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Abstract: With the development of intelligent IoT applications, vast amounts of data are generated by
various volume sensors. These sensor data need to be reduced at the sensor and then reconstructed
later to save bandwidth and energy. As the reduced data increase, the reconstructed data become less
accurate. Usually, the trade-off between reduction rate and reconstruction accuracy is controlled by
the reduction threshold, which is calculated by experiments based on historical data. Considering the
dynamic nature of IoT, a fixed threshold cannot balance the reduction rate with the reconstruction
accuracy adaptively. Aiming to dynamically balance the reduction rate with the reconstruction accu-
racy, an autonomous IoT data reduction method based on an adaptive threshold is proposed. During
data reduction, concept drift detection is performed to capture IoT dynamic changes and trigger
threshold adjustment. During data reconstruction, a data trend is added to improve reconstruction
accuracy. The effectiveness of the proposed method is demonstrated by comparing the proposed
method with the basic Kalman filtering algorithm, LMS algorithm, and PIP algorithm on stationary
and nonstationary datasets. Compared with not applying the adaptive threshold, on average, there is
an 11.7% improvement in accuracy for the same reduction rate or a 17.3% improvement in reduction
rate for the same accuracy.

Keywords: data reduction; Internet of Things; Kalman filtering; concept drift detection

1. Introduction

The rapid advancement in mobile smart hardware has enabled the creation of intel-
ligent IoT applications, which generate a vast amount of sensor data [1]. The amount
and geographic distribution of these data make them distinctive. Processing such data
requires sending the data to a remote processor, such as a sink node, an edge device, or
a cloud center, as sensor devices frequently lack the computing and storage power to do
so [2]. These sensor data are often reduced at the sensor and then reconstructed at the data
processor to save bandwidth and communication costs.

Research on data collection and reduction in wireless sensor networks (WSNs) aims
to reduce IoT nodes’ energy consumption by reducing data transmission volume [3].
Data compression, data prediction, and data aggregation are the three main types of data
reduction algorithms [4]. Data prediction is a more popular and effective strategy because
it may achieve a substantial data reduction ratio in contrast with other strategies [5]. Data
prediction executes by building a data prediction model with the same parameters at both
the sensor and the remote processor. The data predicted by the sensor and the remote
processor are identical at one time. Therefore, the sensor only needs to determine if the
predicted data are accurate or not before uploading the data. No data transmission is
necessary if the difference between the predicted value and the collected value is smaller
than the reduction threshold. If not, the remote processor receives the data sensor gathered,
and the prediction model is updated [4]. As the reduced data increase, the reconstructed
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data become less accurate. Usually, the trade-off between reduction rate and reconstruction
accuracy is controlled by the reduction threshold, which is calculated by experiments based
on historical data.

Considering the dynamic nature of IoT, a fixed threshold can rarely maintain the
optimal balance, resulting in a lower reduction rate and reconstruction accuracy. If the
fixed threshold is smaller than expected, less data are reduced and data reconstruction
becomes easier. While the reconstruction accuracy is superior, the data reduction rate is
compromised, leading to unacceptable energy and bandwidth consumption. On the other
hand, if the fixed threshold is excessive, too much data are reduced, and it is difficult
to reconstruct accurate data at a remote processor. Experiments in the literature [6] also
showed that as the reduction parameter increased, the degree of simplification of a reduced
object also increased. Thus, we consider dynamically adjusting the threshold to increase
the reduction effect in a dynamic IoT. When IoT data change frequently, the threshold can
be lower to upload additional data for reconstruction. As the data stabilize, the threshold
can gradually increase to reduce more unessential data.

Aiming to dynamically balance the reduction rate with the reconstruction accuracy,
an autonomous IoT data reduction method based on an adaptive threshold is proposed.
The proposed method consists of a data reduction phase and a data reconstruction phase.
During the reduction phase, concept drift detection is performed to capture IoT data
changes and trigger threshold adjustment. The threshold is adjusted to be lower if concept
drift occurs, and higher otherwise. During reconstruction, data trends are introduced to
improve reconstruction accuracy. When concept drift detection identifies data changes, a
data trend is introduced to replace a fixed linear rate from a Kalman filter for higher data
reconstruction accuracy. To verify the applicability of the proposed method, experiments
are executed in seven properties on three datasets, including stationary and nonstationary
types. Then, a comparative analysis with the basic Kalman filtering algorithm [7], LMS filter
algorithm [8], and critical+PIP algorithm [9] is conducted. Moreover, our main contribution
is as follows.

• First, to the best of our knowledge, this is the first scheme to incorporate an adaptive
reduction threshold into a data reduction algorithm based on Kalman filtering, which
enables autonomous IoT data reduction without the need for cloud.

• Second, aiming to execute reduction threshold adjustment dynamically, a concept drift
detection to capture IoT changes is introduced.

• Third, we add a data trend in the data reconstruction stage to further improve data
reconstruction accuracy.

The rest of the paper is organized as follows. In Section 2, we analyze the lack of
autonomy from traditional data reduction and several IoT data reduction algorithms, then
give essential background knowledge of Kalman filtering and data reduction based on
prediction. The autonomous IoT data reduction algorithm is presented in Section 3 in the
order of two steps. Section 4 consists of experimental evaluations of data reduction rate and
data reconstruction accuracy on stationary and nonstationary datasets. Finally, Section 5
concludes the paper and provides insights on autonomous edge data reduction.

2. Related Works

In related works, first, they introduce data compression and data aggregation methods
in wireless sensor networks and why they are less autonomous and suitable for a dynamic
IoT. Second, data reduction methods in IoT are introduced, especially data prediction that
takes into account a dynamic IoT. After that, we summarize the basic process and mathe-
matical basis of using a Kalman filter for data reduction. This process and mathematical
notation will continue to be used for the rest of this article.

2.1. Data Compression

Data compression techniques [10,11], also known as compressive sampling or compres-
sive sensing, are based on the inherent sparsity properties of natural signals and reduce the
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original signal according to the Shannon–Nyquist theorem. Data compression can signifi-
cantly reduce the energy consumption used for data acquisition in IoT nodes. For example,
Chang et al. [12] applied the mean difference (MD) for filtering data noise and redundant
values in the proposed an AIoT architecture. Gilles et al. [13] used a compressed sensing
approach based on a sub-Nyquist scheme, known as a modulated wideband converter, to
solve wideband spectrum sensing. Aniol et al. [14] proposed an algorithm based on linear
prediction that can perform both the lossless and near-lossless compression of RF signals.
The proposed algorithm is coupled with two signal detection methods to determine the
presence of relevant signals and apply varying loss levels as needed. In data compression,
the amount of reduced data depends on the compression algorithm, and thus, the reduction
rate can rarely be adjusted autonomously according to the dynamic IoT. Meanwhile, the
real-time compression and decompression also put pressure on the storage and computing
capabilities of IoT devices.

2.2. Data Aggregation

Data aggregation [15] is mainly used at the sink node to regulate sensor sampling
frequency and thus optimize energy consumption. It works in two ways. First, it dynami-
cally adjusts the sensor-sampling-frequency-based variance between sensor data at a given
epoch, which reduces the energy consumption of the sensing unit by preventing the sensor
from collecting redundant information. Second, it dynamically adjusts the rate at which
features are computed from the original signal. Chen et al. [16] proposed to extract the
data features based on fast Fourier transform (FFT) and apply K-means to generate a set of
patterns to represent the time-series data in the application of reducing real-time bridge
vibration data. Wang et al. [17] proposed an energy-efficient load balancing tree-based
data aggregation scheme (LB-TBDAS) for grid-based WSNs. In the scheme, the sensing
area is partitioned into many cells of a grid, and the treelike path is established by us-
ing the minimum spanning tree algorithm. Zhang et al. [18] proposed a lightweight and
privacy-friendly data aggregation scheme against abnormal data, in which the valid data
can correctly be aggregated, but abnormal data will be filtered out during the aggregation
process. Data aggregation emphasizes the task allocation of data reduction and recon-
struction at the physical level. Then, additional data reduction algorithms are required at
each node. In this paper, the sensor performs data reduction, and the remote processor
performs reconstruction.

2.3. IoT Data Reduction

To reduce data transferred to an edge node, Bhargava et al. [19] came up with the idea
of only storing values that cannot be predicted accurately based on history. According to an
analysis of geographical restrictions from Cao et al. [20], only data along the trajectory for
local services should be collected. Wang et al. [21] built an RNN by edge-cloud cooperating
for performing data prediction on the edge node and selecting necessary data for updating
the data prediction model to upload. The edge data were divided into known situations and
unknown scenarios by Zhang et al. [22] for learning model updates. Only the recognized
unknown situations are sent to the cloud, and other redundant data are discarded.

An in-networking approach is proposed in [7] based on data prediction. The proposed
approach consists of data filtering and data fusion layers. The data filtering layer aims
to minimize the number of transmissions. At the same time, the data fusion layer fuses
the data based on the minimum squared error criterion. Its Kalman filter double-layer
architecture is used in this paper as the base model and comparison method. The least
mean square (LMS) algorithm is proposed in [8]. The algorithm is based on two decoupled
LMS windowed filters combined convexly with different sizes. It estimates future readings
at both the sink and sensor nodes. Data transmission occurs if the current reading deviates
significantly from a predefined threshold.

Given the dynamic nature of IoT, several existing data prediction approaches focus on
dynamic edge resources and sensor hardware for data reduction. Fuzzy redundancy elimi-
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nation for data deduplication (FREDD) [23] finds that traditional data reduction overlooks
the context and dynamics of the network, meanwhile relying on a fixed threshold to execute
data reduction. Simple natural language rules represent domain knowledge and expert
preferences regarding data duplication boundaries. It is adapted for multiple scenarios,
considering both static and mobile devices, with different configurations of hard-separated
and soft-separated zones and sensor coverage areas. Data redundancy management for
leaf-edges (DRMF) [24] allows for identifying and removing data redundancies in con-
nected environments at the device level. DRMF considers static and mobile edge devices
and provides two temporal and spatiotemporal redundancy detection algorithms. Once
redundancies are identified, DRMF performs data deduplication, considering the dynamic
requirements of data consumers and device resources. Meanwhile, data inaccuracies and
unreliability due to sensor dynamics are usually ignored [5]. Thus, data reduction and
faulty data detection are proposed while enhancing data reliability.

The following is a summary of how our approach differs from other data reduction
techniques. First, existing data reduction techniques rarely consider the dynamic balance
between reduction rate and reconstruction accuracy in a dynamic IoT. Second, we adap-
tively adjusted thresholds for autonomous data reduction using concept drift detection [25].
Finally, current Kalman-filter-based data prediction techniques assume that the IoT data
vary linearly [26] due to low computing capabilities of sensors. They do not use an adaptive
data trend [27] to forecast future data.

2.4. Kalman Filtering Basics

To introduce data reduction based on Kalman filtering, we give a brief review of
Kalman filtering [26], which contains two steps, named the prediction step and the correc-
tion step. The prediction step can be described as

xk = Akxk−1 + Bkuk (1)

Pk = AkPk−1 AT
k + Qk, (2)

where xk is the estimate of the state at time step k, Ak is the state transition matrix, Bk is the
control input matrix, uk is the control input, Pk is the estimate of the covariance matrix of
the state estimate, and Qk is the process noise covariance matrix.

The correction step can be described as

yk = zk − Hkxk (3)

Sk = HkPk HT
k + Rk (4)

Kk = Pk HT
k S−1

k (5)

xk = xk + Kkyk (6)

Pk = (I − Kk Hk)Pk, (7)

where yk is the innovation, zk is the measurement, Hk is the measurement matrix, Sk is
the covariance of the innovation, Kk is the Kalman gain, and Rk is the measurement noise
covariance matrix.

In basic data prediction based on Kalman filtering methods, zk denotes the real-time
data collected by the sensor, and xk the data predicted by the Kalman filter. Data prediction
executes by building a data prediction model with the same Kalman filter parameters at
both the sensor and the remote processor. The data predicted by the sensor and the remote
processor are identical at one time. Therefore, the sensor only needs to determine if the
predicted data xk are accurate or not before uploading the data. No data transmission is
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necessary if the difference between the predicted value xk and the collected value zk is
smaller than the reduction threshold.

ek = |zk − xk| (8)

When ek calculated by Equation (8) is less than emax, the error is accepted, and data
do not need to be uploaded. The parameter emax determines the accuracy tolerance and
reconstruction accuracy. Thus, the value of emax is crucial in balancing the reduction rate
with reconstruction accuracy.

3. Proposed Adaptive Reduction Threshold Data Reduction Method

Aiming to dynamically balance the reduction rate with reconstruction accuracy, we
propose an autonomous IoT data reduction method based on an adaptive threshold. The
proposed method consists of five modules: sensor data acquisition, concept drift detection,
threshold adaptive adjustment, data reduction, and data reconstruction. As shown in
Figure 1, the modules are divided into two main components: the sensor and the remote
processor. The sensor is responsible for data acquisition and reduction, while the remote
processor is for data reconstruction.

Figure 1. Proposed adaptive reduction threshold data reduction method.

Sensor data are transmitted to the concept drift detection after a sensor data acquisition
module. The concept drift detection module is responsible for detecting IoT data changes. If
concept drift is found, the adaptive threshold adjustment module lowers the threshold emax.
In other cases, emax rises and transmits to the data reduction module. The basic Kalman
filter was used to execute the reduction in the data reduction module. Next, it was chosen
whether to transmit the real data zk to the remote processor based on the comparison with
the threshold. If xk is similar to zk, there is no need to transmit zk to a remote processor,
and a remote processor uses xk predicted locally in the same parameters with a sensor.
Otherwise, zk should transmit to a remote processor and be assigned to zk for accurate later
prediction. This assignment is an update to the remote processor’s Kalman filter, which
failed to predict at time k and needs to be updated for later predictions. Without zk, the
data reconstruction module forecasts xk based on the data trend dk and Kalman filter. Each
algorithm is analyzed in subsections next in this paper.

3.1. Adaptive Adjustment for Reduction Threshold Based on Concept Drift Detection

As mentioned above, adaptive threshold adjustment based on concept drift detection
is vital for balance reduction rate and reconstruction accuracy. The detected concept drift
indicates a change in the data pattern in a given time window, necessitating a lower data
reduction rate to capture more data. Without drift, the data reduction rate gradually
increases to filter out irrelevant data.

The Kalman filter assumes that observed data vary linearly [26] and that the linear
change rate is constant. Since IoT is dynamic, the linear rate may change sometimes. The
linear rate will likely change when the absolute value of a cumulative increment over a
time window is abnormal. Thus, the cumulative sum (CUSUM) algorithm [28] is employed
to detect concept drift. CUSUM is a statistical control method that detects small shifts in the
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mean value of a process by monitoring it over time. The CUSUM algorithm accumulates
and amplifies persistent biases, thus allowing earlier detection of concept drift, such as
linear rate changes. Furthermore, we demonstrate that the CUSUM algorithm can be
integrated with other concept drift detection methods by merely swapping out the drift
detection module with a different algorithm.

The algorithm works as follows. To address detected concept drift, if the current value
of emax exceeds the established errormin, emax decreases to lower the reduction rate and
enhance the reconstruction accuracy. Without concept drift, emax increases for a higher
reduction rate. Adjustments of emax are subject to the constraint that they must remain
within the specified errormax and errormin. When the values of errormax or errormin are large,
a higher data reduction rate is chosen at the expense of a lesser level of reconstruction
accuracy, which is suited for sensors with limited processing power. When errormax or
errormin is small, a higher reconstruction accuracy can be guaranteed instead of pursuing a
higher data reduction rate. More complex and intelligent decision-making behaviors can
be performed based on more accurate data. The settings of errormax and errormin need to be
analyzed and set after particular experiments on different datasets. In the experimental
section of this paper, the data reduction rate and reconstruction accuracy are compared
and analyzed in detail for different threshold values. Meanwhile, the step size of each
threshold change depends on the experimental setup and preferences for how fast or slow
the concept drift needs to be adapted.

3.2. Autonomous Data Reduction Algorithm Based on Adaptive Reduction Threshold

Next, we describe how to execute autonomous data reduction with an adaptive thresh-
old. In addition, a mechanism for calculating and uploading data trend is shown. When the
data are initialized, z1 is uploaded and stored into the cachedval. With using historical data,
cache the actual value before calculating dk. To determine whether concept drift has taken
place and to establish the new threshold, Algorithm 1 is performed. If the threshold value
has changed, it suggests there may have been a change in the linear rate, in which case, dk
should be uploaded instead of Hk to forecast future data. Uploading dk is not necessary
in any other case. The estimated value xk is then calculated using the Kalman filter, and
the gap between the estimated value and the actual value is compared with emax. The real
value zk should be submitted when the difference exceeds emax.

dk =

{
zk − zk−1, k = 2
α(zk − zk−1) + (1− α)dk−1, k > 2

(9)

Algorithm 1 Adaptive Adjustment Algorithm for Reduction Threshold
Input: current threshold emax, threshold minimum errormin, threshold maxmum errormax

1: while True do
2: Call the CUSUM algorithm to determine if concept drift has occurred
3: if Concept drift occurs then
4: if emax > errormin then
5: Lower the current threshold emax
6: if emax < errormin then
7: emax = errormin

8: else
9: if c < errormax then

10: Raise the current threshold emax
11: if emax > errormax then
12: emax = errormax

In Equation (9), dk represents the data trend at k and is smoothed with a weight α,
which lies in the range [0, 1]. A value of α close to 1 prioritizes the most recent trend.
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Both the true data value and data trend dk are transmitted to the remote processor for data
reconstruction, as shown in Algorithm 2.

Algorithm 2 Data Reduction Algorithm Based on Adaptive Reduction Threshold
Input: current threshold emax, sensor reading zk, data trends dk−1, data cache cachedval
1: while True do
2: if k = 1 then
3: Insert zk into cachedval
4: Send zk to remote processor
5: else
6: Insert zk into cachedval
7: Calculate dk
8: Call Algorithm1 to calculate adaptive reduction threshold
9: if emax changes then

10: send dk to edge server
11: Call the Kalman filter to calculate estimated value xk
12: ek = zk − xk
13: if |ek| > emax then
14: send zk to remote processor

Concept drift indicates the possibility of linear rate change, invalidating the original
Kalman filter assumption of a constant linear rate. As a result, dk should be submitted
for prediction instead of Hk. The observation does not match the sensor’s predicted value
when ek is larger than the threshold, and it is also challenging to reconstruct. However,
these may be anomaly data or a measurement error rather than a concept drift or linear
rate change. In this scenario, Hk remains valid to forecast future data.

3.3. Data Reconstruction Algorithm Based on Data Trend

After autonomous data reduction, the remote processor does not receive the data
uploaded from the sensor in every time window. When the data processor receives zk,
there is no need for data reconstruction. Nevertheless, when the remote processor fails to
receive sensor data, data reconstruction is performed using a Kalman filter assisted by the
data trend dk. The data reconstruction procedure is detailed in Algorithm 3. The Kalman
filter assumes that the observed data vary linearly. Since IoT is dynamic, nonlinear changes
could occur sometimes. Nonlinear Kalman filters, however, are challenging to implement
in IoT due to limited computing and storage capacity. As a result, when concept drift
detection identifies data changes, we use a data trend to replace the fixed Hk and forecast
future value.

Algorithm 3 Data Reconstruction Algorithm Based on Kalman Filtering and Data Trend
Input: sensor reading zk, data trends dk, data cache cachedval
1: while True do
2: if sensor reading zk is not None then
3: Insert zk into cachedval
4: Calculate dk
5: else
6: Call the Kalman filter to calculate estimated value xk
7: if |ek| > emax then
8: zk = zk−1 + dk
9: else

10: zk = xk

Upon receiving of the data zk from the sensor, the Kalman filter at the remote processor
undergoes a data reconstruction phase. Data trends are stored to facilitate data reconstruc-
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tion in subsequent cycles. Reversely, the Kalman filter is utilized to predict zk based on xk.
First, the difference between the Kalman filter’s predicted value xk and the reconstructed
data is calculated. If this difference exceeds a specified threshold emax, the trend of the data
dk is utilized for reconstruction. Otherwise, the result of the Kalman filter is employed as
the reconstruction outcome.

4. Experiments
4.1. Datasets and Experiment Setting

For the experiments, three datasets were selected for analysis. The first dataset, Intel
Lab data (Bodik P, Hong W, Guestrin C. Intel Lab data. http://db.csail.mit.edu/labdata/
labdata.html, 2004), comprises information on data collected from 54 sensors deployed
at Intel Lab from 28 February 2004, to 5 April 2004. Data were collected at a frequency
of 30 seconds per sample, and temperature, humidity, light, and voltage properties were
included. Experimental comparisons were performed using 6000 temperature, humidity,
and light sensor data from this dataset. The second dataset, the Individual Household
Electric Power Consumption dataset (Lichman M, UCI Machine Learning Repository.
University of California, Irvine, School of Information and Computer Sciences, 2013),
encompasses 2,075,259 measurements collected from December 2006, to November 2010 in
residences in Sceaux, France. The data were acquired at 60 seconds per sample frequency
and included attributes such as voltage, current, and power. Experimental comparisons
were performed using 6000 voltage, current, and power sensor data from this dataset. The
third dataset is the Dodgers Loop Sensor dataset (Lichman M, UCI Machine Learning
Repository. University of California, Irvine, School of Information and Computer Sciences,
2013), which contains data collected from 10 April 2005, to 1 October 2005, on the Glendale
ramp of the Los Angeles 101 North Freeway. Experimental comparisons were performed
using 6000 data points within this dataset.

Upon conducting ADF root mean square tests on the above properties, we found
p-values of 0.937 and 0.9024 for Intel Lab data, and 0.7437 and 0.7598 for current and
power in the Household Power Consumption data. These values were significantly higher
than 0.05, leading to the acceptance of the null hypothesis H0 and indicating that the data
exhibited stationary patterns. In contrast, ADF test results for the illumination attribute in
Intel Lab data, voltage attribute in Household Power consumption data, and vehicle count
attribute in Dodge Loop Sensor Data reveal p-values of 6.54× 10−16, 1.31× 10−12 and 0.0,
respectively. These values were close to 0, leading to the rejection of H0 and suggesting
that these data exhibited nonstationary patterns, as shown in Table 1.

Table 1. Datasets.

Dataset Attribute p-Value Decision Stationary

Intel Lab Data

Temperature 0.937 Retain H0 Stationary

Humidity 0.9024 Retain H0 Stationary

Light 6.54× 10−16 Reject H0 Nonstationary

Power Consumption

Voltage 1.31× 10−12 Reject H0 Nonstationary

Current 0.7437 Retain H0 Stationary

Power 0.7598 Retain H0 Stationary

Dodgers Loop Sensor Count 0 Reject H0 Nonstationary

This paper compared two aspects to evaluate the effectiveness of the proposed method
in data reduction: data reduction rate (DRR) and data reconstruction accuracy (DRA).
The definition of the data reduction rate is shown in Equation (10), where DRR repre-
sents the data rate, AD represents the total amount of data, and RD represents the total
amount of remaining data after reduction. The data reconstruction accuracy is inspired
by the Jaccard similarity between reconstructed and original data of the same length.

http://db.csail.mit.edu/labdata/labdata.html
http://db.csail.mit.edu/labdata/labdata.html
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Let T1 = [z1, z2, . . . , zn] be the actual collected data, and T2 = [r1, r2, . . . , rn] be the recon-
structed data. The Jaccard similarity between T1 and T2 is calculated using Equation (11),
where DRA represents the data reconstruction accuracy, and n represents the number of
reconstructed data. Meanwhile, we calculate the transmission of dk when computing the
transmission of our method.

DRR =
AD− RD
AD× 100

(10)

DRA =
∑n

i=1 min(zi, ri)

∑n
i=1 max(zi, ri)× 100

(11)

4.2. Experiments on Adaptive Reduction Threshold emax

To ensure that the threshold varies within a specific range, the algorithm is executed on
the same dataset, the range of threshold variation is calculated and shown in Tables 2 and 3.
The calculated range of threshold variation is also used as a statistical value in subsequent
data reduction comparison experiments.

Table 2. Threshold setting for stationary datasets.

Intel Lab Data Household Power Consumption

Threshold Temperature Humidity Current Power

Min(e_max) 0.01 0.013 0.21 0.2

Max(e_max) 0.09 0.14 1.5 4

Table 3. Threshold setting for nonstationary datasets.

Intel Lab Data Household Power Consumption Dodgers Loop Sensor

Threshold Light Voltage Count

Min(e_max) 0.1 0.21 1

Max(e_max) 0.9 1.5 7

Experiments were conducted using the proposed data reduction method on the tem-
perature and humidity attributes of the Intel Lab data dataset, as well as the current and
power characteristics of the Household Power Consumption dataset with stationary-type
variations. The threshold range for the temperature attribute was set between 0.01 and
0.1 °C, with an average adaptive threshold of 0.0598 °C, a median threshold of 0.07 °C, a
mode threshold of 0.09 °C, and a Pearson correlation coefficient of −0.432 between the
threshold variation process and the temperature attribute. The threshold range for the
humidity attribute was set to 0.01–0.14%, with an average adaptive threshold of 0.0654%,
a median threshold of 0.06%, a mode threshold of 0.01%, and a Pearson correlation coef-
ficient of 0.4882 between the threshold variation process and the humidity attribute. For
the current attribute of the Household Power Consumption dataset, the threshold range
was set between 0.2 A and 4 A, with an average adaptive threshold of 2.45 A, a median
threshold of 3.4 A, a mode threshold of 4 A, and a Pearson correlation coefficient of −0.548
between the threshold variation process and the current attribute. The threshold range for
the power attribute was set between 0.25 and 7.2 W, with an average adaptive threshold of
2.26 W, a median threshold of 0.85 W, a mode threshold of 0.25 W, and a Pearson correlation
coefficient of 0.5003 between the threshold variation process and the humidity attribute.
The threshold variation for all attributes showed a moderate correlation with the Data,
demonstrating the effectiveness of the proposed dynamic threshold adjustment mechanism
in the Data reduction mechanism. The adaptive adjustment mechanism based on concept
drift detection can adjust the reduction rate as the data change pattern evolves.

The following two figures depict the threshold variation process of stationary data.
Figure 2 corresponds to the Intel Lab dataset, where Figure 2a shows the temperature data
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change, Figure 2b shows the temperature threshold change, Figure 2c shows the humidity
data change, and Figure 2d shows the humidity threshold change. Figure 3 corresponds
to the Household Power Consumption dataset, where Figure 3a shows the current data
change, Figure 3b shows the current threshold change, Figure 3c shows the power data
change, and Figure 3d shows the power threshold change.

(a) temperature data (b) temperature threshold

(c) humidity data (d) humidity threshold

Figure 2. Adaptive threshold chart of Intel Lab data.

(a) current data (b) current threshold

(c) power data (d) power threshold

Figure 3. Adaptive threshold chart of Household Power Consumption.

In this study, the proposed method for data reduction was applied to nonstationary
data from the Intel Lab data for light intensity, the Household Power Consumption dataset
for voltage, and the Dodgers Loop Sensor dataset for vehicle count. The threshold range
for the light intensity attribute was set from 0.1 to 0.9 Lux, with an adaptive threshold
average of 0.5139 Lux, a median threshold of 0.5 Lux, and a mode threshold of 0.4 Lux. The
threshold change process showed a weak negative correlation with the current attribute,
with a Pearson correlation coefficient of −0.398. For the voltage attribute, the threshold
range was set from 0.21 to 1.5 V, with an adaptive threshold average of 1.02 V, a median
threshold of 1 V, and a mode threshold of 1 V. The threshold change process showed a weak
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positive correlation with the humidity attribute, with a Pearson correlation coefficient of
0.344. For the Dodgers Loop Sensor, the vehicle count threshold range was set from 1 to 7,
with an adaptive threshold average of 1.383, a median threshold of 1, and a mode threshold
of 1. The threshold change process showed a weak negative correlation with the humidity
attribute, with a Pearson correlation coefficient of –0.372. When dealing with nonstationary
data, the threshold change process is weakly correlated with the data attributes. The
data fluctuation is relatively large, resulting in significant differences between adjacent
data points. Consequently, the Kalman filter model may fail to predict the next data
value accurately, and the error threshold will continue to decrease. The error threshold is
maintained at a relatively low level to ensure data accuracy while the data reduction rate
is decreased.

The following images depict the threshold variation process for nonstationary data.
Figure 4a shows the change in light data, Figure 4b represents the corresponding threshold
variation, Figure 4c shows the variation in voltage intensity, and Figure 4d shows the
voltage threshold variation. Figure 4e illustrates the variation in count data, while Figure 4f
presents the corresponding threshold variation.

(a) light data (b) light threshold

(c) voltage data (d) voltage threshold

(e) count data (f) count threshold

Figure 4. Adaptive threshold chart of nonstationary datasets.

After errormax and errormin are set, we calculate a tenth of the difference between
errormax and errormin as the step size. Each time emax increases or decreases, it changes by
one step.

4.3. Experiments on Adaptive Reduction Rate and Reconstruction Accuracy

In this section, the effectiveness of the proposed method is validated for both stationary
and nonstationary datasets by comparing it with fixed threshold reduction methods, such
as basic Kalman filter and LMS filter reduction methods, as well as the non-threshold
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reduction method and the critical+PIP reduction method. The proposed method adjusts the
reduction rate dynamically based on the data change pattern, and the reduction threshold
changes during the reduction process. Due to various external factors that affect the data,
the change patterns of single-dimensional sensor data may differ at different stages, leading
to differences in data reduction rate and reconstruction accuracy. Therefore, the minimum,
maximum, mean, and mode of the threshold values that are adaptively adjusted by the
proposed method in different datasets are taken as the fixed threshold values in traditional
methods for comparison with basic Kalman filter and LMS filter data reduction methods.
The critical+PIP algorithm is a non-threshold data reduction algorithm, and its efficiency is
measured by comparing the data reduction rate and data reconstruction accuracy of the
critical+PIP algorithm under both stationary and nonstationary datasets.

4.3.1. Experiments on Stationary Attributes Compared with Fixed Threshold

By conducting experiments on temperature and humidity data from Intel Lab data, it
is found that the proposed method has a higher data reduction rate than the basic Kalman
and LMS filter data reduction methods with threshold values set by mean, median, and
mode. As shown in Tables 4 and 5, when the threshold is set as the maximum value, the
proposed method has only a slight reduction rate lower than that of Kalman and LMS filter.
Moreover, the data reconstruction accuracy of the proposed method is higher than that of
traditional Kalman and LMS filter data reduction methods with threshold values set by
mean and median.

Table 4. Experimental results of temperature data.

Basic Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (0.07) 64.60% 77.12% 27.10% 98.11%

68.60% 94.11%

Medium (0.05) 59.80% 82.77% 26.30% 99.29%

Mode (0.04) 56.40% 85.11% 26.00% 99.57%

Min (0.01) 36.10% 92.61% 25.10% 99.97%

Max (0.1) 68.10% 69.41% 27.40% 96.35%

Table 5. Experimental results of humidity data.

Basic Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (0.06) 60.25% 92.02% 56.60% 59.07%

68.90% 95.42%

Medium (0.06) 60.25% 92.10% 56.60% 63.66%

Mode (0.01) 32.30% 99.60% 31.25% 99.79%

Min (0.01) 32.30% 99.60% 31.25% 99.79%

Max (0.14) 81.85% 67.84% 79.50% 52.06%

Through a comparative experiment on the current and power data in the Household
Power Consumption dataset, it is found that for stationary datasets, the data reduction rate
of the proposed method is higher than that of the basic Kalman filter with mean or median
as the threshold. As shown in Tables 6 and 7, the data reconstruction accuracy is better
than that of basic Kalman filtering and LMS filtering under different threshold values.
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Table 6. Experimental resultsof current data.

Basic Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (2.45) 69.10% 78.87% 66.65% 75.24%

69.93% 80.81%

Medium (3.4) 93.90% 63.23% 75.70% 63.95%

Mode (4) 95.50% 61.57% 80.15% 57.42%

Min (0.2) 58.10% 99.60% 46.05% 98.53%

Max (4) 95.50% 61.57% 80.15% 57.42%

Table 7. Experimental results of power data.

Basic Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (0.85) 53.85% 70.30% 16.60% 72.30%

69.05% 75.57%

Medium (2.26) 67.70% 62.10% 36.95% 61.76%

Mode (0.25) 22.30% 91.60% 8.35% 88.06%

Min (0.25) 22.30% 91.60% 8.35% 88.06%

Max (7.2) 81.95% 67.84% 72.55% 52.11%

For stationary datasets, as the reduction threshold increases, the data reduction rate of
the basic Kalman filter and LMS filter will continue to increase, but the data reconstruc-
tion accuracy will decrease. The data reduction rate and reconstruction accuracy of the
traditional Kalman filter are both higher than those of the LMS filter. Compared with the
proposed method, the data reduction algorithm is a dynamic mechanism for controlling the
reduction rate, which can adjust the reduction rate dynamically according to the changing
patterns of the data. The proposed method achieves higher data reconstruction accuracy
when the data reduction rate is equal to that of the traditional Kalman filter.

4.3.2. Experiments on Stationary Attributes Compared with Critical+PIP

The critical+PIP algorithm is a non-threshold-based data reduction algorithm. This
article measures the efficiency of the proposed algorithm by comparing its data reduction
rate and data reconstruction accuracy with those of another algorithm in the Intel Lab data
dataset, specifically for the current and power attributes of Household Power Consumption
and the temperature and humidity attributes.

The experimental results in Table 8 show that the data reconstruction accuracy of the
critical+PIP algorithm is unstable. To observe the difference in data reconstruction accuracy
between the two algorithms, the data reduction rate is controlled between 20% and 80%.
For the Intel Lab data, the temperature data reconstruction accuracy of the critical+PIP
algorithm decreased from 91.28% to 69.73%, and the humidity data reconstruction accuracy
decreased from 68.91% to 52.60%. When processing current data, the data reconstruction
accuracy of the critical+PIP algorithm decreased from 99.12% to 73.97%, and when process-
ing power data, the data reconstruction accuracy decreased from 97.10% to 60.49%. The
proposed method achieves higher and more stable data reconstruction accuracy with the
same data reduction rate.
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Table 8. Experimental results of stationary attributes compared with critical+PIP.

Intel Lab Data Household Power Consumption

Temperature Humidity Current Power

DRR C+PIP Our C+PIP Our C+PIP Our C+PIP Our

20% 91.28% 97.35% 68.91% 86.03% 99.12% 99.18% 97.10% 97.35%

40% 86.84% 96.17% 66.56% 82.28% 95.69% 98.37% 84.45% 95.73%

60% 75.63% 96.26% 59.57% 80.33% 82.64% 94.40% 78.37% 94.48%

80% 69.73% 95.27% 52.60% 74.35% 73.97% 91.72% 60.49% 93.26%

4.3.3. Experiments on Nonstationary Attributes Compared with Fixed Threshold

In the following, we will compare the fixed threshold methods in the nonstationary
attributes. Analysis of the Intel Lab light data indicates that the data values remain mostly
unchanged most of the time. As shown in Table 9, the proposed method exhibits a similar
data reduction rate and data reconstruction accuracy to those of the other compared
methods. We calculate the transmission of dk when computing the transmission of our
method. Therefore, the effect may not be significant in light attribute in Intel Lab data,
which may be caused by the fact that there are fewer nonlinear cases and dk does not need
to be transmitted.

Table 9. Experimental results of light data.

Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (0.51) 83.15% 93.89% 82.65% 92.68%

82.30% 93.11%

Medium (0.5) 83.30% 93.89% 82.65% 92.68%

Mode (0.9) 84.45% 93.94% 82.65% 92.68%

Min (0.1) 82.75% 93.89% 82.65% 92.68%

Max (1) 85.65% 93.52% 82.65% 92.68%

In the case of voltage data shown in Table 10 and count data shown in Table 11 ,
the proposed method achieves a data reduction rate that is 10% lower than that of the
traditional Kalman filter with a mean value threshold for nonstationary datasets. However,
the data reconstruction accuracy of the proposed method is better than that of the traditional
Kalman filter and LMS filter under different threshold conditions.

Table 10. Experimental results of voltage data.

Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (1.02) 82.20% 65.48% 70.80% 60.15%

48.05% 99.85%

Medium (1) 82.00% 65.48% 70.70% 60.15%

Mode (1) 82.00% 65.48% 70.70% 60.15%

Min (0.21) 23.45% 97.89% 18.10% 99.96%

Max (1.5) 94.25% 56.92% 86.25% 49.28%
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Table 11. Experimental results of count data.

Kalman Filter LMS Filter Proposed Method

DRR DRA DRR DRA DRR DRA

Mean (2.13) 55.75% 64.25% 44.35% 65.69%

45.55% 81.46%

Medium (1) 41.80% 75.57% 35.45% 70.43%

Mode (1) 41.80% 75.57% 35.45% 70.43%

Min (1) 41.80% 75.57% 35.45% 70.43%

Max (7) 90.30% 47.96% 35.45% 44.98%

When dealing with nonstationary datasets, the data reduction rate of the traditional
Kalman filter and LMS filter will continue to increase with the increase in the reduction
threshold. Still, the data reconstruction accuracy will be very low, and sudden changes
in data anomalies cannot be observed in a timely manner. In the case of processing
nonstationary datasets, the proposed method can automatically reduce the data reduction
rate, maintain sensitivity, and sustain high data accuracy.

4.3.4. Experiments on Nonstationary Attributes Compared with Critical+PIP

This subsection will measure the efficiency of the proposed algorithm by comparing
the data reconstruction accuracy of critical+PIP data reduction methods with the same
data reduction rate. As Shown in the Table 12, the data reconstruction accuracy of the
critical+PIP algorithm is not stable. When dealing with light data, the data reduction rate is
controlled from 50% to 80%, the data reconstruction accuracy of critical+PIP decreases from
88.48% to 77.70%, and the data reconstruction accuracy of the proposed method decreases
from 96.69% to 93.05%. When processing voltage data, the data reduction rate is controlled
to 20–80%, and the data reconstruction accuracy of critical+PIP data decreases from 92.36%
to 61.73%, while the data reconstruction accuracy of the proposed method in this paper
decreases from 97.35% to 80.36%. It can be seen that the proposed method in this paper
has higher data reconstruction accuracy with the same data reduction rate, while the data
reconstruction accuracy is more stable, and the data reduction effect is better. The data
reconstruction accuracy of the critical+PIP algorithm decreases from 75% to 64.54%, and the
data reconstruction accuracy of this paper decreases from 83.24% to 67.70%. This paper’s
data reconstruction accuracy is higher with the same data reduction rate. Meanwhile,
the data reconstruction accuracy of this paper’s method is more stable than that of the
critical+PIP algorithm when facing a nonstationary dataset.

Table 12. Experimental results of nonstationary attributes compared with critical+PIP.

Data Reconstruction Accuracy

Light Power Count

DRR C+PIP Our DRR C+PIP Our DRR C+PIP Our

50% 88.48% 96.69% 20% 92.36% 97.35% 15% 75.00% 83.24%

60% 84.24% 94.69% 40% 86.84% 91.44% 20% 71.21% 75.84%

70% 79.23% 93.69% 60% 75.63% 84.97% 25% 67.30% 72.33%

80% 77.70% 93.05% 80% 61.73% 80.36% 30% 64.54% 67.70%

5. Conclusions

The large amount of data generated by the sensor needs to be reduced at the sensor and
subsequently reconstructed to save bandwidth and energy. As the reduced data increase,
the reconstructed data become less accurate. The trade-off between reduction rate and
reconstruction accuracy is commonly controlled by the reduction threshold, which is calcu-
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lated by experiments based on historical data. The motivation is that the basic assumption
of the Kalman filter is to remove the influence of noise in the case of static linear rate, while
a dynamic IoT may have special cases, such as linear rate change and concept drift. Using
the original threshold significantly harms the reduction rate and reconstruction accuracy,
and persists for long periods of time when concept drift occurs. In order to dynamically
balance the reduction rate with the reconstruction accuracy, we propose an autonomous
IoT data reduction method based on an adaptive threshold. During the data reduction
phase, concept drift detection is performed to capture the IoT dynamic changes and trigger
threshold adjustment. During the data reconstruction phase, a trend is added to the data to
improve the reconstruction accuracy. The effectiveness of the proposed method is demon-
strated by comparing the proposed method with the basic Kalman filtering algorithm, LMS
algorithm, and PIP algorithm on stationary and nonstationary datasets. Compared with not
applying the adaptive threshold, on average, we have an 11.7% improvement in accuracy
for the same reduction rate or a 17.3% improvement in reduction rate for the same accuracy.
The proposed approach focuses on addressing ongoing changes autonomously without
cloud involvement, rather than short-term fluctuations, such as noise. Not limited to the
IoT environment, the autonomous data reduction is also important to enable green and
efficient data mining through energy and bandwidth saving.
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