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Abstract: This paper presents a spatiotemporal deep learning approach for mouse behavioral classifi-
cation in the home-cage. Using a series of dual-stream architectures with assorted modifications for
optimal performance, we introduce a novel feature sharing approach that jointly processes the streams
at regular intervals throughout the network. The dataset in focus is an annotated, publicly available
dataset of a singly-housed mouse. We achieved even better classification accuracy by ensembling the
best performing models; an Inception-based network and an attention-based network, both of which
utilize this feature sharing attribute. Furthermore, we demonstrate through ablation studies that for all
models, the feature sharing architectures consistently outperform the conventional dual-stream having
standalone streams. In particular, the inception-based architectures showed higher feature sharing
gains with their increase in accuracy anywhere between 6.59% and 15.19%. The best-performing
models were also further evaluated on other mouse behavioral datasets.

Keywords: mouse phenotyping; machine learning; supervised learning; video classification;
spatiotemporal

1. Introduction

Over many decades, the ethical implications of using animals in research have un-
dergone considerable discussion and scrutiny [1]. A major landmark in the regulation of
research involving animals was the designation of the three ‘R’s (Replacement, Refinement,
and Reduction), which was spearheaded by The National Centre for the 3Rs (NC3Rs) in
the United Kingdom. As of 2022, around 2.76 million living animals were used for various
research procedures in the UK, with 96% of these comprised of rodents (rats and mice),
birds, and fish [2]. Due to their genetic, physiological, and anatomical similarities with
humans [3] as well as their short lifecycles [4,5], mice are one of the most utilized species in
biomedical research.

In support of the 3Rs mission, technology has been increasingly used to better un-
derstand the different aspects of research involving animals. Behavioral phenotyping is
particularly important as it may highlight welfare concerns that arise over the course of an
experimental design. However, the manual observation of these behaviors is expensive,
laborious, and time-consuming. Furthermore, behavioral studies relying solely on expert
observation are not easily reproducible [6,7]. The development of home-cage monitoring
(HCM) systems was a major technological breakthrough that has helped to solve many of
these issues [8]. HCM systems facilitate non-intrusive, longitudinal observation of mice
and may provide a range of outputs such as behavioral annotation, ethogramming, depth
sensing and tracking, activity summarising of circadian rhythm, and pose estimation. Such
HCM systems include the Techniplast Digital Ventilated Cage (DVC) [9], the System for
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Continuous Observation of Rodents in Home-cage Environment (SCORHE) [10] and In-
telliCage [11], to name a few. Cameras are extensively utilized across diverse industries
for a number of tasks [12], including autonomous driving, pose estimation [13], security
and surveillance, etc. As such, these home-cage setups may be equipped with either single-
view [14] or multi-view cameras [10], depending on design considerations. Nevertheless,
there are few commercially available solutions to the problem of detecting behaviors from
video footage alone. Moreover, many of the solutions that do exist are strongly coupled to
commercial hardware, rather than video footage in general. Owing to their recent successes
in human action recognition and many other domains, deep learning approaches offer a
potential solution to the problem of behavioural phenotyping in the home-cage.

In this paper, dual-stream deep learning architectures are proposed for the behavioral
classification of mice in the home-cage. The models in question were developed for entirely
supervised learning, whereby spatiotemporal (ST) blocks of video data are mapped to one
of several behavior categories. The dataset utilized is publicly available and contains videos
of a singly-housed mouse [7]. Our models are initially trained on the entire main data
and then tested using the more unambiguous clipped database. This approach is different
compared to that in the original paper. Nevertheless, comparisons were also made between
our proposed methodology and their results [7] using the same cross-validation technique
adopted in the original publication. Furthermore, a select few of our models were also
evaluated on a more complex, multi-view home-cage data [10]. One of the novel aspects
of these models is shared layers between the streams of the networks. Here, instead of
fusing individual streams at the end (termed “late fusion” in [15], we propose to combine
features at regular intervals throughout the architecture. We hypothesize that accurate
representations are better enforced when both streams are privy to information from each
other (Figure 1). Some instances of shared features have been seen in U-Nets [16] and its
many derivative networks, and some other specialized multi-stream architectures [17,18],
albeit in a different manner to that proposed herein for multi-stream networks.

(a) Conventional template of dual-stream architectures.

(b) Our proposed dual-stream template with feature sharing.

Figure 1. Conventional standalone vs. feature sharing dual networks. While the conventional dual-
stream only extracts features for its stream, we propose the use of joint-processing layers, which we
have termed feature sharing.

To the best of our knowledge, our work is the first to propose this “horizontal” form
of connection in multi-stream deep learning (DL) architectures. The kind of connection
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present in U-Nets has been referred to as long skip connections [19] and is an integral part
of the models’ ability to prevent dilated features while transferring useful representations
to its decoding stage [20]. The other known kind of connection has been referred to as the
short-skip connection [19] and was first introduced in ResNet [21] to solve the problem
of vanishing gradients as these architectures scaled higher with increasing depths [22,23].
Some research has even combined these connections in their architectural DL designs [24].
The similarity between the long and short connections is the use of simple operations such
as addition or concatenation. However, the forms of feature sharing range from concatenation
to the use of new, joint-processing blocks that can be optimized with the entire architecture.
Thus, our research study is novel in its presentation of feature sharing between dual-stream
architectures. This investigation forms the highlight of our paper, and will be evaluated
against the conventional or standalone forms for all the architectures developed.

2. Related Work
2.1. Behavioural Classification

The seminal work in mouse behavior classification [7] was developed for individually-
housed animals, and provides the benchmark dataset with which several other methods
(including ours) are evaluated. In this work, a series of hand-crafted shape and motion
features were extracted, a support vector machine (SVM) was used alongside a hidden
Markov model (HMM) to classify video clips into eight distinct behaviors. Model training
was repeated n = 12 times using a leave-one-out methodology, achieving a classification
accuracy of 77.3% across all eight classes as opposed to the 71.6% accuracy by human
annotators. However, this work was operated on frame-wise/2D inputs, and does not
take-in the entire spatio-temporal context like ours.

Since then, deep learning has emerged as the state-of-the-art for the classification of
video data in general. Though 2D (i.e., spatial-only) models thrive in most applications,
the need for better contextual understanding has become increasingly apparent, and the
application of 3D convolutions has enabled this. Better yet, the use of multiple input streams
allows for better encoding of video or clip sequences into different representations. It is
often the case that one of the model streams operates on an image or image sequence (within
time frame t0 to tn) while the next stream operates on optical flow data (computed for t1 to
tn+1) [25,26]. Some other multi-stream variations operate on two image streams of different
points of view, resolutions [27], or zoom [15] depending on the goal of classification.

The work by [25] presented a new network called the inflated 3D (I3D) Inception model.
The I3D modules differed from the classic Inception module [28] due to the addition of 3D
convolutions and ‘inflated’ filters that allowed a wider receptive field necessary to better
learn spatiotemporal data. This dual-stream I3D architecture (pre-trained on ImageNet)
was utilized by [29] to classify home cage mouse behaviors. Its evaluation was carried out
on the same dataset [7] and used a leave-one-out method, therefore averaging test results
across the twelve videos in the main dataset. They achieved an average accuracy of over
90% on testing with various stream weights.

In another paper by [18], the effect of shared features at higher levels of multi-stream
networks was demonstrated. The authors termed this operation feature fusion. The architec-
ture comprised a frame-wise spatial transformer-based stream and a clip-wise temporal
stream. The stream features were combined at two successive final pooling layers, ulti-
mately achieving accuracies of 95.3% on the UCF101 [30] and 72.9% on the HMDB51 [31]
datasets. A key difference between this approach and the feature sharing approach pro-
posed in this work is its implementation at multiple points throughout the dual-stream
architecture (as explained in Section 3.3).

2.2. Spatiotemporal Learning

Though utilized in different research, ref. [32] demonstrated that spatiotemporal
cuboids of data formed better descriptors in both human activity recognition and mice
behavioral classification tasks than spatial-only data. These spatiotemporal features were
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implied to be better for video classification due to the presence of more information that
better captures event contexts, especially those that can be easily confused at instance
classification. In rodent phenotyping, a lot of emphasis is placed on themes such as
behavioral sequences, periodicity, repetitiveness, or patterns of certain behaviors [33].
Depending on the nature of biological research, these factors become increasingly important
to identify, else subtle details are missed. A good example of this is self-grooming behavior,
which can be observed as mice transition from their idle periods to high activity [33,34].
However, when in excess, this behavior is also commonly associated with mice models of
both autism spectrum disorders and compulsive disorders [35]. This further attests to the
importance of capturing temporal content in machine learning models.

One of the key components in deep spatiotemporal learning is I3D [25], as mentioned
previously. I3D was built by changing the 2D convolutional layers in the Inception v1 [28]
model to 3D convolutions while still leveraging on the efficient structure of the Inception
blocks. Unlike other 3D convolutional methods, I3D is deep yet lightweight, and brings
the advantages of Inception for static image classification to the spatiotemporal domain.
Owing to these advantages, the I3D concept has been applied in some of the architectures
proposed in this paper.

2.2.1. Attention Mechanisms

An attention module is characterized by the following elements: query Q, key K, and
value V. It attempts to map these to the output and scales the output using the dimension of
the keys dk. Multi-head attention (MHA) combines multiple attention instances with trainable
parameters W and is often utilized to ensure efficient learning of vector sequences [36]. The
general expressions for the attention function and multi-head attention are given below:

Attention(Q, K, V) = softmax((QKT)/
√
(dk))V (1)

MHA(Q, K, V) = Concatenate(head1, head2, . . . , headi)Wo (2)

where headi = Attention(QWQ
i , KWK

i , VWV
i ).

Transformers are a derivative architecture of MHA initially applied to natural language
understanding [36] but have also been found to be effective in computer vision. The Vision
Transformers (ViT) is one of those that repurposed transformers to image tasks [37]. Further
variations of ViTs designed for spatiotemporal learning of videos have achieved state-of-
the-art (SOTA) results in activity recognition [38,39]. The work by [38] also proved that
multi-head attention captures vital temporal dependencies by focusing on displaced or
moving objects within a sequence. Furthermore, its application was proven to be effective
in capturing global features in a multi-stream architecture for video classification [40].

2.2.2. Long-Short Term Memory (LSTM)

LSTMs are architectures that learn to store information using memory cells and gates.
The memory cell was designed to achieve constant error flow and used multiplicative input
and output gates that protect data from perturbation [41]. Further improvements after this
saw better-defined gate operations which improved the memory retention of the architecture.

Building upon this, Bidirectional LSTMs (BiLSTM) allow for the computation of mem-
ory both ways and have been proven to achieve good results in vision tasks. A BiLSTM is
composed of two LSTMs that store relevant dependencies from both forward (i.e., past to
present) and backward (i.e., future to present) state directions [42]. In conjunction with other
ML architectures, bidirectional LSTMs have been found to outperform the unidirectional
LSTM in several natural language understanding [43,44] and image classification [45] tasks.
In the paper by [42], a BiLSTM was used with 1-dimensional convolutions to classify the
circadian rhythm of wild-type mice into day or night states. This was trained after the di-
mensionality reduction of a five-minute clip which was further subdivided into three-second
frame windows. It was found to outperform the other ML algorithms explored, achieving
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an area-under-the-curve (AUC) of 0.97. In short, BiLSTMs are capable of efficiently detecting
and learning patterns that define the behaviors mapped.

3. Materials and Methods
3.1. Data

The MIT mice dataset [7] is subdivided into a main dataset and clipped database. In
this work, we utilize all twelve videos from the main dataset for training and validation
while the clipped database, composed of unambiguous behaviors, is used to test the models.
Specifically, the video recordings from the 20080423191834F folder were used for validation,
while the rest of the main data were used for training. Unlike the leave-one-out methodology
by the original authors, we surmise that this approach helps us to better examine the
generalization performance of our models. Nonetheless, we also made comparisons to
the original cross-validation results. The optical flow data were generated from the raw
videos using the dense optical flow method [46]. Both training and test frames were resized
to 128 × 128, and further reduced to 128 × 96 by uniformly cropping redundant parts of
each frame that lie along the vertical axis. The data were also temporally downsampled
using five-frame intervals. The temporal length used for each T = 8 frames. Thus, each
spatiotemporal cuboid represents approximately a 1.33-second window in the original
videos. Toward the end of the videos/clips, any frames that could not fit these specifications
were discarded. The final input data are in the form N × T × W × H × C which represents
the number of clips, temporal length, spatial width, spatial height and number of channels
respectively. The N values for the final training, validation, and testing sets are 23,444, 4195,
and 5171 respectively.

3.2. Pre-Processing

Class imbalance was alleviated using class weights [47], which forced the model to
perceive the number of samples in each class as having the same value. Hence, the classes
that suffered from low sample sizes, such as drinking, were assigned higher weights, and the
reverse for labels with large sample sizes like micromovement. Additionally, pre-processing
was carried out to normalise visual differences present between videos acquired at different
times of day. In this particular dataset, there are only two videos recorded at night-time
(using infrared cameras) while all the rest were recorded during the day. In some deep
learning applications, conversion to grayscale has proven effective but this method was
found to degrade the performance of the models. As such, all day videos contained within
the dataset were ‘nightified’ (i.e., changed into night-time). This was achieved by first
calculating the averaged R, G, and B channel values from the night videos. These were
then used to weigh the [0–1] normalized data from the day videos and finally expanded
back to the [0–255] range. The results gave a close approximation of what the videos would
look like if recorded at night, and thus lessened bias in the models caused by the day-night
imbalance (Figure 2). No further augmentations were performed on the dataset. More data
samples, used in both RGB and flow streams, are available in Appendix D.

Figure 2. Sample frame before and after ‘nightification’.
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3.3. Architectures

All of the models presented are dual-stream and, in this application, use raw video and
optical flow streams. The building blocks utilized in the networks are depicted in Figure 3.
One of the more vital aspects of the models presented here is the feature sharing between
the dual-streams of the network. Feature sharing involves the combination and/or joint
processing of the stream outputs after operation by the primary modules. This combination
is achieved either via addition or concatenation, followed by further processing on the joint
streams which are then projected back to the individual streams. These operations take
place at regular intervals throughout the architecture. We hypothesize that this procedure
reinforces learned features better than operating on the streams individually. The various
implementations of these modules are further discussed under each architecture and in
Table 1. The overview of each architecture is also depicted in Appendix E.

(a) Primary module I (b) Joint processing module

(c) Primary module II (d) Simple joint processing

Figure 3. Primary and feature sharing modules used in the architectures. Note that the variables k, n,
and m used here represent the multipliers, filter sizes, and kernel sizes respectively, at different levels
in the architectures.
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Table 1. Full summary of feature sharing models showing the internal parameters and output sizes for each stacked module.

Models Baseline CIv3D_BiLSTM CIv3D_MHA SRS CRS

Primary filters (n) 1 16, 32, 64, 128 16, 32, 64, 128 16, 32, 64, 128 8, 16, 32, 64, 64,128 12, 24, 48, 96, 192

Intra-block filter multipliers (k) 1 1.5 1.5 1.5 1.5, 1.5, 1.5, 1.5, 1.5, 1.0 1.0

Kernels (m) 5, 3, 5, 5 7, 5, 5, 3 7, 5, 5, 3 refer to Figure 3c refer to Figure 3c

Stream combination via? Addition Addition Addition Concatenation Concatenation

Processing at joints? Yes (refer to Figure 3d) Yes (refer to Figure 3b) Yes (refer to Figure 3b) No No

Further processing before FC? No No No Single Inception v1 block (Figure 3c) No

Activation function(s) before FC? Leaky ReLU Leaky ReLU Leaky ReLU ReLU ReLU

Activation at last dense layer? Softmax Softmax Softmax Softmax Softmax

FC units (Descending) 512, 64, 8 512, 64, 8 512, 64, 8 512, 64, 8 512, 64, 8

Output sizes after joint processing blocks 2

Module 1 4 × 24 × 32 × 24 4 × 24 × 32 × 24 4 × 24 × 32 × 24 8 × 96 × 128 × 72 8 × 96 × 128 × 72

Module 2 2 × 12 × 16 × 48 2 × 12 × 16 × 48 2 × 12 × 16 × 48 4 × 48 × 64 × 144 4 × 48 × 64 × 144

Module 3 1 × 6 × 8 × 96 1 × 6 × 8 × 96 1 × 6 × 8 × 96 2 × 24 × 32 × 288 2 × 24 × 32 × 288

Module 4 1 × 3 × 4 × 192 1 × 3 × 4 × 192 1 × 3 × 4 × 192 1 × 12 × 16 × 576 1 × 12 × 16 × 576

Module 5 - - - 1 × 6 × 8 × 576 1 × 6 × 8 × 1152

Module 6 - - - 1 × 3 × 4 × 384 -
1 filter/unit size n in joint processors (Figure 3b,d) is based on filter size after stream combination (i.e., adding or concatenation) and uses fixed multiplier k = 1.5. 2 Striding through
temporal dimension produced more compact feature representations and lessened overall parameter count.
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The blocks in Figure 3a,c represent the primary processing modules used in both the
RGB image and optical flow streams, while the blocks in Figure 3b,d are the joint processing
modules. The blocks in Figure 3b,c depict the 3D formats of modules originally found in
Inception v3 and Inception v1 architectures respectively [28,48]. In particular, Figure 3b
was adapted here to boost the performance of the architectures utilizing module Figure 3a
via further processing at the junctions where the streams meet. Block Figure 3d is a custom
joint processing module utilized only in the baseline network.

3.3.1. Baseline Network (CNN)

This simple architecture consists of blocks with 3D convolutional layers, dropout
(with uniform rates of 20%), and batch normalization (see Figure 3a). The kernel sizes here
were made uniform for each block (i.e., kernels of size m rather than m − 2 as depicted in
Figure 3a). After operation by similar blocks, the results from both streams are summed up
and further operated on by dense and dropout layers (Figure 3d) before splitting again into
the individual streams.

3.3.2. CNN + Inception v3_D + Attention (CIv3D_MHA)

This builds on the baseline architecture, adding the self-attention mechanisms to both
streams after the last primary blocks. The kernel size for 3D convolutions was made to
increase and decrease repeatedly (as shown in Figure 3a) between stream blocks. In addition,
the simple processing block is replaced by the Inception v3 block D [48] (Figure 3b) through-
out the architecture. The self-attention block used here is similar to vision transformers [37]
however it uses batch normalization, and the patch tokens are replaced by the end features
of the streams before summation and processing by the last InceptionD block.

3.3.3. CNN + Inception v3_D + BiLSTM (CIv3D_BiLSTM)

This uses the same improvisations made in CIv3D_MHA but removes the primary
modules’ dropout layers. The bidirectional LSTMs are used in place of the traditional
flattening that precedes fully-connected (FC) layers. The input to this is the summed output
of both streams’ final subsection, reshaped from four to two dimensions to allow loading
into the LSTMs.

3.3.4. Purely Inception-Based Networks

There are two architectures completely built up using the 3D Inception v1 block (see
Figure 3c). This block was revised for spatiotemporal operation from the dimensionality
reduction module in the classic Inception v1 architecture [28] but is without the singular
1 × 1 convolution branch in the original (Figure 3c). The first architecture works by reinforc-
ing representation learning in a single stream rather than splitting the features apart. At the
bottleneck between successive sub-regions of the network, feature learning is reinforced by
repeatedly concatenating strided computations of the original optical flow sequence with
the previous features extracted from the RGB stream. Hence, the network was termed the
Singly Reinforced Stream (SRS) network. It also adds the design consideration of removing
the first and last two frames of the optical flow stream (along with some surrounding di-
mensions) after the first block operation on both streams. This cropping operation is carried
out only once and under the assumption that the temporal sequence is better represented
by the center portions of the mid-four frames. This train of thought is quite similar to the
fovea stream in [15] but takes it further by removing frames at the extremities.

The second architecture was developed to encourage cross-pollination between streams;
this implies that just as the optical stream enforces representation learning in the image
stream, the image stream is also used to enforce learning in the optical stream, and they al-
ternate in this manner. This is carried out by independently concatenating the past features
from each streams’ block with the jointly-processed input fed into consequent blocks. This
operation however led to a considerable increase in computation (see parameter count in
Table 2). This network was named Cross Reinforced Streams (CRS) network.
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Table 2. Learning rates, parameter count, and floating point operations per second (FLOPS) for each
model.

Models Baseline CIv3D_BiLSTM CIv3D_MHA SRS CRS

Learning Rate(s) 0.0005 0.001 0.001 0.001 0.001

Parameters (feature sharing) 11,315,848 13,243,712 15,554,112 9,671,872 22,927,824

Parameters (standalone) 11,348,728 16,623,752 19,044,744 9,670,024 22,483,944

FLOPS (feature sharing) 22.63 × 106 30.67 × 106 31.10 × 106 19.34 × 106 45.85 × 106

FLOPS (standalone) 22.69 × 106 37.42 × 106 38.07 × 106 19.34 × 106 44.96 × 106

3.3.5. Other Networks

To investigate the effectiveness of the shared layers between streams, experiments
were conducted on versions of the above models without the unique feature sharing modules.
The design considerations used in each architecture were left in place while the blocks of
joint processing (i.e., feature sharing) were replicated in both streams, all before the common
fully-connected layers.

3.4. Model Training

All models were trained using the categorical cross-entropy loss and optimized using
stochastic gradient descent (SGD). The number of epochs and batch size were set to 85 and
8, respectively. Training was set to reduce its learning rate by a factor of 0.5 if validation
loss plateaus or peaks, and to finally stop if no notable learning is achieved. This prevents
overfitting and allows for the early restoration of the best checkpoints. Each model is
trained and evaluated n = 4 times corresponding to different random seeds, and averaged.
By using the averages, we present an accurate representation of each models’ predictive
capability. The system used for all the experiments was equipped with 64GB RAM and 2
Nvidia GeForce RTX-3080 GPUs.

3.5. Metrics

The most popular metric used for classification problems is accuracy. However, we
evaluate all the models presented here on several metrics, including accuracy, average
precision (AP), precision, recall, F1 score, and area-under-the-ROC-curve (AUC), where
ROC is the receiver operating characteristic. More specifically, the AP metric (which was
utilized the most) is the micro-averaged precision, while the precision is the macro-averaged
per-class computation. All together, these metrics give a holistic view of each models’
performance.

4. Results
4.1. Model Comparison

The results of all seed models for each of the architectures were averaged to achieve
the final results. The full performances for each seed can be found in Appendix A. The
best result was obtained for the singly-reinforced stream (SRS) architecture, achieving an
average accuracy of 81.96 ± 2.71%. The averaged performances of all the feature sharing
dual-stream models are tabulated in Table 3.
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Table 3. Performance of proposed models across chosen metrics showing that the SRS outperforms
all other architectures across all metrics.

Models

Metrics

AUC Precision Recall F1-Score Accuracy
micro (m) macro (M)

Baseline 0.879 0.920 0.608 0.749 0.607 74.93

CIv3D_BiLSTM 0.955 0.965 0.731 0.771 0.687 77.08

CIv3D_MHA 0.951 0.953 0.652 0.780 0.671 77.99

SRS 0.959 0.972 0.796 0.820 0.750 81.96

CRS 0.934 0.960 0.755 0.785 0.683 78.49

4.2. Ensembles

The ensembles were created by averaging the results of the models at inference. Due to
the gap in performance, most ensembles between models did not show any improvements
over the SRS model. The final choice of models to ensemble was made by evaluating the
validation results for all seed training in each model. For intra-model ensembles (that
is, between the top 2 seeds of the same model), the best results were found for the SRS
model and achieved 82.37%. The best inter-model ensemble was observed between the SRS
and CIv3D_MHA models and achieved 86.28%. Further ensembles between models are
shown in Table 4. The confusion matrices and ROC plots for the ensembles can be found in
Appendix B.

Table 4. Result of binary ensembles between SRS, CRS, CIv3D_MHA and CIv3D_BiLSTM models.

Ensembles
Metrics

mAUC AP Acc (%)

SRS + CRS 0.958 0.795 83.31

SRS + CIv3D_MHA 0.977 0.880 86.28

SRS + CIv3D_BiLSTM 0.966 0.830 83.69

CRS + CIv3D_MHA 0.963 0.814 82.62

CRS + CIv3D_BiLSTM 0.942 0.745 79.55

CIv3D_MHA + CIv3D_BiLSTM 0.968 0.831 82.46

4.3. Ablation Study
4.3.1. The Case for Feature Sharing

Here, the results of the models and their non-feature sharing variants are presented.
The variants were trained and tested on the same dataset, and under the same conditions as
those with joint processing. The averaged results across all metrics are tabulated (Table 5).
In general, only the accuracy shows significant variation between seed models while the
variation in other metrics is negligible. It can be clearly observed that for each architectural
pair (i.e., feature sharing vs standalone), the feature sharing models perform better than their
standalone forms.

The performance gains are especially pronounced in the Inception-based architectures
with the SRS gains ranging from 6.59% to 15.19%, and the CRS gains ranging from 7.79%
to 13.29%. The lowest observable gain after applying feature sharing was a 0.33% increase
in accuracy, calculated for the baseline model. Conversely, the only occasion of a loss in
accuracy (after feature sharing) was observed for the CIv3D_BiLSTM model having a value
of −3.66%. Nonetheless, this same architecture was also found to be able to achieve gains
of about 3.92% over its standalone streams.
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Table 5. Detailed comparison between the feature sharing and standalone stream forms of each network.
The standard deviation (from the mean metric value) across the four different seed models in each
case was also included.

Models Stream Kind mAUC MAUC AP F1 Score Accuracy (%)

Baseline
sharing 0.878 ± 0.013 0.920 ± 0.004 0.592 ± 0.017 0.552 ± 0.026 74.93 ± 2.68

standalone 0.815 ± 0.020 0.916 ± 0.010 0.562 ± 0.024 0.483 ± 0.016 70.28 ± 1.64

CIv3D_BiLSTM
sharing 0.955 ± 0.012 0.965 ± 0.003 0.789 ± 0.045 0.654 ± 0.074 77.08 ± 1.77

standalone 0.910 ± 0.015 0.955 ± 0.004 0.668 ± 0.051 0.537 ± 0.026 76.95 ± 2.02

CIv3D_MHA
sharing 0.951 ± 0.017 0.953 ± 0.017 0.770 ± 0.060 0.678 ± 0.074 77.99 ± 3.50

standalone 0.896 ± 0.018 0.938 ± 0.007 0.635 ± 0.036 0.564 ± 0.034 73.10 ± 2.44

SRS
sharing 0.959 ± 0.010 0.972 ± 0.006 0.791 ± 0.042 0.686 ± 0.050 81.96 ± 2.71

standalone 0.900 ± 0.029 0.931 ± 0.009 0.632 ± 0.064 0.666 ± 0.048 71.07 ± 1.59

CRS
sharing 0.934 ± 0.006 0.960 ± 0.004 0.728 ± 0.015 0.578 ± 0.018 78.49 ± 0.95

standalone 0.868 ± 0.016 0.921 ± 0.008 0.562 ± 0.025 0.523 ± 0.019 67.95 ± 1.80

4.3.2. The Case for nightification

To justify the choice of nightified spatiotemporal (ST) clips in the image stream, fur-
ther experiments were conducted for both raw RGB input and grayscale input. These
experiments were carried out on the baseline model and the previously ascertained best-
performing models from Section 4.2. These models were trained and tested in the same
rigorous manner as the core paper models. The results show that nightified ST input has
higher accuracy than both grayscale and raw video ST inputs for most models, the only
exception being the baseline model. Those using grayscale cuboids seemed to initially
perform well just observing the AUCs and average precision however all their accuracies
were subpar compared to the nightified cuboids. Observations show that this was due to
greater misclassification between visually similar behaviors (such as micromovement and
rest), indicative of the fact that the grayscale modality did not possess sufficient information
for these deep models to distinguish between the behaviors. A similar narrative was ob-
served in the raw video inputs though we argue that, in this case, the drop in performance
(albeit small) was due to the lack of standardization. The results are presented in Table 6.

Table 6. Results on grayscale (GS), raw RGB (R), and nightified (N) data show that 3-channel inputs
in the raw image stream produced a better performance than the single channel grayscale in all the
architectures considered. Of these models, two of the best performers were associated with the nightified
data format.

Model Baseline CIv3D_MHA SRS

Input kind GS R N GS R N GS R N

mAUC 0.873 0.869 0.879 0.910 0.921 0.950 0.962 0.938 0.959

MAUC 0.910 0.914 0.920 0.929 0.943 0.953 0.972 0.953 0.972

AP 0.545 0.577 0.592 0.647 0.673 0.770 0.810 0.687 0.791

F1 Score 0.542 0.544 0.552 0.564 0.597 0.678 0.733 0.569 0.686

Accuracy (%) 73.37 76.57 74.93 73.70 77.16 77.99 9.24 77.87 81.96

4.3.3. Varying Temporal Length

The temporal length refers to the number of frames that make up each clip. As previ-
ously stated, all architectures were designed for a temporal length T = 8, corresponding to
1.33 seconds. Further experiments are performed here by varying the preset T value. The
new temporal lengths chosen were (i.e., T = 4) and (i.e., T = 16). These experiments were
only carried out on the baseline and SRS models, and were conducted in the same rigorous
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manner as the initial runs. Besides changing the input shape, the temporal cropping (refer
to Section 3.3.4) in the SRS architecture was also slightly modified. Same as the new T
values, this feature was halved and doubled respectively for T = 4 and T = 16. Hence, there
was no change to the architectural complexity. For the baseline model, its complexity only
increased, slightly, for T = 16. The results after averaging the results for various seeds are
shown in Table 7.

Table 7. Results for varied temporal lengths show that the 1.33-second window was optimal for the
depth and complexity of the architectures presented.

Temporal Length (s) mAUC MAUC AP F1 Score Accuracy (%)

Baseline

4 0.853 0.743 0.411 0.381 57.03

8 0.879 0.920 0.592 0.552 74.93

16 0.831 0.736 0.365 0.349 47.63

SRS

4 0.914 0.958 0.629 0.576 69.72

8 0.959 0.972 0.791 0.686 81.96

16 0.916 0.930 0.658 0.607 67.43

The results show that the preset T = 8 was optimum as the accuracies obtained in the
new experiments were not up to par. In order of performance, the models having input
temporal dimensions of T = 8 were the best, followed by T = 4 and lastly T = 16.

4.3.4. Cross Validation

As stated in the review section, the authors of the original dataset performed cross-
validation using the main mice dataset comprised of the twelve videos in the main dataset.
Here, the same n = 12 cross-validation is carried out and the results are reported for the
best ensemble in Section 4.2, comprised of the SRS and CIv3D_MHA models. The final
results are shown in Table 8.

Table 8. Result on cross-validation only shows results comparable to those of human annotators.

Cross-Validation Acc (%)

Human Annotators ([7]) 71.6

Their method ([7]) 77.3

Ours 71.8

The result achieved is seen to perform better than the human annotators; however,
it is lower than the proposed method in the original paper. Despite the difference in
model contexts (i.e., spatiotemporal against their framewise model), the results achieved
ascertain the validity of our methodology. However, unlike the original publication [7], all
our models are trained from scratch and have no prior contact with the MIT main dataset.

4.4. Other Datasets
SCORHE

Further experiments were conducted by applying the pre-trained versions of the top
three seeds (from all models) to a different home-cage mouse dataset [10]. As previously
shown in Section 4.2, the top performing seeds (as identified by the validation data) occur
in these models: CIv3D_BiLSTM, CIv3D_MHA, and SRS. Although 13 unique annotations
were originally present (see graph in Appendix C), these were refined to 8 classes by
removing samples with ambiguous classes (such as behav_ignore, behav_other), removing
samples having extremely low class occurrence (such as discrepancy, rotating), and merging
the supported and unsupported rearing classes.

The recordings in the SCORHE home cage were captured from multiple points as no
singular viewpoint provides a clear view due to occlusions. To address this, the viewpoints
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from opposite ends of SCORHE were shaped as 128 × 64 frames and stacked into a singular
128 × 128 frame. The same was also performed for the optical flow data stream. No frame
skips were used here to ensure ample training and testing data were available. Data samples
for the SCORHE dataset are available in Appendix D.

For the training, the previous FC layers were replaced and all other training parameters
were kept the same, except for the learning rate which was halved to 0.0005. The resulting re-
ceiver operating characteristics (ROC) and precision-recall (PR) curves are shown in Figure 4.
The accuracies achieved on the SCORHE dataset by the feature sharing CIv3D_BiLSTM
CIv3D_MHA and SRS were 80.51%, 79.88% and 79.13% respectively. Their non-feature
sharing variants achieved 72.18%, 77.95% and 70.83% respectively.

(a) Feature sharing streams

(b) Standalone streams

Figure 4. ROC and PR curves between the feature sharing and conventional architectures using the
SCORHE dataset. On observation, all the feature sharing architectural forms were found to also
outperform their standalone stream variants in both AUC and average precision.

A few observations were made on the feature sharing models. The CIv3D_BiLSTM and
CIv3D_MHA were good at reinforcing previously learned spatiotemporal representations
to this complex home cage for similar behaviors. However, despite having lower accuracy,
SRS performed better in both learning old classes and balancing predictions to learn
totally new class, climbing. This is proven by its class accuracy across the different confusion
matrices; while CIv3D_BiLSTM and CIv3D_MHA achieved 22.34% and 33.68% respectively,
the SRS model achieved 53.61%.



Sensors 2023, 23, 9532 14 of 28

5. Discussion

Generally, it was observed that the more dynamic behaviors were better captured, by
all the models, than the less dynamic behaviors. Areas of weak performance across all
the models were mainly due to misclassification of resting, grooming, and micromovement
behaviors. These behaviors are quite closely related; during grooming, the mouse is mostly
stationary albeit the motion of its forelimbs and when resting, the mouse is completely
immobile. Micromovement describes very small-scale motions and hence it is most likely
that the 1.33-second windows of T = 8 cuboids cannot capture the full range of motion to
distinguish between these classes. Nonetheless, these ’misclassifications’ are also indicative
of similitude in the temporal pattern needed to perform certain tasks and may be subject to
further interpretation by the subject experts.

Further experiments in the ablation study also showed that, for time windows lower
or higher than the 1.33-second window, the performance of the models degrades. Thus,
other clip sizes will require more intense hyperparameter tuning and data preprocessing to
work with the feature sharing paradigm. In particular, the T = 16 temporal input may also
require a deeper architecture (i.e., having more rungs or blocks) at the cost of increasing the
computational complexity of the learning objective. The step up in performance between
the feature sharing and standalone baseline models lends credence to the effectiveness of
combined streams; by simply summing parallel outputs from both streams and processing
with a dense-dropout pair (depicted in Figure 3b), we observe between 0.33% and 8.97%
improvement in accuracy. This observation was further proven in subsequent networks
utilizing algorithms such as bidirectional LSTMs and self-attention mechanisms. Though
the CIv3D_BiLSTM model was only marginally better in terms of accuracy, it outperformed
its non-feature sharing variant in all other metrics. Similarly, we observe a notable improve-
ment across all the metrics for the other models, especially in the purely 3D Inception-based
networks (SRS and CRS), both having over 10% improvement in averaged accuracy alone.
The ensemble of the SRS and CIv3D_MHA was also seen to achieve better accuracy than
human annotators on cross-validation using the training data. Although this accuracy
was not up to par with the proposed methodology in the original paper, it sufficiently
demonstrates the workability of the feature sharing paradigm.

Based on both the parameter count and floating point operations per second (FLOPS),
the implementation of feature sharing was also found to mostly reduce the complexity of
the architectures, with the exception of the CRS model (see Table 2). Conversely, utilizing
feature sharing would require establishing which feature sharing method is best suited for the
architecture, i.e., either simple concatenation or a new processing block (such as Figure 3d
or Figure 3b). These investigations would generally increase the number of experiments
needed, therefore increasing the time needed to establish its utility.

6. Conclusions

In summary, this paper proposed an approach to mouse behavior classification based
on multi-stream convolutional neural networks with feature sharing. By including this archi-
tectural consideration, we observed gains ranging from 0.33% to 15.19% for all the custom
architectures that were presented. Only in one model type (i.e., the CIV3D_BiLSTM) was the
feature sharing architecture reported to achieve a lower accuracy than its standalone variant.
Nevertheless, upper-limit gains of 3.92% were also possible for this same architecture. We
validate this approach using two publicly available datasets, and it performs favourably
compared to the start-of-the-art.

Further work will investigate improving the overall cross-validation by employing data
augmentations not employed in this paper. In addition, feature sharing can be adapted using
well-established, state-of-the-art supervised models (both convolutional and transformer-
based) to further investigate its pros and cons. Finally, future research will also consider the
unsupervised detection of behaviors and welfare concerns in the home cage, and whether
the unique feature sharing approach will impact multi-stream models in this learning domain.
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Appendix A. Full Performance Table

Table A1. Full Performance table for feature sharing models.

MODELS SEEDS

METRICS

AUC
AP F1 Score Accuracy (%)

micro (m) macro (M)

Baseline

A 0.89139 0.92472 0.602 0.53434 75.0425

B 0.87151 0.91915 0.609 0.57256 77.4076

C 0.86057 0.91478 0.564 0.51816 70.5459

D 0.89047 0.92020 0.593 0.58093 76.7404

Average(s) 0.87849 0.91971 0.592 0.55150 74.9341

CIv3D_ BiLSTM

A 0.93746 0. 95331 0.729 0.55750 76.3368

B 0.92415 0.95030 0.720 0.55634 75.4044

C 0.92848 0.94623 0.723 0.53677 75.7875

D 0.91047 0.95133 0.729 0.54228 78.6451

Average(s) 0.92514 0.95029 0.725 0.54822 76.5435

CIv3D_ MHA

A 0.92600 0.94809 0.692 0.56606 74.2224

B 0.94715 0.94632 0.757 0.68050 76.2464

C 0.97321 0.97059 0.860 0.77441 83.6366

D 0.95560 0.94758 0.772 0.69051 77.8722

Average(s) 0.95049 0.95315 0.770 0.67787 77.9944

SRS

A 0.96821 0.97703 0.839 0.74434 84.2392

B 0.95825 0.97383 0.783 0.65857 79.4152

C 0.94276 0.96119 0.727 0.62004 79.1211

D 0.96502 0.97416 0.816 0.72210 85.0749

Average(s) 0.95856 0.97155 0.791 0.68626 81.9626

CRS

A 0.92582 0.95732 0.713 0.56682 77.2607

B 0.93584 0.96622 0.728 0.57181 79.9323

C 0.932344 0.95750 0.717 0.56274 78.0969

D 0.94216 0.95938 0.752 0.60866 78.6730

Average(s) 0.93404 0.96011 0.728 0.57751 78.4907

https://cbmm.mit.edu/mouse-dataset
https://web.archive.org
https://web.archive.org
scorhe.nih.gov
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Appendix B. Additional Performance Plots

Figure A1. ROC and PR plot for SRS + CIv3D_MHA.

Figure A2. Confusion Matrix for SRS + CIv3D_MHA.
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Figure A3. ROC and PR plot for SRS + CIv3D_BiLSTM.

Figure A4. Confusion Matrix for SRS + CIv3D_BiLSTM.
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Figure A5. ROC and PR plot for SRS + CRS.

Figure A6. Confusion Matrix for SRS + CRS.
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Figure A7. ROC and PR plot for CIv3D_BiLSTM + CIv3D_MHA.

Figure A8. Confusion Matrix for CIv3D_BiLSTM + CIv3D_MHA.
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Appendix C. Original Data-Label Distributions

(a) MIT mouse data

(b) SCORHE mouse data

Figure A9. Full data summaries (before preprocessing).



Sensors 2023, 23, 9532 21 of 28

Appendix D. SCORHE and MIT Samples (after Preprocessing)

(a) MIT mouse data

(b) SCORHE mouse data

Figure A10. Samples from SCORHE and MIT dataset.

Appendix E. Schematic Diagrams of SRS and CRS Models

The resultant feature shapes of each architecture (at major rungs) and the fully-connected
sizes are available in Table 1. As mentioned in the text, the preprocessing steps for all ar-
chitectures are heightwise cropping and rescaling. The details of the blocks/modules are
thus: the inception-based primary block in Figures A11 and A12 correspond to Figure 3c, the
custom primary block in Figures A13–A15 correspond to Figure 3a, and the inception-based
joint processing in Figures A14 and A15 correspond to Figure 3b. Furthermore, note that the
ST attention block in Figure A15 is the same as a single-head, single encoder stack in [36]
but without any positional embedding.
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Figure A11. Overview of SRS model.
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Figure A12. Overview of CRS model.
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Figure A13. Overview of Baseline model.
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Figure A14. Overview of CIv3D_BiLSTM model.
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Figure A15. Overview of CIv3D_MHA model.
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