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Abstract: Understanding how the human body works during sleep and how this varies in the
population is a task with significant implications for medicine. Polysomnographic studies, or sleep
studies, are a common diagnostic method that produces a significant quantity of time-series sensor
data. This study seeks to learn the causal structure from data from polysomnographic studies carried
out on 600 adult volunteers in the United States. Two methods are used to learn the causal structure
of these data: the well-established Granger causality and “DYNOTEARS”, a modern approach that
uses continuous optimisation to learn dynamic Bayesian networks (DBNs). The results from the
two methods are then compared. Both methods produce graphs that have a number of similarities,
including the mutual causation between electrooculogram (EOG) and electroencephelogram (EEG)
signals and between sleeping position and SpO2 (blood oxygen level). However, DYNOTEARS,
unlike Granger causality, frequently finds a causal link to sleeping position from the other variables.
Following the creation of these causal graphs, the relationship between the discovered causal structure
and the characteristics of the participants is explored. It is found that there is an association between
the waist size of a participant and whether a causal link is found between the electrocardiogram
(ECG) measurement and the EOG and EEG measurements. It is concluded that a person’s body
shape appears to impact the relationship between their heart and brain during sleep and that Granger
causality and DYNOTEARS can produce differing results on real-world data.
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1. Introduction

Sleep-related disorders not only impact quality of life but are a risk factor for serious
health conditions [1]. Polysomnography, the process of recording multiple physiological
signals while a patient sleeps, is considered the gold standard for diagnosing sleep-related
breathing disorders [2]. Furthering our understanding of how the body functions during
sleep has the potential to improve treatment; the combination of data from polysomnog-
raphy and modern machine learning techniques presents an opportunity to improve
this understanding.

Causal discovery, the task of identifying the relationships between variables on
a causal, rather than simply correlative, level, is a current field of interest in machine
learning [3]. By building a network of directed causal relations, a researcher may become
able to reason about counterfactuals [4] and develop a greater understanding of a mech-
anism’s function. The inference of causal relationships enables interventions, which is
particularly useful in a clinical context as clinicians need to intervene to treat patients. In
particular, we seek to understand how causal structure varies between patients.

In this work, two different approaches to structure learning are employed: Granger
causality and DYNOTEARS. The former method is a well-established technique for causal
discovery, originating in the econometrics literature, while the latter was introduced in
2020 and has been gaining traction in the structure learning field.
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1.1. Granger Causality

Granger causality (GC), or Wiener–Granger causality, was introduced by C. W. J.
Granger in 1969 [5]. It is based on the principle that time series y causes time series x if
the past of y provides information about x conditioned on x’s own past. For this work,
the Multivariate Granger Causality toolbox (“MVGC toolbox”), built and maintained by
Barnett and Seth [6], is used. This has over 800 citations and has been used for medical
tasks including the behaviour of blood cells [7] as well as sleep [8].

In the MVGC method, time-series data are modelled as a vector autoregressive (VAR)
process. For a time series U with m time steps and d variables, a pth order VAR model—a model
in which each time step is modelled as a linear function of the previous p steps—may [6] be
represented as

ut =
p

∑
k=1

Akut−k + εt. (1)

Σ = cov(εt) is the d × d residuals covariance matrix for this model. The model is
repeatedly learned with each variable in turn excised from U to produce a series of reduced
covariance matrices. For each missing variable, the pairwise-conditional Granger causality
from variable y to x is the log-likelihood ratio

Fy→x = ln
|Σ′xx|
|Σxx|

(2)

where Σxx and Σ′xx are the residuals covariance matrices of the models with and without
variable y, respectively. This method measures the strength of causality from one variable
to another, conditioned on all the other variables in the system.

To establish the significance of the result, p-values are produced using an F cumulative
distribution function. The null hypothesis is that there is no causality. In this study, there
is considered to be a link between two variables if the p-value is less than 0.05, as is
conventional. The results are adjusted to account for the multiple hypotheses using the
method proposed by Benjamini and Yekutieli [9]. A matrix of 1s, for causality, and 0s, for
no causality, is produced.

Granger causality is used in this study as it is a well-established technique for causal
discoveries from time-series data. It conveys a straightforward conception of causality.
Pairwise-conditional Granger causality allows each pair of variables to be conditioned on
the others, avoiding confusion over variables mediating causal links.

Granger causality has been used to learn structure from polysomnographic data in pre-
vious studies. Orjuela-Cañón et al. [8] used Granger causality to study the changes brought
about by a session of continuous positive air pressure (CPAP) therapy; Faes et al. [10], the
impact of sleep stages; Günther et al. [11], the impact of sleep stages and apnoea; and
Pizzi et al. [12] and Abdalbari et al. [13], the difference between wakefulness and sleep.
These studies all involve substantially fewer subjects than this one. The objective of the
Granger causality part of this study is to generate results from a larger number of subjects so
that comparisons may be drawn between subjects rather than between different windows
of data from the same subject.

1.2. Optimisation Method (DYNOTEARS)

In 2018, Zheng et al. [14] introduced the NO TEARS method of structure learning,
in which an adjacency matrix is learned by minimising the loss when applied to the
data, subject to a continuous acyclicity constraint and an `1 penalty to enforce sparsity.
DYNOTEARS [15] is an adaptation of this approach to time-series data. Instead of learning
a graph with one node for each variable, a dynamic Bayesian network (DBN) is learned, in
which each lag of each variable is considered a node. The NO TEARS method is adapted
to learn a DBN by adding the lagged versions of the data to the loss function. To learn
an inter-slice (instantaneous) adjacency matrix W and an intra-slice adjacency matrix A,
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again with m time steps and d variables, one generates lag matrix Y from the past p time
steps of X and solves the following optimisation problem:

min
W ,A

1
2n
||X − XW − YA||2F + λW ||W ||1 + λA||A||1

subject to tr(eW◦W )− d = 0
(3)

where n = m + 1− p, || · ||F is the Froebenious norm, and || · ||1 is the elementwise `1 norm,
which encourages the learning of a sparse model. The constraint ensures acyclicity [14].
The problem is solved using an augmented Lagrangian method due to the constraint.

DYNOTEARS is used in this study as it is a leading method in the field of structure
learning by continuous optimisation. This is a field of substantial current interest in the
causality community. It is of interest to compare it with Granger causality; both methods
are based on learning autoregressive models from time series, but Granger causality is
concerned with differences in predictive abilities between models, while DYNOTEARS
involves fitting a single model to data.

DYNOTEARS has been used in previous work to learn causal graphs in domains rang-
ing from IT service telemetry [16] to autonomous driving [17]. To the authors’ knowledge,
this is the first paper in which it is applied to polysomnographic data, or to medical data
in general, other than to benchmark other methods. DYNOTEARS is used here as the
data are in the form of time-series signals; it is the most well-established method for using
optimisation to learn structure from such data.

2. Materials and Methods
2.1. Data

The data used are from the Wisconsin Sleep Cohort Study (WSC) [18], a longitu-
dinal study of 1500 randomly sampled Wisconsin state employees, making up a total
of 2570 recordings. This study is provided by the National Sleep Research Resource
(NSRR) [19]; researchers may request access to these data from the NSRR website. Writ-
ten consent was provided by the participants to have their data used, and the data were
pseudonymised prior to sharing.

The measurements taken during a sleep study vary throughout the dataset. The
10 variables that are most frequently included in the sleep studies in the dataset are
identified; these are listed and described in Table 1 and are the variables used in this study.

Table 1. Descriptions of measurements used.

Abbreviation Name in Dataset Definition

EOG_1 E1 Left electrooculogram (EOG)
EOG_2 E2 Right electrooculogram (EOG)

EEG_LC C3_M2 Left central electroencephalogram (EEG)
EEG_LO O1_M2 Left occipital electroencephalogram (EEG)

EMG_Leg lleg_r Linked left and right leg electromyogram (EMG)
Snore snore Snore
ECG ECG Electrocardiogram (ECG)

Nasal_Pressure nas_pres Nasal pressure
Position position Position

Blood_Oxygen spo2 Blood oxygen
Descriptions adapted from National Sleep Research Resource [20]. Names used in the “Abbreviation” column
will be used in this paper for brevity and clarity. The “Name in Dataset” column includes the names as used in
the original dataset.

These measurements were taken using a variety of instruments, and a low-pass filter
was applied for most of the variables to remove high-frequency signals. The investigators
in the Wisconsin study upgraded their instruments in 2009, meaning that the dataset is



Sensors 2023, 23, 9455 4 of 12

a combination of old 100 Hz signals and new 200 Hz signals. Details of these signals may
be found in Table 2. To ensure uniformity, all time series data are resampled to 100 Hz
before use in this study.

Repeat participants and sleep studies without all the chosen variables are removed,
and then 200 traces are selected at random for the validation set and the two test sets.
Results from the first test set are included in this paper. The demographics of this subset
are given in Table 3. Distribution of waist girth, a factor that will be highlighted later, may
be seen in Figure 1. One participant has been omitted from the waist girth results as there
was not a waist measurement for this participant.

Table 2. Settings for signals used. Sampling rate (prior to resampling) and low-pass filter used on
each type of signal. Adapted from National Sleep Research Resource [20].

2000–2009 Post–2009

Variable Sampling Rate
(Hz)

Hardware Filter
(Hz)

Sampling Rate
(Hz)

Hardware Filter
(Hz)

EOG_1 100 Low Pass 30 200 Low Pass 35
EOG_2 100 Low Pass 30 200 Low Pass 35

EEG_LC 100 Low Pass 30 200 Low Pass 35
EEG_LO 100 Low Pass 30 200 Low Pass 35

EMG_Leg 100 Low Pass 30 200 Low Pass 70
Snore 100 Low Pass 30 200 Low Pass 70
ECG 100 Low Pass 30 200 Low Pass 35

Nasal_Pressure 100 Low Pass 30 200 Low Pass 15
Position 100 - 200 -

Blood_Oxygen 100 - 200 -

Table 3. Demographics of participants in test set 1.

Variable Category Frequency Percent

Sex Male 98 49.0%
Female 102 51.0%

Age 30 < x ≤ 40 2 1.0%
40 < x ≤ 50 31 15.5%
50 < x ≤ 60 83 41.5%
60 < x ≤ 70 71 35.5%
70 < x ≤ 80 13 6.5%

BMI 10 < x ≤ 20 7 3.5%
20 < x ≤ 30 93 46.5%
30 < x ≤ 40 73 36.5%
40 < x ≤ 50 17 8.5%
50 < x ≤ 60 9 4.5%
60 < x ≤ 70 1 0.5%

Race Asian 1 0.5%
Black 3 1.5%

Hispanic 1 0.5%
Native American 0 0.0%

White 195 97.5%
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Figure 1. Histograms showing distribution of waist girth in test set 1. One participant omitted due
to lack of waist girth measurement.

2.2. Granger Causality
2.2.1. Windowing

Time series data must be covariance stationary to be modelled using vector autore-
gression. One would not expect this requirement to be met for a long section of polysomno-
graphic data: sleep occurs in stages, and events occur throughout the night to affect
a sleeping person’s state. Accordingly, each sleep study is split into 20-s windows. These
windows are selected randomly at 10-s intervals and accepted if they are stationary; this
process continues until 50 stationary windows have been chosen for each sleep study. Each
data window is adjusted to have a zero mean prior to the VAR calculation.

Twenty seconds is quite a small window length; this was chosen to balance the need
for as much data as possible with the requirement for stationarity. Previous studies have
used windows of similar length when dealing with physiological signals [12,13].

Overlaps between windows were permitted, though only a few windows had overlaps
as there was a lot of data to sample from. Overlaps were by 50%. The test for stationarity
used is that the VAR model of the data, converted to first-order form, must have a coefficient
matrix with a spectral radius (largest absolute eigenvalue) less than 1, as described in
Lütkepohl [21].

2.2.2. Model Order Selection

The model order (the maximum number of past time steps to include in the autoregres-
sion) is selected by learning the model and calculating the corrected Akaike Information
Criterion (AICc) at each potential order from 1–19. The order that produces the lowest
AICc is used.

2.3. DYNOTEARS

The data windows selected for Granger causality are used again, with the same
validation/test split. Each is adjusted to have a zero mean and unit variance before
applying the algorithm.

Selection of Hyperparameters

In this case, the validation set is used to choose the two lasso coefficients λA and λW, as
well as the model order, using 10-fold cross-validation. This is carried out on all orders from
1 to 10 to find the best pair of hyperparameters for all orders. A total of 80 sleep studies are
chosen at random from the validation set, with 5 randomly selected stationary windows
used from each study. Figure 2 shows the average results. The chosen hyperparameters are
λA = 0.005 and λW = 0.0005.

The model is then learned at orders 1–19, as with Granger causality, and the Akaike
Information Criterion (AIC) is used to find the optimal model order.
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Figure 2. DYNOTEARS cross-validation result. Average root mean squared error (RMSE) over model
orders 1–10 for each pair of hyperparameters λW and λA. Darker colours denote a larger number.

2.4. Comparison with Underlying Features

A total of 210 other features provided in the dataset are compared with the causality
results. Box plots are automatically drawn comparing the frequency of links between
each pair of variables in the validation set with each underlying feature, and those with
correlations are identified. To disregard spurious correlations, the two test sets are checked
for the same correlations. A small number of these correlations appear in the results from
all three datasets. By this method, the participants’ waist girth is identified as a feature of
interest. Waist girth varies substantially in the population, and it is potentially significant if
the functioning of the body during sleep is affected by it.

The results from applying DYNOTEARS to the test sets are subsequently checked for
the waist girth correlation in order to compare them with the Granger causality results. To
enable comparison between the graph of processes produced by Granger causality and
the dynamic Bayesian networks produced by DYNOTEARS, a single adjacency matrix is
produced in which a link is recorded between two nodes if at least one link between those
nodes, at any lag, is discovered by DYNOTEARS. Links to a variable from its own past
are omitted as these are assumed to exist by Granger causality (and in this case are always
discovered by DYNOTEARS).

3. Results
3.1. Overall Graph Structure

Figure 3 shows how frequently the 90 potential links are identified in the dataset by
both methods across all the windows in the testing dataset. Those identified in at least
50% of the windows are highlighted with a tick mark. It should be noted that some of
the windows fall just below the threshold for inclusion. Figure 4 depicts structure graphs,
including the accepted links.

With DYNOTEARS, the relative values of the results for different links are, in general,
similar to those in the Granger causality results. Which potential links are identified in each
window depends on the threshold (referred to as τA and τW in the original DYNOTEARS
paper, but set to the same value in the code); this is simply a value below which an entry in
the adjacency matrix is set to 0.

In the DYNOTEARS paper, this is set low (to 0.01), but the arbitrary nature of it means
that it is possible to select one that produces similar results to Granger causality (in this
case, 0.018).
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Figure 3. Heatmaps of Granger causality and DYNOTEARS results (test set 1). A white tick mark (X)
indicates that a link is identified in at least 50% of the 10,000 windows. Colours correspond to the scales
on the right. Causal relationships are often identified between the EOG and EEG measurements and
between Position and Blood_Oxygen; in addition, the ECG to EOG and EEG links are often identified.

Figure 4. Graphs of links identified by Granger causality and DYNOTEARS (DYNOTEARS threshold
0.018) (test set 1). Threshold was chosen by manual trial and improvement to produce results similar
to those from Granger causality. Graphs produced using DAGitty [22].

3.2. Impact of Waist Girth

When examining the results from individual sleep studies, a correlation is evident
between the size of a participant’s waist and the number of windows that feature certain
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causal links. This is particularly notable for the links going from the electrocardiogram
(ECG) trace to the electrooculogram (EOG) and electroencephalogram (EEG) traces. This
is shown in Figure 5. The difference is particularly notable for participants with small
waists. In Figure 6, the waist girth relationship is split by sex. The correlation is particularly
pronounced among female participants with low waist girths; a contributing factor is likely
that their waist size is more likely to be on the lower end (Figure 1). Most of these results
have a high range over the 50 windows per participant that are tested.

These correlations were identified in the validation set and confirmed in the two test
sets. This suggests that the correlation has not occurred by chance and reflects information
about the functioning of the body.

The correlation is still present in the DYNOTEARS result, though it is weaker than
in the Granger causality results. As usual, the choice of threshold makes a substantial
difference to the results.

Figure 5. Relationship between waist girth and ECG→ EOG and ECG→ EEG links, using both
methods (test set 1). The y-axis represents the mean number of windows, out of 50, from each sleep
study in which a link is identified. Outliers (depicted as circles) are those beyond 1.5× the inter-
quartile range from the lower and upper quartiles. Total 199 participants included; one participant
excluded due to no waist girth measurement.

Figure 6. Relationship, split by sex, between waist girth and Granger causality between ECG and left
occipital EEG (ECG→ EEG_LO) (test set 1). Outliers (depicted as circles) are those beyond 1.5× the
inter-quartile range from the lower and upper quartiles. One participant excluded due to no waist
girth measurement.
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4. Discussion

This paper makes an empirical comparison of two methods of learning causal struc-
ture from data: Granger causality, developed in the econometrics literature, and the
DYNOTEARS model, based on acyclicity-constrained optimisation. These data have been
used for machine learning tasks by other researchers [23,24] but, to the authors’ knowledge,
this is the first study that derives causal relationships from them using Granger causality or
DYNOTEARS. Some links are discovered by both algorithms, with DYNOTEARS finding
significantly more links that are likely to be causal. While others have attempted to infer
causal relationships from physiological sensor data taken during sleep (see citations in
Section 1.1), we believe that this is the first study to relate such relationships to underlying
participant health.

Both methods reveal a common structure underlying the data. This structure presents
several distinctive characteristics: first, these data indicate mutual causality between
the EOG and EEG traces. Secondly, there appears to be a mutual causality between
blood oxygen saturation levels and sleeping position. This observation is consistent with
existing literature suggesting that body position can impact respiratory efficiency [25]. The
identification of such causative links may assist medical professionals in making informed
decisions regarding patient interventions.

On the other hand, Granger causality does not identify a pathway from sleeping
position to snoring. This is in contrast with the medical literature, which finds snoring
more likely among those who sleep in the supine position than those who sleep in the
lateral position [26,27]. This likely suggests limitations in these results, as the correlation
is well-established. DYNOTEARS, at the chosen threshold, only identifies a pathway in
the opposite direction, which fits with the expected correlation but seems contrary to
logical expectations.

A notable feature of the DYNOTEARS results that is not found by Granger causality
is the presence of a link from the first eight variables to both position and blood oxygen
level, both of which are independent of all other variables except each other in the Granger
results. The reason for this difference is not clear.

The observed causal link between biopotential (EEG, EOG, and ECG) data and waist
girth is intriguing, suggesting that the way the body functions during sleep varies according
to body composition. The dynamic interaction between the brain and cardiac system is
not well understood, although it may be associated with different phases of sleep [28].
The potential impact of body composition on this relationship could prove therapeutically
helpful to clinicians if confirmed; humans have varying body shapes, and it may be that
this link affects treatment. Granger causality and DYNOTEARS are useful here as they
have identified a correlation between a factor and the causal link between two variables.

4.1. Comparison of Methods

A significant advantage of Granger causality over DYNOTEARS is its lack of hyperpa-
rameters. This means that it does not need to be repeatedly run to perform cross-validation,
saving time. It also means that its results depend less on a user’s choice of whether a partic-
ular causal link is significant. At the same time, the dynamic Bayesian network structure
learned by DYNOTEARS provides more detailed information about which time lag the
causality is occurring at. As it produces an acyclic graph, it is possible to use its results to
identify conditional independencies. Future work should investigate the specifics of these
dynamic graphs.

While the definition of causality is contentious, Granger causality—a concept based
on predictive ability rather than true causality—benefits from being simple to explain and
based on an intuitive, logical concept. When using DYNOTEARS, one learns an adjacency
matrix that minimises the loss when reconstructing the data. This may be considered a less
convincing approach to learning “causal” relations than Granger’s method. Given this, it is
notable that the two methods agree on many of the links in this study.
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Another weakness of the NO TEARS-style approach to structure learning is that the
loss function is non-convex. This means that for a particular input, there may be multiple
possible adjacency matrices that correspond to a stationary point and would be considered
solutions; the algorithm will only return one of these. However, in the empirical tests
published in the original NO TEARS paper, the obtained solution is often close to the
ground truth. The authors suggest that this is evidence that non-convexity is a minor
issue in practice [14]. The paper that introduced DYNOTEARS does not make a similar
statement, but the method is shown to be competitive with alternative algorithms [15].
A comparison with Granger causality is not made.

Both methods can identify how physiological factors affect the functioning of a per-
son’s body during sleep. Further work should investigate how this relates to other factors
that were not used in this study.

4.2. Limitations

Not all data may be modelled meaningfully using least-squares linear autoregressive
models; other, more complex models should be used to identify non-linear relationships.

EMG signals often have a high frequency. The sampling frequency is set by the
instruments used by the Wisconsin study and may be too low to identify some of these
high frequencies; therefore, there may be aliasing in the data. This may limit the usefulness
of the causality calculations.

The maximum lag order of 19, while enough to identify a significant number of
relationships using both methods, is short. This maximum order may well miss longer-
term causal relationships.

This study is limited by its inability to account for other factors for which there are no
data available. It is all but certain that causal sufficiency, the assumption that all relevant
variables are measured, is not achieved here. This limits the conclusions that can be drawn
due to the possible confounding of links by unobserved factors.

5. Conclusions

Understanding the functioning of the body during sleep is a problem with clinical
relevance, and causal discovery from time-series data may assist with this. This paper
uses two methods to learn the causal structure from time-series polysomnographic data:
Granger causality and the continuous optimisation method DYNOTEARS. The two meth-
ods produce structures that are similar in some aspects but vary in others; in particular,
features causing body position are more frequently identified by DYNOTEARS than by
Granger causality. Finally, a correlation exists between participants’ waist girth and the
frequency of identification of the ECG→ EOG and ECG→ EEG links.
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