due to infectious diseases.

We evaluated predictive performance in the actual clinical setting. In a clinical setting,
it is necessary to analyze data in a certain time period and derive corresponding results.
Therefore, in most cases, the labels attached to the observation period are unbalanced.
These collected data from the derivation cohort were preprocessed in a way that facilitated
training the model, so it is difficult to say that the same results will be obtained when eval-
uated in a real clinical environment setting. To reflect these characteristics and effectively
train the model, we preprocessed both sets of data from the two cohorts in different ways
(Figure 1). This method is different from previous studies that made virtual data using
oversampling methods. Furthermore, the model developed in this way showed consistent
performance despite differences across study time points. The cohorts collected in this
study were unparalleled, which led to significant differences in patient symptoms. For in-
fectious diseases, the pattern of collected patients is likely to change due to virus mutations,
and there is bound to be a difference between the time of model development and actual
use, so it is important to maintain consistent performance. The variant of SARS-CoV-2
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emerged in 2021, and the viruses that were prevalent in the two cohorts were different.
Therefore, most patients in the derivation cohort were likely to have delta variants, and
most patients in the external validation cohort were likely to have Omicron variants. There
was a significantly different pattern in the number of patients presenting with symptoms
including cough, sputum, fever, sore throat, and dyspnoea in the group with the Omicron
variant (Table A2). Despite differences in the characteristics of the collected cohorts and
evaluation process, the deterioration prediction models showed similar performance in
both cohorts.

In addition, as many clinically mild cases occurred in COVID-19, people and material
management are important to prevent the collapse of the medical system. Therefore, it is
necessary to quickly identify patients at high risk of deterioration in the early stages of
infection. We attempted to develop models with a short observation window to reduce the
time to the first results. For the short prediction time model, prediction performance was
not significantly affected by the window length, but for the long prediction time model,
we found that using too short a window length has been shown to have poor prediction
performance (Figure A1). The proposed model and analysis method can provide more
objective and specific information to medical staff. If the medical staff received additional
information from analyzing these data continuously measured by the patient at home, they
would be able to make an accurate diagnosis through more detailed conversations during
treatment, and the developed model helps speed up this process. It will be useful for
both patients and medical staff when building a system to manage the general population
during an infectious disease outbreak effectively.

This study had some limitations. First, our study only included people who were
comfortable using electronic devices and communicating using them. Additionally, these
results are based in Korea, and further evaluation and research using diverse data collected
across other ethnicities and races is needed. Second, our fever prediction models were
not able to provide information about how high fever will occur or how long it will last.
Third, the fact that different patterns may appear depending on vaccination was not taken
into consideration.

5. Conclusions

This study proposes an analysis method for the early prediction of deterioration that
will occur after a certain period of time. We developed a model to predict deterioration
after a short period of time and after a long period of time and evaluated it on additionally
collected data. The algorithm with the best prediction performance was XGB, and we found
that the factors considered important were different between predictions 10 min in advance
and 8 h in advance. It will be useful to both patients and medical staff in establishing a
system that can effectively manage the general public in the event of an infectious disease
outbreak and provide better non-face-to-face treatment.
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Appendix A

Table A1. Demographic and health characteristics reported by quarantined coronavirus patients in
the validation cohort on day one.

Non-Deterioration
(n = 59)

Deterioration
(n = 122) p Value

Continuous variable, mean ± SD

Age 37.057 ± 9.601 35.949 ± 7.673 0.838

Categorical variable, n (% total)

Cough 49 (83.05%) 102 (83.61%) >0.999
Sputum 51 (86.44%) 100 (81.97%) 0.585

Fever 9 (15.25%) 51 (41.8%) 0.001
Rhinorrhoea 29 (49.15%) 73 (59.84%) 0.231
Sore Throat 42 (71.19%) 101 (82.79%) 0.109
Dyspnoea 0 (0.0%) 2 (1.64%) 0.818
Chest pain 6 (10.17%) 11 (9.02%) >0.999

Nausea 2 (3.39%) 16 (13.11%) 0.074
Vomiting 0 (0.0%) 3 (2.46%) 0.553

Abdominal discomfort 6 (10.17%) 10 (8.2%) 0.874
Constipation 7 (11.86%) 11 (9.02%) 0.737

Diarrhea 6 (10.17%) 11 (9.02%) >0.999
Abdominal pain 1 (1.69%) 3 (2.46%) >0.999

Pain 28 (47.46%) 66 (54.1%) 0.497
Sleep disorder 8 (13.56%) 31 (25.41%) 0.104

Table A2. Comparison of demographic and health characteristics reported by quarantined coron-
avirus patients in the validation cohort and external validation cohort.

Characteristics Year 1
(n = 50)

Year 2
(n = 181) p Value

Continuous variable, mean ± SD

Age 39.62 ± 13.005 36.696 ± 9.011 0.263

Categorical variable, n (% total)

Cough 28 (56.0%) 151 (83.43%) <0.001
Sputum 26 (52.0%) 151 (83.43%) <0.001

Fever 8 (16.0%) 60 (33.15%) 0.029
Rhinorrhoea 22 (44.0%) 102 (56.35%) 0.164
Sore Throat 30 (60.0%) 143 (79.01%) 0.010
Dyspnoea 4 (8.0%) 2 (1.1%) 0.027
Chest pain 4 (8.0%) 17 (9.39%) 0.980

Nausea 2 (4.0%) 18 (9.94%) 0.299
Vomiting 0 (0.0%) 3 (1.66%) 0.833

Abdominal discomfort 6 (12.0%) 16 (8.84%) 0.688
Constipation 6 (12.0%) 18 (9.94%) 0.873
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Table A2. Cont.

Characteristics Year 1
(n = 50)

Year 2
(n = 181) p Value

Diarrhea 7 (14.0%) 17 (9.39%) 0.494
Abdominal pain 5 (10.0%) 4 (2.21%) 0.035

Pain 17 (34.0%) 94 (51.93%) 0.037
Sleep disorder 13 (26.0%) 39 (21.55%) 0.634
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Cough 0.126 0.025 
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Figure A1. Prediction performance for various observation window lengths. The area under the
receiver operating characteristic curve (AUC) values was the average value of multiple models.
(a) The AUC when predicting deterioration in derivation cohort 10 min in advance. (b) The AUC
when predicting deterioration in derivation cohort 8 h in advance.

Table A3. Pearson correlation coefficient between the features included in the final model and ground
truth (patient deterioration).

Characteristics Derivation External Validation

10 min

Maximum temperature 0.860 0.349
Maximum respiratory rate 0.400 0.099
Minimum respiratory rate 0.297 0.090
Maximum heart rate 0.299 0.031
Cough 0.126 0.025
Abdominal discomfort −0.044 0.000
Heart rate median 0.438 0.059
Constipation 0.017 −0.002
Minimum temperature 0.161 0.237

8 h

Average temperature 0.440 0.090
Minimum heart rate 0.421 0.069
Nausea 0.032 0.043
Standard deviation temperature −0.011 0.012
Abdominal discomfort −0.134 0.000
Sputum 0.113 0.014
Sleep disorder −0.084 0.026
Dyspnoea 0.135 −0.023
Chest pain 0.145 −0.013
Maximum heart rate 0.262 0.057
Maximum SpO2 0.061 −0.015

To show the importance of explainable features, we obtain the Pearson correlation
coefficient between features included in the final model and ground truth.
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