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Abstract: Digital pulse shape analysis (DPSA) techniques are becoming increasingly important for
the study of nuclear reactions since the development of fast digitizers. These techniques allow us to
obtain the (A, Z) values of the reaction products impinging on the new generation solid-state detectors.
In this paper, we present a computationally efficient method to discriminate isotopes with similar
energy levels, with the aim of enabling the edge-computing paradigm in future field-programmable
gate-array-based acquisition systems. The discrimination of isotope pairs with analogous energy
levels has been a topic of interest in the literature, leading to various solutions based on statistical
features or convolutional neural networks. Leveraging a valuable dataset obtained from experiments
conducted by researchers in the FAZIA Collaboration at the CIME cyclotron in GANIL laboratories,
we aim to establish a comparative analysis regarding selectivity and computational efficiency, as this
dataset has been employed in several prior publications. Specifically, this work presents an approach
to discriminate between pairs of isotopes with similar energies, namely, 12,13C, 36,40Ar, and 80,84Kr,
using principal component analysis (PCA) for data preprocessing. Consequently, a linear and cubic
machine learning (ML) support vector machine (SVM) classification model was trained and tested,
achieving a high identification capability, especially in the cubic one. These results offer improved
computational efficiency compared to the previously reported methodologies.

Keywords: support vector machine (SVM); principal component analysis (PCA); isotopes discrimi-
nation; digital pulse shape analysis (DPSA); machine learning (ML); edge computing

1. Introduction

Technological breakthroughs in particle detectors and the development of new ra-
dioactive ion beam facilities (RIBFs), along with advances in machine learning (ML) and
artificial intelligence (AI), have made particle, isotope, and ion classification techniques
increasingly relevant in nuclear physics research. These techniques are crucial to discard
contaminant beams [1]. Additionally, they must be computationally efficient to be executed
in real time, reducing the amount of data to be transmitted, stored, and processed.

On the one hand, the construction and operation of new and upgraded RIBFs, such as
FAIR [2], EURISOL [3], SPES [4], EXOTIC [5], or SPIRAL [6], will enable the study of new
exotic features of the nuclear structure due to the availability of high-intensity radioactive
ion beams. On the other hand, the continuous improvement in the spatial and temporal
resolution of silicon detectors, which are the main semiconductor used due to the fact that
the gap between the valence and conduction bands is 1.12 eV, has led to improved accuracy
in particle energy measurement [7]. This has made it possible to distinguish isotopes whose
energies are very close.
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In addition to the improvement of these two key elements for advancing our under-
standing of nuclear structure, there is a constant growth in the computational capacity
and speed provided by devices such as FPGAs. They can perform complex and highly
demanding operations at the first level of processing where the data acquisition system
(DAQ) or the event selector are located [8], enabling the edge-computing paradigm in the
nuclear physics field. To achieve this purpose, efficient isotope discrimination algorithms
are vital. For this purpose, different techniques have been published in the literature. Some
authors have used time-of-flight (ToF) to identify and classify the nature of the isotope
under study [9,10]. This technique is based on measuring the time difference between
two given time stamps (either the start and stop time stamp—requiring a detector close to
the source and a second detector located at a certain distance for its implementation—or
the stop time stamp and the start time stamp of the accelerator radiofrequency, RF—note
that this method is only valid in those facilities that implement pulsed beams) [9]. The
main drawback of this technique is that it requires a complex clock distribution network to
ensure that all detectors receive exactly the same clock signal, resulting in complex control
and acquisition systems such as those implemented in FAZIA [11,12].

A second technique reported in the literature corresponds to the measurement of the
ionization energy loss [9]. This technique is based on the relation of the momentum of the
particle with its velocity, which is estimated after measuring the ionization energy losses.
Nevertheless, this method presents two major challenges that make particle detection diffi-
cult and limit its application: Two particles, with different masses but the same momentum,
generate the same energy loss and the saturation of the detector itself.

Finally, a third method for isotope discrimination is known as pulse shape analysis
(PSA), which is a powerful technique for characterizing and distinguishing particles or
isotopes based on the unique waveforms they generate after impinging on a particle or
scintillation detector [13–21]. A very promising variant of this technique is its digital
implementation, known as digital PSA [22–26]. It leverages the benefits of digital signal
processing to achieve reliability and inclusion of advanced algorithms such as artificial
neural networks (ANN), [27,28], or machine/deep learning algorithms, [29,30], making it
a preferred choice for many modern applications in nuclear physics, radiation detection,
and related fields. The latter technique has demonstrated high performance in classifying
isotopes, even when their energy and atomic weight are very similar. An example of
this performance is given in [28], where the isotope pairs 12,13C, 36,40Ar, and 80,84Kr were
identified with a hit rate close to 91%. Furthermore, this technique, due to the high
computational cost it requires, will benefit greatly from devices such as FPGAs, as they
offer the possibility of running multiple operations in parallel at a low cost [27,31].

This research work proposes a new classifier for PSA based on SVM ML algorithms
that improves the accuracy in the discrimination of fragments generated in nuclear reactions
with similar energies, reducing the number of computational resources used. In order to
perform this task, it is required to collect a large dataset for different values of the mass
number (A), atomic number (Z), and energy. Specifically, the dataset used in this work was
acquired from experimental measurements using the CIME cyclotron at GANIL [22,27,28].
Thus, in order to discriminate the different isotopes, the dataset is preprocessed using
principal component analysis (PCA) to reduce the amount of information that the SVM
algorithm must process, obtaining a solution that can be easily integrated into a physical
system such as an FPGA without compromising the discrimination results. This last
requirement is vital for the application of this method in array detectors containing a large
number of single silicon detectors, working simultaneously to process a huge amount
of data.

The rest of the document is as follows: Section 2 describes the acquisition of the dataset
used to train and assess the proposed classifier. Section 3 details the proposed classifier
based on the SVM algorithm, as well as the preprocessing of the dataset. Section 4 collects
the results obtained by applying the proposed method. Section 5 presents a comparison of
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the results with other techniques published in the literature. The results are also discussed
in this section. Finally, in Section 6, some conclusions are drawn and future work is outlined.

2. Data Source and Acquisition Description

As described in the previous section, the dataset used in this work corresponds to
the results obtained from measurements at GANIL using CIME cyclotron-accelerated ions.
This experiment focuses on the electric current signal produced by the detected particle.
They used a silicon neutron transmutation doped (NTD) detector of 300 µm thickness and
200 mm2 active area, collimated to a 10 mm diameter. In this experiment, no target was
required because the detector was placed above the beam line to collect the ions directly.
The detector was mounted in an inverse configuration because, according to the authors,
this configuration increases the plasma time differences for ions of a given energy [14]. A
voltage of 190 V was applied during the experiment, and the depletion voltage was 140 V.
The detector was connected to a PACI low-gain pre-amplifier, operating with a bandwidth
of 300 MHz [26], and placed very close, exactly 4 cm away, to avoid significant signal
degradation, even inside the vacuum chamber. The outputs provided by this amplifier are
proportional to the charge and current produced by the detected particle and were sent to a
commercial 8-bit ACQIRIS digitizer [32], operating at a sampling frequency of 2 GHz. This
ACQIRIS acquisition system stored all the signals from the different ions using the same
amplitude scale for direct analysis and comparison. They then measured the energy with a
peak sensing ADC, connecting the charge output of the PACI to standard shaping analog
electronics. The beam energy in the experiment ranged from 7.39 AMeV to 8.68 AMeV and
the accelerated ion species covered a somewhat wide range, from 12C to 84Kr. In each run of
the experiment, they used “mixed” beams with known isotopes, all with different mass and
charge-to-mass ratios but with the same energy per nucleon. The identity of each pulse and
the particle mass number were determined by measuring the total energy. A more detailed
description of the experiment can be found in [22]. Within their results, the authors have
managed to find three pairs of isotopes with very similar total energy: 12C at 98.54 MeV vs.
13C at 96.75 MeV; 36Ar at 313.92 MeV vs. 40Ar at 312.88 MeV and 80Kr at 688.43 MeV vs.
84Kr at 676.18 MeV. Figure 1 shows the current pulse shapes corresponding to these three
isotope pairs, it can be observed that there is difficulty in discriminating between isotopes
of similar energy, noting also that the most complicated case to solve is 36,40 Ar due to the
higher overlap of their pulses throughout the graph. In this work, new methods will be
developed to discriminate between these pairs of isotopes trying to achieve an algorithm
based on computationally simple techniques that minimize the number of mathematical
operations, avoiding divisions and non-linear operations. This is explained in the next
section, Section 3.
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Figure 1. Dataset of the three pairs of isotopes: 12,13C, 36,40Ar, and 80,84Kr.

3. Methodological Approach and Procedures

This section describes the algorithm implemented to classify the detected isotopes. To
demonstrate its performance, the dataset described in the previous section, Section 2, is
used. Figure 2 describes the summary of the workflow to obtain the final isotope classifier.

Figure 2. Workflow for obtaining the optimal SVM model.

The first stage of this workflow is to load the samples obtained for each isotope pair
into memory, creating the necessary data structure. The information stored in this structure
corresponds to the label, the name of the isotope with which the data are associated, and
the number of protons (Z) and neutrons (N) that compose it. Once this step is completed,
the second stage, denoted in Figure 2 as “Data preprocessing”, is performed. During this
stage, the PCA technique is applied to reduce the number of features to be processed. This
process is described in Section 3.1. After the reduction of the sample space, an SVM-based
classifier is trained (Section 3.2). Finally, after the training phase, the generated model is
applied to a new dataset to validate its estimation. All the coding works were implemented
in Matlab, using the Statistics and Machine Learning Toolbox [33,34].

3.1. Data Pre-Processing: Principal Component Analysis

Principal component analysis is a statistical-algebraic technique that allows the dimen-
sionality of a dataset to be reduced while preserving the maximum amount of information.
This is achieved by linearly converting the data into a new coordinate system in which a
significant portion of the data’s variation can be explained using fewer dimensions than
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the original dataset. This enables a reduction in the memory footprint of a dataset and
significantly simplifies the classification algorithm without compromising precision [35].
For this work, the available dataset consists of the following feature vectors:

• 80Kr,1100 observations with 300 features
• 84Kr, 1100 observations with 300 features
• 36Ar, 2000 observations with 200 features
• 40Ar, 2000 observations with 200 features
• 12C, 2000 observations with 100 features
• 13C, 2000 observations with 100 features

Each observation corresponds to a sample vector with 300, 200, and 100 features for
80,84Kr,36,40Ar, and 12,13C isotopes, respectively. Note that each of the features corresponds
to a sample of the electric current acquired by the 8-bit ACQIRIS digitizer, operating with
a sample period of 1 ns. These vectors are arranged in a matrix for each isotope pair.
The digitizer provides the samples with an interval of 1 ns. Thus, each observation has a
duration of 300 ns, 200 ns, and 100 ns for Kr, Ar, and C isotopes, respectively. The digitizer
output for each isotope pair is plotted in Figure 1. Note that the X-axis represents the time
instant of the acquired sample and it can also be interpreted as the number of the sample,
without loss of generality.

Naturally, the aim of applying PCA is to reduce the amount of features to process in
the classification techniques without compromising the accuracy and, hence, improving its
computational efficiency. This reduction of features to be processed is beneficial since these
techniques, see PCA, act as an enabling technology for the implementation of the edge-
computing paradigm in the field of nuclear physics research. This new approach opens up
the potential for processing and analyzing data in proximity to the silicon detector, thereby
decreasing the amount of valuable data that need to be transmitted in an experiment.
Furthermore, in the specific case of PCA, the way to generate the most relevant features of
a dataset allows the resulting data to be used as a visualization tool, thus improving the
understanding of the obtained data. Figure 3 shows a typical visual example that represents
a dataset that could be the raw feature matrix corresponding to a certain isotope. Note
that in this example, the matrix is composed of n observations and each observation has p
features. Therefore, the sample space presents p dimensions.

Figure 3. Visual example of a raw feature matrix.

After applying PCA, the dimensionality of the dataset is reduced, generating a subset
Z = {z1, z2, . . . , zj, . . . , zk}, where k is a number much smaller than the original features p,
k� p. Figure 4 depicts the condensation of the information provided by multiple variables
through PCA into just a few adjacent components.
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Figure 4. Visual example of a principal component matrix.

Each principal component zj is obtained by a linear combination of the original
variables. They can be understood as new features obtained by combining the original
features in a certain way. The first principal component of a group of variables (x1, x2, . . . ,
xp) is the normalized linear combination of these features that has the highest variance (1).

z1 = φ1,1 · x1 + φ2,1 · x2 + . . . + φp,1 · xp (1)

The coefficients φ1,1, . . . , φ1,p are known as “loadings” and define each principal com-
ponent, zj. The loadings are understood as the weight that each feature has in each principal
component, and it tells us what kind of information each component collects. These coeffi-
cients correspond to the eigenvector and eigenvalue of the covariance matrix.

For the dataset used in this work, a matrix of principal components of the same
dimensions as the original dataset is obtained. However, because the purpose of PCA
is to reduce the amount of data and retain as much information as possible, a minimum
number of principal components must be found that are sufficient to preserve and explain
the original features. There is no standardized solution or method to select the optimal
number of principal components. Nevertheless, a widely accepted criterion is to evaluate
the proportion of cumulative explained variance and select the minimum number of
components beyond which the increase in variance is no longer significant. Figure 5 shows
the cumulative explained variance of the principal components of the dataset for 80,84Kr.
As can be observed, the greatest variation in the cumulative explained variance occurs in
the first 20 principal components, where this parameter varies from 0.873959 for only one
PC to 0.963423 for the first 20 PCs. From this number of principal components, the increase
in the cumulative explained variance is not significant compared to the amount of data that
must be processed.

Figure 5. Cumulative explained variance of principal components.
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3.2. Classifier: SVM

Support vector machines (SVMs) are a popular linear classifier based on supervised
machine learning models [36,37], i.e., the sample dataset must be labeled to be used. Its
effectiveness in classification, numerical prediction, and pattern recognition tasks has been
exploited in this work to train an efficient model capable of identifying isotopes of similar
energies. The aim of SVMs is to find a line or a hyperplane in dimensions greater than
2 between different classes of data such that the distance on either side of that line or
hyperplane to the nearest data point is maximized. For this research, linear and cubic
kernels are used.

In relation to the inputs of the model to be trained, these correspond to the charac-
teristics generated by the PCA algorithm. Specifically, a series of principal components is
evaluated that varies between 1 and 10. For each of these PCs, a different classifier model is
trained. It is important to note that preprocessing the data with PCA not only contributes
to reducing the number of characteristics of the observations, but also helps to maximize
their variance; increasing the separation of some characteristics from others. A simple way
to interpret this effect is from a geometrical point of view. The new features composed of
the principal components occupy different positions in space and with greater separation
between them. This allows for simplifying the line or hyperplane estimated by the SVM
and, therefore, facilitating its classification.

The output of the classifier corresponds to the label associated with each of the ob-
servations. Thus, for each pair of isotopes, the classifier properly categorizes each one
into its respective class and, once classified, assigns the corresponding number of neutrons
and protons. These values are used in Section 4 to compare these algorithms with other
classification techniques.

To train each model, the 80–20% rule was applied, i.e., 80% of the dataset was used for
the training while the remaining 20% was dedicated to evaluate the accuracy of the model
generated. Note that the accuracy is defined as the true positive predictions that are correct
over the total number of cases. Furthermore, to obtain an accurate and robust classifier, a
k-fold cross-validation strategy was applied to the training dataset. The main purpose of
this method is to divide the dataset into multiple subsets or “folds”, allowing for training
and testing the model multiple times. Specifically, the training dataset was subdivided
into 5 sections so that during each training iteration composed of 5 iterations, 4 of these
sections were used to train the model and the remaining one was used to evaluate it. Note
that k-fold-based training was chosen since the amount of available data was limited, and,
in these cases, this technique contributes to reduce the risk of overfitting, offering a more
reliable estimate of the model’s performance. Finally, 40 iterations were run to obtain the
final model. This procedure was applied for each of the chosen methods: linear and cubic.

To determine the optimal number of principal components, three metrics were consid-
ered for their evaluation: accuracy, merit factor, and the performance previously achieved
by the neural network that we aim to surpass. In the case of the first metric, the precision
of the SVM classifier, the estimation of the number of principal components to be used was
performed according to two criteria. First, the success–error rate obtained after evaluating
the confusion matrix must be higher than 90%, a value similar to that of other scientific pub-
lications [27,28]. The second defined criterion is that an increase in the number of principal
components should represent a negligible percentage improvement in the classification.
For this purpose, a percentage of 1% was established as the improvement threshold. Below
this threshold, the computational resources required to implement the PCA algorithm and
the SVM classifier increase significantly, leading to an increase in the complexity and size
of a possible hardware implementation. Figure 6 presents the accuracy achieved by the
model as a function of the different principal components used. The data represented in
Figure 6 are summarized in Tables 1 and 2.
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Table 1. Accuracy values obtained for linear SVM.

Isotope
Number of Principal Components

1 2 3 4 5 6 7 8 9 10
12,13C 98.00 98.30 98.73 99.65 99.58 99.66 99.60 99.61 99.57 99.67
36,40Ar 54.07 89.24 91.21 92.18 91.86 91.93 91.75 91.69 91.32 91.48
80,84Kr 61.54 78.88 96.84 98.62 98.73 98.68 98.80 99.25 99.39 99.35

Table 2. Accuracy values obtained for cubic SVM.

Isotope
Number of Principal Components

1 2 3 4 5 6 7 8 9 10

12,13C 51.32 97.29 99.14 99.92 99.88 99.88 99.87 99.94 99.97 99.94
36,40Ar 49.71 56.93 72.66 88.43 95.39 96.29 97.33 97.28 97.42 97.35
80,84Kr 49.90 50.34 97.81 98.94 99.16 99.01 99.01 98.81 99.03 99.03
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Figure 6. Accuracy for linear and cubic SVM algorithms for (a) 12,13C, (b) 36,40Ar, and (c) 80,84Kr.

The second metric is the merit factor. This metric describes the ability of the proposed
SVM classifiers to discriminate between isotopes with similar energy, which are the most
challenging classification cases in this type of study. In order to quantify the classification
efficiency of our trained SVM models, measurements were conducted by estimating the
degree of overlap between neighboring clusters. A widely used merit factor (FOM) M
for gamma–neutron discrimination is presented in [22,38]. Equation (2) represents the
generalized two-dimensional form of the merit factor M.

M =
‖ #»µ 1 − #»µ 2 ‖
(σ1 + σ2) · 2.35

(2)

where µ1,2 and σ1,2 represent the corresponding two-dimensional centers and one-dimensional
standard deviations of the classes, respectively [28].

The merit factor is interpreted as follows: values of M > 0.75 can be associated with a
good rejection rate, and when M > 1, almost all events are completely separated. To ensure
acceptable discrimination between a pair of isotopes, the FOM must exceed 0.75; with the
linear SVM, this value is adequately surpassed, except for the case of 36,40Ar. However, with
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the cubic SVM model, this threshold is exceeded for all three pairs of isotopes, ensuring
proper discrimination and, therefore, an acceptable rejection rate. The merit factor data
obtained for different numbers of principal components are displayed in Figure 7, and
Tables 3 and 4 represent these same results.

Table 3. Factor of merit obtained for linear SVM.

Isotope
Number of Principal Components

1 2 3 4 5 6 7 8 9 10
12,13C 1.61 1.81 2.24 3.84 3.73 3.84 3.48 3.70 3.81 4.35
36,40Ar 0.04 0.54 0.62 0.66 0.65 0.66 0.65 0.64 0.62 0.63
80,84Kr 0.11 0.29 1.15 1.78 1.85 1.81 1.91 2.45 2.72 2.47

Table 4. Factor of merit obtained for cubic SVM.

Isotope
Number of Principal Components

1 2 3 4 5 6 7 8 9 10
12,13C 0.03 1.24 2.51 7.50 6.14 6.47 5.90 8.96 12.09 9.09
36,40Ar 0.00 0.06 0.22 0.57 0.92 1.04 1.24 1.27 1.26 1.36
80,84Kr 0.00 0.00 1.40 2.04 2.30 2.11 1.93 1.98 2.13 2.13
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Figure 7. Factor of merit for linear and cubic SVM algorithms for (a) 12,13C, (b) 36,40Ar, and (c) 80,84Kr.

Finally, the third criterion for principal component selection is predicated on surpass-
ing the previously established outcomes of the neural network referenced in this study. In
other words, it is imperative that the merit factor value not only exceeds the minimum
required by definition but also outperforms the classification capacity level of the reference
neural network.

Based on the results collected under the aforementioned three criteria, it can be
observed that in the case of the isotope pairs 12,13 C and 80,84 Kr, the requisite number
of principal components is four to achieve the required accuracy of the SVM classifiers
and surpass the neural network in the cubic case. However, for 36,40 Ar, it is necessary
to increase the number of principal components to six in order to attain an accuracy
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exceeding 92%. Hence, these numbers of principal components are employed to generate
the final models, thereby conserving computational resources through classifier model
simplification. Furthermore, these results were substantiated by cumulative explained
variance, as depicted in Figure 8 for each isotope pair.

(a) (b)

(c)

Figure 8. Cumulative explained variance for (a) 12,13C, (b) 36,40Ar, and (c) 80,84Kr.

4. Identification between Pairs of Isotopes with Similar Energy

Once the optimal number of principal components required for the SVM classifier is
determined, as detailed in the preceding section, the results of the classifier configured are
presented in this section. Table 5 also contains evaluation metrics such as the prediction
precision for each isotope; this metric is useful and reliable in cases where the dataset
is symmetric between classes, and post PCA, our dataset is completely symmetric. This
metric provides information about how often the true positive predictions are correct. It
also contains the value of the merit factor calculated with Equation (2).

Table 5. Evaluation metrics of the SVM classifier algorithms.

Isotope
Linear SVM Cubic SVM

Evaluation Metrics [%] M Evaluation Metrics [%] M
12,13C 99.88–99.65 3.84 99.94–99.92 7.50
36,40Ar 91.78–91.93 0.66 96.57–96.29 1.04
80,84Kr 98.73–98.62 1.78 98.90–98.94 2.04

To describe the performance of our classification model, a validation tool known as a
confusion matrix was used. Figures 9 and 10 represent the values of each confusion matrix
for each isotope pair to better understand the number of successes with respect to the total.
Note that both figures were plotted on a logarithmic scale to improve their readability.
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Figure 9. Success–error comparison on a logarithmic scale (from the confusion matrix) for linear SVM
(a) 12,13C, (b) 36,40Ar, and (c) 80,84Kr.
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Figure 10. Success–error comparison on a logarithmic scale (from the confusion matrix) for cubic
SVM (a) 12,13C, (b) 36,40Ar, and (c) 80,84Kr.

In order to validate the obtained results, a comparison is performed with the other
methodologies previously documented in the scientific literature. Table 6 presents a com-
parison of the merit factors obtained through each method, including our own proposal.
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From Table 6, it can be seen that the proposed classifiers achieve better classification
results than the previously published methods. In addition, due to the reduction of the
dataset due to the application of PCA, the required computational resources are optimized,
as described in the next section.

Table 6. Factor of merit among different methods.

Methods Units Reference
M per Isotope Pair

12,13C 36,40Ar 80,84Kr

Amplitude [mA] [22] 1.42 0.81 0.54
Risetime [ns] [22] 0.62 0.36 0.26
Decay time [ns] [22] 0.81 0.48 0.007
Slope [mA/ns] [22] 1.35 0.73 0.11
m2 [ns] [22] 0.91 0.64 ≈0
f[i] current signal - [22] 1.15 0.84 0.50
data[i] current signal - [22] 1.53 0.96 1.04
Standard ANN - [28] 1.71 0.76 0.98
Differential ANN - [28] 4.48 0.90 2.95
Linear SVM - This work 3.84 0.66 1.78
Cubic SVM - This work 7.50 1.04 2.04

5. Computational Cost

The relative efficiency of the algorithms is determined by comparing their computa-
tional complexities. In this section, the computational cost is evaluated considering the
number of mathematical operations—number of additions and multiplications required—
that each of the proposed algorithms (PCA + linear SVM, PCA + cubic SVM) require for
their execution. Additionally, the theoretical resources occupied by a model based on
neural networks [28] are also estimated in order to perform a proper comparison. Note that
this methodology has been used previously in the literature [39].

5.1. Estimation

In order to determine the number of resources required for each method, the cost
function collected in Table 7 was used.

First, the estimation of the PCA algorithm was performed considering the function
f1(x). This function represents the set of operations to be carried out to obtain the linear
combination of each principal component, where xi represents the corresponding feature
and φi denotes the loading factor associated with the feature xi. Thus, the computation
of a single principal component composed of p features requires Np multiplications and
p− 1 additions. Second, the resources required by the SVM algorithms were estimated
using the functions f2(z) and f3(z). In both functions, N reflects the total number of
principal components used to generate the model and wi is the weight associated with
the PC. In the linear case, the term b is a constant value that represents the model bias.
On the contrary, in the cubic SVM classifier, the terms αi and yi correspond to the duality
parameters and the observed response values, respectively. Regarding class encoding,
yi = 1 denotes a positive feature, while yi = −1 corresponds to a negative feature. In other
words, y ∈ {1,−1}. Figure 11a depicts the data flow and the operations to be performed
for each of the developed SVM-based classifiers.

Finally, to assess the computational neural network presented in [28], function f4(x) is
used. In this function, N represents the total number of features, wi denotes the weights
associated with neurons, xj corresponds to the input of the neural network, and f refers to
an activation function [27,28]. The term b again denotes the bias of the model. Note that
the neural network architecture comprises n inputs corresponding to the isotope-specific
features, two hidden layers (each layer consists of eight neurons), and an output layer
with two neurons. During the computation process, each neuron computes a weighted
sum, where the input values are multiplied by their respective weights, and a bias term is
added. Subsequently, the result of this weighted sum is subjected to an activation function.
Two activation functions were used: the hyperbolic tangent sigmoid function and the
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“purelin” function, which determine the activation or excitation of the neuron, as depicted
in Figure 11b.

DATABASE

PCA

CUBIC SVM :

RESULT LINEAR SVM :
OR

 

Hidden  
layer 1

Hidden  
layer 2

Output
 layer 

Inputs

 
 

 
 

Output layer: 2 neurons

Hidden Layer 1: 8 neurons 
Hidden Layer 2: 8 neurons

(a) (b)

Figure 11. Schematic representation of the techniques (a) SVM and (b) ANN.

Table 7. Algorithm Cost Functions.

Method Cost Function

PCA f1(x) =
p

∑
i=1

φixi

Linear SVM f2(z) = b +
N

∑
i=1

wi · zi

Cubic SVM f3(z) =
N

∑
i=1

αiyi(1 + wi · zi)
3

ANN ([28]) f4(x) = f (
N

∑
j=1

wjxj + b)

Following the application of equation f4(x), Table 8 collects the number of operations
carried out by the neural network for each pair of isotopes. This comprehensive information
offers a quantitative assessment of the computational cost associated with this process,
enabling a deeper understanding of the computational workload imposed by the neural
network and its impact on the overall efficiency of the isotope classification process.

Table 8. Computational cost of the neural network.

Computational Cost (ANN)
12,13C 36,40Ar 80,84Kr

Sums Products Sums Products Sums Products

Hidden layer 1 1600 824 3200 1624 4800 2424
Hidden layer 2 128 88 128 88 128 88
Output layer 30 16 30 16 30 16

5.2. Analysis of Results

In this subsection is presented the number of additions and multiplications that are
the operations performed by the PCA + linear SVM, PCA + cubic SVM, and neural network
algorithms for each isotope pair. It can be seen from Table 9 that a significant amount of
computational resources is required, regardless of the algorithm used.

For the 12,13C isotope pair, the neural network performs 3.02 and 4.85 times more
operations, encompassing both additions and multiplications, compared to the PCA + cubic
SVM; furthermore, it executes 3.05 and 4.35 times more operations than the PCA + linear
SVM, respectively.

Concerning the 36,40Ar isotope pair, the neural network carries out 1.70 and 2.73 times
more operations, involving additions and multiplications, in comparison to the PCA + cubic
SVM; additionally, it conducts 1.71 and 2.78 times more operations than the PCA + linear
SVM, respectively.
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Finally, for the 80,84Kr isotope pair, the neural network performs 5.46 times more
additions and 2.07 times more operations, covering both additions and multiplications,
compared to the PCA + cubic SVM; moreover, it executes 5.48 and 2.09 times more opera-
tions than the PCA + linear SVM, respectively.

Table 9. Computational cost of the neural network and proposed methods for comparison.

Computational Cost Functions
12,13C (4-PCA) 36,40Ar (6-PCA) 80,84Kr (4-PCA)

Sums Products Sums Products Sums Products

PCA + linear SVM f1(x) + f2(x) 304 404 1006 1206 904 1204
PCA + cubic SVM f1(x) + f3(x) 307 420 1011 1230 907 1220

ANN f4(x) 928 1758 1728 3358 4958 2528

6. Conclusions

Data preprocessing through PCA has proven to be an effective strategy for reducing
the information load without compromising the results. The selection of four principal
components for the isotope pairs 12,13C and 80,84Kr and six principal components for 36,40Ar,
based on cumulative explained variance analysis, has allowed the condensation of most
of the features into these components, which is sufficient to achieve the required accuracy.
Note that, in spite of the similarity between the energy levels of the 36,40Ar isotope pair,
which corresponds to one of the most challenging isotopes to discriminate, our cubic SVM
model has demonstrated significantly more efficient classification compared to the linear
SVM. The proposed approach in this work for classifying isotopes with similar energy levels
has proven to provide high precision in comparison to the other methodologies present in
the literature, such as ANNs. Furthermore, the validation metrics and merit factor used
have met expectations. Regarding the computational cost analysis, our results indicate
that SVM algorithms require fewer computational resources in terms of ’operations’ than
ANNs, highlighting the efficiency of this technique in isotope classification applications.
The significant reduction in computational cost opens up the possibility of implementing
these models for isotope classification in the context of edge computing.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANN Artificial neural network
DPSA Digital pulse shape analysis
EURISOL European isotope separation on-line
FAIR Facility for antiproton and ion research
FAZIA Four-pi A and Z identification array
FPGA Field-programmable gate array
ML Machine learning
N Neutrons
NTD Neutron transmutation doped
PC Principal component
PCA Principal component analysis
PSA Pulse shape analysis
RIBF Radioactive ion beam facility
SPES Selective production of exotic species
SVM Support vector machine
ToF Time-of-flight
Z Protons
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