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Abstract: Real-time compression of images with a high dynamic range into those with a low dynamic
range while preserving the maximum amount of detail is still a critical technology in infrared image
processing. We propose a dynamic range compression and enhancement algorithm for infrared
images with local optimal contrast (DRCE-LOC). The algorithm has four steps. The first involves
blocking the original image to determine the optimal stretching coefficient by using the information
of the local block. In the second, the algorithm combines the original image with a low-pass filter
to create the background and detailed layers, compressing the background layer with a dynamic
range of adaptive gain, and enhancing the detailed layer for the visual characteristics of the human
eye. Third, the original image was used as input, the compressed background layer was used
as a brightness-guided image, and the local optimal stretching coefficient was used for dynamic
range compression. Fourth, an 8-bit image was created (from typical 14-bit input) by merging the
enhanced details and the compressed background. Implemented on FPGA, it used 2.2554 Mb of Block
RAM, five dividers, and a root calculator with a total image delay of 0.018 s. The study analyzed
mainstream algorithms in various scenarios (rich scenes, small targets, and indoor scenes), confirming
the proposed algorithm’s superiority in real-time processing, resource utilization, preservation of the
image’s details, and visual effects.

Keywords: infrared image; dynamic range compression; local optimal contrast; real-time imaging

1. Introduction

Because of its advantages for passive imaging and night imaging, infrared imaging
systems have been widely used in military, aerospace, security, and other fields. It has
always been a goal to obtain high-quality imaging results. Infrared imaging systems
typically use 14-bit or higher ADC (analog to digital converter) acquisition circuits to
gather information from an infrared scene with a high dynamic range, while the majority
of image display devices are 8-bit displays with a low dynamic range. This may result in
some details being lost during the display process. To combine the application scenarios
of infrared imaging devices in order to better adapt them to the visual characteristics of
the human eye, we need to perform high-dynamic-range compression of the image. Of
course, the loss of information from the image in this process is inevitable, but different
processing methods will exhibit different details, and the effect of the processing method
depends mostly on human vision. In addition, in recent years, uncooled infrared sensor
technology has been significantly improved, and the applications have become increasingly
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widespread, especially in civilian products. Therefore, how to compress images with a high
dynamic range into those with a low dynamic range while preserving the majority of the
detailed information is one of the critical technologies for infrared systems; at the same time,
low-delay image processing is also essential for back-end target detection and tracking.

Contrast refers to the measurement of different brightness levels between the brightest
white and the darkest black in the light and dark areas of an image. The greater the
difference, the greater the contrast, and the smaller the difference, the lower the contrast. It
can be global or local (i.e., concentrated in a small area).

Appropriate local contrast can make the image present a concave and convex three-
dimensional sense, which can improve the visual effect of the human eye. In addition, the
enhancement of local contrast can minimize the halo effect, making the picture clearer.

To address the problem of dynamic range compression, many researchers have de-
veloped algorithms for displaying high dynamic ranges and enhancing details [1]. Over-
all, high-dynamic-range image compression algorithms can be classified into traditional
mapping-based algorithms, gradient domain-based compression algorithms, and image
layering-based compression algorithms. Besides these, there are also a few methods [2,3]
that cannot be classified into any of these three classes. Different algorithms are applicable
for various application contexts and vary in their complexity and performance.

Related Work

Mapping-based high-dynamic-range IR (infrared radiation) image enhancement algo-
rithms are the simplest and most widely used, and the visual effect of the human eye is
obviously improved. These algorithms include self-gain-based linear mapping, Gamma
curve correction, histogram projection, etc. In order to make the distribution of the his-
togram as uniform as possible, the earliest method of histogram equalization redistributed
the image’s grayscale using a cumulative distribution function. A uniform probability
density distribution can be obtained using this method, but there are drawbacks as well,
including overenhancement, higher noise levels, the loss of some details, and fading. To
solve these issues, a threshold-based plateau histogram equalization (PHE) algorithm was
proposed in the literature [4]. The plateau histogram modifies the ordinary histogram algo-
rithms by adding a threshold. When the density of each gray value exceeds the threshold,
it will be processed, thereby improving the global contrast and avoiding a small number of
outliers affecting the global distribution of the gradient. The literature [5] has proposed an
adaptive histogram equalization algorithm (AHE), which computes a histogram function
based on a local window and can enhance the local contrast of an image while further
highlighting its finer details. However, the AHE algorithm is prone to creating a great
deal of noise. In light of this, a contrast-limited adaptive histogram equalization algorithm
(CLAHE) was proposed in the literature [6], which reduces the amplitude of the noise
with a clipping threshold. Some researchers [7,8] have also made some improvements to
the CLAHE algorithm. Generally, the self-gain-based equalization algorithms perform
noticeably worse than the histogram-based equalization algorithms. Nevertheless, the
histogram-based algorithms lack flexibility in some particular applications and are also
susceptible to overenhancement, block effects, etc., because they are entirely dependent on
the histogram’s statistics.

A gradient dynamic range compression algorithm compresses the large-scale gradient
and keeps the low-amplitude information. Fattal [9] proposed an algorithm as the frame-
work of the gradient-domain-based high-dynamic-range image compression algorithm
(GDHDRC). Based on this, a detail-preserving algorithm (GDHDRC-DPS) was proposed,
and further research [10–13] refined the GDHDRC-DPS algorithms even more. On most
occasions, these algorithms produce rather acceptable outcomes; however, there are signifi-
cant limitations in certain occasions. On the one hand, the factors used to smooth the data
items and gradient items need to be properly designed in order to prevent oversaturation;
on the other hand, the details of the output images are still not sharp enough to meet some
of the requirements of displaying infrared images with a HDR (high dynamic range).
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The algorithms based on image layering [14–27] decompose the original image into
various components, such as the background layer of the image and the detailed layer
of the image, and then process each component separately; afterwards, the compressed
background layer image and the stretched detailed layer image are reintegrated into an
image in which the dynamic range is compressed and the detailed layer image is enhanced.
The basic framework is shown in Figure 1, where the original image is decomposed into a
background layer image and a detailed layer image after being processed by a low-pass
filter; the background layer image undergoes dynamic range compression, and the detailed
layer image is enhanced. A final image with a low dynamic range is obtained after re-
fusing. Although the choice of algorithms can differ for low-pass filtering, the background
layer, the detailed layer, and image fusion, they are basically improved and promoted in
this framework.
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Figure 1. Framework of the dynamic range compression algorithm based on image layering. LPF, 
low-pass filter; I_base, the background layer image; I_detail, the detailed layer image; p, parameter. 
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Specifically, an infrared image enhancement algorithm based on bilateral filtering
(bilateral filter and dynamic range partitioning; BF-DRP) was proposed in the literature [14].
The algorithm divides the original image into a background layer image and a detailed
layer image using bilateral filtering, then performs Gamma curve processing (compression
or expansion, respectively) on the background layer image and the detailed layer image,
and finally reintegrates the background layer and the detailed layer image to obtain the
detail-enhanced image. The bilateral filter is a nonlinear filter that takes both the spatial
proximity and the pixels’ grayscale difference into account, smoothing out uniform areas
of the input image such as the sky and sea while preserving strong edges such as floors.
However, the drawbacks of the BF-DRP algorithm are also obvious: (1) several parameters
of the algorithm require fine-tuning to achieve better enhancement; (2) the original image
minus the image after bilateral filtering is used to obtain a detailed layer image, the edges of
which will be sharper than the edges of the original image or even have gradient inversion,
while the highlighted noise appears in flat areas [15,16].

Based on this, an improved version of the BF-DRP algorithm, namely the bilateral filter
and digital detail enhancement (BF-DDE) algorithm, was proposed in the literature [17,18],
with the goal of obtaining a corrected background layer image that was closer to the original
image. In addition, research on the human visual system [17] showed that human eyes
are more sensitive to noise in uniform regions than in complex regions. The literature [19]
first described the noise mask function, and the literature [20] used a noise mask function
based on local variance, both of which clearly improved the image’s overall contrast and
improved the information on the target and the detail. The algorithms based on a bilateral
filter have two problems: (1) the detailed layer image obtained with the bilateral filter is
prone to gradient flipping because the mean filter method based on Gaussian weights is
unstable when one pixel has a large difference from its adjacent pixels; (2) the computational
complexity of bilateral filter is O(Nr2), and as the filter window increases, the computational
time will increase quadratically. To solve these problems, a linear filter, i.e., a guided filter
(GF), for the detail-enhancement algorithm was proposed in the literature [21], while the
studies of both [22,23] introduced an algorithm for enhancing images with a high dynamic
range (GF-DDE) based on a guided filter. The guided filter was used instead of the bilateral
filter in the GF-DDE method, which significantly decreased the algorithm’s computing
complexity but worsened its edge retention. An algorithm for enhancing images with a
high dynamic range (LEPF-DDE) based on a local edge-preserving filter was proposed
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by [24]. The local edge-preserving filter (LEPF) was used to separate the original image into
a background layer image and one or more detailed layer images. Next, the multi-scale
background layer image undergoes maximum entropy-based Gamma curve correction,
and the detailed layer undergoes of elimination of the artifacts and amplification of the
detail. Finally, the detailed layer image and the background layer image are re-bounded.
An edge-preserving filter algorithm called LEPF has been proposed in the literature [24,25],
which aimed to filter low-amplitude noise while maintaining strong edges.

On the whole, the traditional image mapping method has a general effect on the
retention of detail and image contrast, in which the gradient compression algorithm retains
the details better and the contrast is enhanced, but the parameters need to be carefully
adjusted for different scenes. The algorithm based on image layering results in greater
improvement in the retention of detail and noise suppression, but traditional methods are
still used in the background layer, and the contrast enhancement effect is general and can
easily cause halos and other problems.

The DRCE-LOC algorithm proposed in this study focused on improving image delay,
storage resources, FPGA-based implementation, and the trade-off between global contrast
and local contrast while applying the framework of dynamic range compression based on
image layering (Figure 1).

At the same time, the algorithm was optimized and implemented on an FPGA (field-
programmable gate array). For the low-delay image processing requirements of offline
applications [26], it is often necessary to design a hardware processing method based on
an FPGA. This is different from many CPU (central processing unit)-based algorithms.
Multiplication can be implemented on a parallel pipelined FPGA with only one clock cycle,
but exponential calculation that is simple on a CPU is difficult to implement on an FPGA.
Therefore, it is necessary to effectively utilize the characteristics of the FPGA to study
the design and improvement of algorithms. We conducted experiments on an infrared
imager equipped with the FPGA and uncooled infrared sensors and evaluated the effect of
the algorithm.

2. Methods
2.1. DRCE-LOC

An uncooled infrared sensor does not need a refrigeration device and can work at
room temperature. It has many advantages, such as fast start-up, low power consumption,
small size, light weight, long life, and low cost. In recent years, such sensors have been
widely used in military and civil night vision products. The proposed algorithm was
applied to an infrared imager equipped with 1024 × 768 uncooled infrared sensors, and all
experiments were carried out on this system.

The framework of the DRCE-LOC algorithm is shown in Figure 2. Its basic principle
is as follows. Firstly, the brightness value and contrast value are re-corrected in each local
block to achieve the best possible local contrast. Secondly, the Gaussian model [28] is used to
smooth the contrast value of the local block to eliminate the block effect. Then, a brightness
adjustment algorithm guided by the global brightness is applied. The algorithm uses the
background layer obtained by the guided filter to obtain the brightness-guided image after
passing through the global image. This step maintains the brightness relationship of the
original image as much as possible. Finally, the detailed layer obtained via the guided filter
and the image obtained after brightness and contrast correction are re-fused to obtain the
final image. The process of implementing the algorithm includes the following eight steps.
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• Step 1: Image segmentation.

To reduce the amount of storage, the original image Iin (with a size of M×N) is divided
into X×Y local blocks. The size of each local block is M

X ×
N
Y . The mean value (Blockmean)

and its standard deviation are calculated. Blockmean reflects the level of brightness of local
blocks in the original image, and Blockstd reflects the level of richness of the details of local
blocks in the original image. The sizes of Blockmean and Blockstd are both X×Y.

• Step 2: Calculation of the local block’s stretching coefficient.

The stretching coefficient of each local block is determined by the standard deviation
of each local block, as shown in Equation (1)

Stretchpara =
255

Blockstd + Bias
(1)

where Blockstr is the stretching coefficient of the local block and Bias is a constant set to
limit the coefficient of gain from being too large. After processing, the size of Blockstr is
X×Y.

• Step 3: Upsampling of the parameters of the local block.

Stretchpara and Blockstr are upsampled into M× N dimensions, the basic principle of
which is shown in Figure 3. The stretching parameter and the mean value of each local
block are projected to the center of the local block of the original image, and the stretching
parameter and mean parameter are calculated at the position of each pixel in the original
image. They are calculated from the parameters of each local block and the Gaussian
weights of the distance to the center of each local block.

NStretchpara(i, j) =
∑X

x=1 ∑Y
y=1 Stretchpara(x, y) ∗ exp(− d(i,j)(x,y)

2

δ2 )

∑X
x=1 ∑Y

y=1 exp(− d(i,j)(x,y)
2

δ2 )
(2)

NMeanpara(i, j) =
∑X

x=1 ∑Y
y=1 Blockmean(x, y) ∗ exp(− d(i,j)(x,y)

2

δ2 )

∑X
x=1 ∑Y

y=1 exp(− d(i,j)(x,y)
2

δ2 )
(3)

where NStretchpara and NMeanpara are the stretching parameter and the mean parameter
after upsampling, respectively, and their sizes are both M × N; δ2 is a constant used to
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control the Gaussian weights; and d(i,j)(x,y) represents the distance from the coordinates of
the original image (i, j) to the coordinates of the local block’s center (x, y).
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• Step 4: Layering of the guided filter.

Guided filters [19] are edge-preserving linear filters that have been widely used in
image enhancement. Here, they are used to divide the original image into a background
layer image and a detailed layer image. We assumed that the input image is p, the output
image is q, and the guide image is I. The fundamental idea is to combine an original
image with a guide image to produce a filtered image that resembles the guide image. The
equation is displayed in Equation (4)

q = ak I + bk, ∀i ∈ wk

ak =
pk Ik−pk Ik

Ik
2−Ik

2
+ε

=
1
|w|∑i∈wk

Ii pi−uk pk

σk
2+ε

bk = pk − akuk

(4)

where wk is a square window with a diameter of w with k as the center; |w| represents
the number of the pixels in the window; ak and bk are linear coefficients and are constants
in the local window wk; and i denotes the number of pixels in wk. It should be ensured
that the linear coefficient satisfies the formula above so that the difference between q and p
is minimized.

• Step 5: Calculation of the brightness guide map.

In order to increase the computational speed of the FPGA and maintain the light–dark
relationship of the original image, a linear mapping method is used. Gamma curves,
histogram equalization, and other methods can be used in some specialized applications.
The mapping method is shown in Equation (5)

Igc(i, j) =
255 ∗ (Iin(i, j)− Iin)

Std(Iin) + λ
+ Bright (5)

where Std(I in) is the standard deviation of the original image, Bright is the desired bright-
ness of the image, λ is a constant to avoid excessive gain, and Igc (i, j) is the mapped 8-bit
global brightness guide.
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• Step 6: Dynamic range compression and contrast enhancement.

Four factors are needed for dynamic range compression and contrast enhancement:
Iin, Igc , NMeanpara, and NStretchpara. The corresponding equation is

Baseout(i, j) = k1× NStretchpara ×
[
Iin(i, j)− NMeanpara(i, j)

]
+ k2× Igc (6)

where Baseout(i, j) is the output image after contrast enhancement, k1 is the parameter that
controls the local contrast, k2 is the parameter that controls the global contrast, Igc is the
brightness-guided image calculated in Step 5, and NMeanpara and NStretchpara are the
local mean parameters and stretching parameters calculated in Step 3, respectively.

• Step 7: Filtering of the detailed layer.

The detailed layer obtained through the previous steps contains noise. A noise mask
function based on human vision [17] is utilized to reduce noise. The basic principle of the
function is that the human eye is sensitive to noise in a uniform scene but is insensitive to
noise in areas with large amounts of detail.

Detailout = Detailimage × |ak| ∗ [gL + (gH − gL)] (7)

where Detailimage is the detailed layer image obtained after layering of the guided filter
and ak is the parameter that was calculated during the process of layering the guided filter,
which reflects the quantity of local information.

• Step 8: Image enhancement.

The final image is obtained by re-integrating the contrast-enhanced image and the
detailed layer image.

Iout = Baseout + DDE× Detailout (8)

where Iout is the final output image and DDE is the detail enhancement factor.

2.2. Noise Suppression

The algorithm includes two sources of noise: noise in the detailed layer and noise
in the background layer. The detailed layer’s noise adopts the principle of [17]. The
over-enhancement of the local contrast, which is primarily the source of the noise in the
background layer, is suppressed by Bias in Equation (1). In order to analyze the influence
of stretching the background layer on local noise, we set Igc = 128. At this point, the
stretching of the image in terms of global contrast is 0, and all the noise in the image comes
from the stretching of local contrast. The algorithm next divides the 1024 × 768 infrared
images into 4 × 3 squares and set δ2 to 3600 (the selection of this parameter is introduced
in the next section). Then, the effect of Base_out imaging under different values of bias is
shown in Figure 4.

AGC (adaptive gain control) is a method of compressing high dynamic ranges that
maps the dynamic range of an input image to a specified dynamic range. Since a 14-bit
image cannot be visualized on most display devices, we considered the image processed
by AGC as the input image and compared it with images processed by other algorithms.

Figure 4 illustrates how the final image’s noise level in terms of contrast varied signifi-
cantly with various biases. The image in the uniform area of the scene was overamplified
when Bias = 0, producing a significant amount of noise. The noise in the uniform region
steadily reduced with an increase in the bias, while the local contrast of the image dimin-
ished with the noise. The image’s noise was smaller and the local contrast performed better
when the bias was around 256.
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2.3. Halo Suppression and Contrast Control

A halo is a virtual shadow that extends from the edge of the image, which is a problem
that can easily happen during image blocking. Suppressing halos can keep the image in
its original state. In this study, we combined local and global information, but the halo
problem could also exist in the case of improper parameter selection. In Equation (6), k2
was used to control the halo problem and the global contrast. When k2 = 0, the algorithm
became a stretching algorithm with pure local contrast; as k2 increased, the weight of
global contrast in the final image gradually increased. In particular, in Equation (6), the
mean component of the local stretched image was eliminated rather than the algorithm
just adding the local stretched image and the global image. Therefore, the global image
plays a role in guiding the global contrast in Equation (6). The final image’s global contrast
will be closer to the global compressed image as k2 increases, and the halo will be weaker;
however, better local contrast can be achieved by controlling k1. Figure 5 shows the effect
of the algorithm under different values of k2 (k1 = 1; the basis for selecting this parameter
is presented in the next section). The red rectangles in the images facilitated a comparison
of the halo suppression effect under different values of k. It can be seen from Figure 5
that when k2 is large, the contrast of the final image was excessively high and some local
information was even obscured, as shown in Figure 5a. As k2 increased, the overall contrast
of the image steadily declined, and when k2 = 0.1, the brightness of the local blocks of
the image was nearly the same, losing the overall brightness and the blackness of the
original image. When k2 = 0.1, if a continuous video sequence enters the algorithm module
proposed in this study, a transformed halo will develop as a result of the alteration of the
local information. It can be seen from Figure 5d that when k2 = 0.5 or so, the final image is
nearly identical to the global contrast image, and the halo phenomenon almost disappears,
whereas improved global contrast and local contrast were achieved.
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2.4. Parameter Settings

The choice of parameters determines how well the algorithm performs. The selection
of the parameters in the algorithm was as follows:

M
X ×

N
Y is the local block size of the image. In general, the smaller the local block size

is, the better the local contrast will be. The computational effort will rise as the local block
size falls, since more local blocks are required. Tiny squares also have a tendency to bring
about localized halo alterations because of the movement of items in real-world settings.
For continuous video, a value of M

X ×
N
Y = 64× 64 achieves better results.

Bias is used to suppress the local overenhancement phenomenon, which is described
in Section 2.2, and generally achieves better results when it is between 128 and 384.

The parameter δ2 is used to control the Gaussian kernels’ curvature during downsam-
pling and upsampling of the image. The selection of δ2 is strongly influenced by the size
of the image block. Better results are achieved when δ2 ≥ M

X ×
N
Y , which eliminates the

obvious block effect that may be present in the image.
The parameter λ is set to prevent the global contrast from being overenhanced. It

performs the same function as bias, with the exception that bias controls the local contrast
while the global contrast is controlled when the parameter is modified. Similarly, better
results are achieved when λ is between 128 and 384.

The parameter k1 is used to control the local contrast. Since Equation (2) already places
a limit on the range of the image, higher results can be achieved when k1 = 1.

The parameter k2 is used to suppress halos and control the global contrast. A detailed
description is given in Section 2.3. Better results can be achieved when k2 is in the range of
0.2 and 0.7.

2.5. Complexity of the Algorithm

The algorithm proposed in this study is built on a framework based on guided filter
layering, which does not make the original guided filter any more computationally complex.
Similarly, the computational complexity of the algorithm proposed in this study is O(n)
and depends solely on the number of pixels. However, the following improvements can
be applied during the construction of the algorithm, particularly for real-time videos, to
further reduce the method’s resource consumption:
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• Calculating the local information of the image local blocks, which can be achieved by
using the local information of the data of the previous image of consecutive frames,
thus achieving an algorithm with a delay of less than one frame while storing the
complete image frame differently.

• In the calculations of upsampling and downsampling of the image, the Gaussian
kernel can be saved in advance as a parameter to avoid exponential calculations
during the execution of the algorithm.

3. Results and Discussion
3.1. Quantitative Assessment

To analyze and evaluate the effect of the algorithm, four image indicators, namely the
root mean square difference [29] (root mean square, RMS), image entropy [30], structural
similarity [31] (SSIM), and the Tenengrad clarity index [32], and the algorithm’s running
time were used. For calculating the running time, the experiment was carried out in the
same environment as follows: operating system, Windows 11; CPU, 12th Gen Intel (R) Core
(TM) i9-12900HX 2.30 GHz; RAM, 32.0 GB.

RMS is defined as

RMS =

√
1

MN ∑M
i=1 ∑N

j=1 (I(i, j)− I)2 (9)

where I denotes the image to be evaluated, I represents the mean value of the image, M is
the width of the image, and N is the height of the image. The larger the RMS, the better the
overall contrast of the image.

Image entropy is defined as

Entropy = −∑255
i=0 pi logpi (10)

where pi represents the probability of each grayscale value. Greater entropy indicates that
the grayscale has been stretched further.

SSIM is defined as

SSIM(I, re f ) =
(2uIure f + C1)(2σre f + C2)

(uI2 + ure f
2 + C1)(σI2 + σre f

2 + C2)
(11)

where ref represents the reference image, I is the image obtained by stretching the original
image with adaptive gain, u represents the mean value, σ represents the standard deviation,
and C1 and C2 are very small numbers to prevent the denominator from becoming 0. A
larger SSIM indicates that the two images are more similar in structure.

Tenengrad is a gradient-based function that extracts the gradient values in horizontal
and vertical directions through the Sobel operator [33]. It is defined as

S(i, j) =
√

Gx ∗ I(i, j) + Gy ∗ I(i, j) (12)

Tenengrad =
1

MN ∑M
i=1 ∑N

j=1 S(i, j)2 (13)

Gx =
1
4

−1 0 1
−2 0 2
−1 0 1

, Gy =
1
4

 1 2 1
0 0 0
−1 −2 −1

 (14)

where S(i, j) represents the gradient of Image I at the point (i, j); Gx and Gy represent the
Sobel convolution kernels in the horizontal direction and vertical direction, respectively. A
larger Tenengrad means a clearer image.
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To evaluate the processing effect of the DRCE-LOC algorithm in this study, we used
the typical AGC, HE, CLAHE, GF-DDE, and BF-DRP algorithms as a comparison in three
typical scenarios: a rich scene, a scene with a small target, and an indoor scene. The
following can be seen from Figures 6–8.
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(1) The CLAHE algorithm and the proposed algorithm had the best results in terms
of image local contrast. CLAHE had two problems. First, it easily produced an overen-
hancement phenomenon, leading to the noise being amplified, as seen in Figure 6c, where
the red rectangle has a significant amount of noise. Second, the scene’s energy was weak
when the overall contrast was low, as shown in Figure 7c, where the thermal radiation of
the indoor scene was weak and the overall contrast of the whole image was low.

(2) The proposed algorithm had the best results in terms of retaining small targets and
details, as shown in Figure 6, where the two small dots at the top right are aircraft targets.
The proposed algorithm could highlight the aircraft targets and other detailed information
without overexposure.

(3) The proposed algorithm had the best global contrast, as shown in Figures 6 and 8.
As shown in Figure 6, each algorithm maintained the details well, but the proposed al-
gorithm was more transparent and more informative. In Figure 8, HE, BF-HDR, and the
proposed algorithm all had good global contrast, but HE and BF-HDR both showed ov-
erenhancement. The proposed algorithm achieved better global contrast while suppressing
overenhancement.

Table 1 shows the results of the evaluation of the three scenarios shown in Figures 6–8.
It can be seen from the table that for the RMS index, no algorithm showed particularly good
superiority; that is, several algorithms had no significant difference in the global contrast.
For entropy, the HE algorithm performed best in all three scenarios; that is, the distribution
of gray in the image after HE processing was the most uniform, which was determined by
the principle of the HE algorithm. However, the HE-based algorithm is prone to excessive
stretching, which can also be seen in Figures 6–8. For the SSIM index, the closer it is
to 1, the greater the similarity to the original image. It can be seen from the index that
the performance of several algorithms was not very good. This is because the original
image was a 14-bit image, and the image’s structure underwent changes after compression.
Tenengrad represents the clarity of the image. The proposed algorithm showed very obvious
superiority in all three scenarios, indicating that the proposed algorithm retained the most
detailed information and had the best image clarity after dynamic range compression.
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Table 1. Evaluation results of the image quality of different algorithms.

Index AGC HE CLAHE GF-DDE BF-DRP Proposed
Method

Scene 1

RMS 31 49 42 51 50 48
Entropy 6.989 7.991 7.799 7.711 7.929 7.744

SSIM 1 0.8061 0.561 0.6092 0.6980 0.6168
Tenengrad 3.257 7.581 19.642 14.813 11.8181 28.561

Time (s) 0.0020 0.6856 4.6780 0.9384 24.8654 0.3168

Scene 2

RMS 1 31 16 22 32 33
Entropy 2.972 7.990 7.322 7.609 7.888 7.393

SSIM 1 0.4653 0.344 0.408 0.386 0.454
Tenengrad 0.283 15.371 29.906 23.515 18.754 43.940

Time (s) 0.0024 0.6670 4.6160 0.9418 25.3805 0.3651

Scene 3

RMS 3 31 8 28 32 17
Entropy 4.587 7.953 6.278 7.142 7.924 7.378

SSIM 1 0.556 0.774 0.483 0.656 0.547
Tenengrad 1.411 7.625 6.042 7.878 5.489 9.661

Time (s) 0.0018 0.6843 4.6874 0.9400 23.3256 0.3358

The results of running the software on a computer and its implementation on the FPGA were consistent.

In terms of the operation time, the algorithm based on AGC had the least delay,
followed by the algorithm proposed in this study. The AGC algorithm had the worst
enhancement effects for all image indicators. Therefore, the algorithm proposed in this
study has obvious advantages in terms of the operation time.

3.2. Implementation of the Algorithm on an FPGA

The proposed algorithm’s FPGA implementation is depicted in Figure 9. This is made
up of five parts, each of which is indicated by a green circle. The algorithm is applied to
a 1024 × 768 infrared imager with an image frame rate of 25 Hz, a pixel clock of 30 MHz,
and 200 pixel clocks of line fading. The algorithm was implemented on the Xilinx (San Jose,
CA, USA) A7 FPGA chip and was written in VHDL. Each component’s implementation
and resource utilization were examined in turn.
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Part 1: The first part was to finish the process of image buffering in 256 lines so that
the calculation of local image stretching and the bias factor needed to wait for 256 lines (in
a local block of 64, where δ2 = 25). This module’s operation was straightforward and only
required 1 Mb of Block RAM, but it consumed the most resources and had the longest image
delay, with a total of 2.1875 Mb of Block RAM and an image delay of 313,344 pixel clocks.

Part 2: The second part was to calculate the pull-up and bias coefficients of the image’s
local blocks. Each local block had 4096 pixels and was 64 × 64 pixels in size. There
were 192 local blocks in a single image frame. To store the values of data accumulation,
square accumulation, and the gain coefficient within the local block, three arrays of 192 bits
each were built by the computation module. The data were 26 bits wide. The image
was shifted 12 bits to the right after all the data in the local block had been calculated to
produce the image’s mean value for the local block (BXm) and the mean image variance
(BXX). The module accumulated the image data according to the row and column numbers
corresponding to the relevant positions in the arrays; furthermore, the local block variance
Bstd was computed by calculating the difference between the square of BXm and BXX,
and the local standard deviation was generated by taking the square root of Bstd. Finally,
the gain coefficient of the local block G could be calculated by Equation (1). A divider
was needed for this stage. Overall, this part used resources of 0.0142 Mb of Block RAM, a
divider, and some other auxiliary computing resources. The local block calculation required
a delay of 64 rows of data, and the calculation of the mean, variance, standard deviation,
gain coefficient, and algorithm required 1, 1, 34, and 26 pixel clocks, respectively, with a
total delay of 78,398 pixel clocks or about 0.0026 s. Moreover, since Part 1 and Part 2 can
run simultaneously, the system was not subjected to any additional delay.

Part 3: The third part was image layering based on a guided filter, which used a
5 × 5 window, and the data stream was be divided into two main steps:

(1) Calculate the coefficients a,b. To create a real-time image window of 5 × 5, the
original image was successively entered into shift registers of 5 lines after a 256-line delay,
and the data from each line were successively entered into 5-pixel buffer registers. The
mean and variance of the image were calculated independently for the numbers in the
window, and the method of calculation was the same as in Part 2. Specifically, to reduce the
computational volume and image delay, the standard deviation and mean values of the
16 domain pixels highlighted in red were used to decrease the computational volume and
image delay. The mean value of the 16 data points was computed by simply shifting the
sum value 4 bits to the right instead of using a divider, and the local values of a and b were
calculated by Equation (4). This step used pixel shift registers of 5 lines + 25 pix and one
divider; the image’s delay was 3 lines + 36 pix.

(2) Image layering. To create a 5× 5 real-time image window, a and b were entered into
5-line shift registers, and the data from each line were entered into 5-pixel buffer registers.
To calculate a and b and arrive at the mean values of Ma and Mb, the same 16 neighborhood
values were chosen. Finally, the background layer image Base was calculated by applying
Equation (4); the detailed layer image was Detail = q − Base. To match the alignment of a
and b, this step specifically called for a delay of 3 lines + 8 pix of the original image. The
image delay in this stage was 3 lines + 8 pixel clocks or 3680 clocks, and it used pixel shift
registers of 13 line + 58 pix, as well as various other auxiliary computing resources.

All of Part 3 required pixel shift registers of 15 lines + 75 pix, or 0.0147 Mb of
Block RAM, a divider, and several auxiliary calculation resources; the image’s delay was
6 lines + 44 pixel clocks or 7388 clocks.

Part 4: The fourth part involved the calculation of the global brightness guide map.
It involved the standard computation of the global image as described in Part 2. To
reduce the amount of calculation, downsampling and summing were performed in the
process of image summation, following the method of discarding one out of every three
pixels. Meanwhile, the standard deviation of the previous frame was used as a parameter to
calculate the guide image of the current frame in the process of continuous video processing.
Finally, Equation (5) was used to calculate the global brightness guide image of the frame
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in real time. A divider, a root calculator, and some more processing resources were needed
for this section, and the image’s delay, which was caused by the divider, was only 26 clocks.

Part 5: The fifth part was to calculate the final output image, which included three
main steps:

(1) Determining the brightness value of the original image under different local block
stretching factors, while 192 local blocks were calculated simultaneously to yield B1, B2, . . .,
Bn. The calculation used Equation (6), and the delay was only one clock.

(2) Determining the weight value using the formula in Equation (2). The different local
block weights were based on the distance of the actual pixel from each local block, and
the distance could be obtained by extrapolating the row counter. In this step, exponential
calculation was involved, so optimization was carried out as follows

exp(−
d(i,j)(x,y)

2

δ2 ) = exp(−
d(i)(x)

2 + d(j)(y)
2

δ2 ) = exp(−
d(i)(x)

2

δ2 )× exp(−
d(j)(y)

2

δ2 ) = ex× ey (15)

where d(i,j)(x,y) denotes the Euclidean distance from a pixel with the coordinates (i, j) to the
center of the local block with the coordinates (x, y), d(i)(x) denotes the horizontal distance
from a pixel with the coordinates (i, :) to the center of the local block with the coordinates
(x, :), and d(j)(y) denotes the vertical distance from a pixel with the coordinates (:, j) to the
center of the local block with the coordinates (:, y). According to δ2, when d(i)(x) = 256 or

d(j)(y) = 256, ex (ex = exp(− d(i)(x)
2

δ2 )) and ey (ey = exp(− d(j)(y)
2

δ2 )) almost decay to zero,
so they can be ignored. Therefore, ey and ey have at most 256 cases, or 256 values at
x, y = 0, 1, . . . 255. Therefore, to avoid exponential calculations in the FPGA, the process
calculated the value at x, y = 0, 1, . . . 255 and saved it in the Block RAM. During the
real-time computation, only the lookup table was needed to obtain ex and ey, and only a
simple multiplication operation needed performing to obtain the weights. The process of
reading the lookup table only delays this step by one clock but requires a Block RAM with
a depth of 256 and a width of 16 bits.

(3) The weighted average calculated the final B. The final B was obtained by weighting
B1, B2, . . ., Bn. This step involved a divider, delayed by 26 pixel clocks.

(4) The last step was to calculate the final image. The detailed layer image was
adaptively enhanced and delayed before being added to the background layer image to
obtain the final image. The total delay was 55 clocks, with the detailed layer requiring a
delay of 53 clocks.

Therefore, Part 5 requires two dividers, 0.0039 Mb of Block RAM, and 55 clocks of
image delay.

Overall, the entire process used 2.2554 Mb of Block RAM, five dividers, a root calcula-
tor, and some other auxiliary computational resources, with a total image delay of 0.018 s.
The specific resource utilization of the FPGA is shown in Table 2.

Table 2. Utilization report.

Slice LUTs (total: 134,600) 39,045 (29%)
Slice registers (total: 269,200) 38,919 (14.46%)

Block RAM (total: 365) 105 (28.77%)
DSPs (total: 740) 319 (43.1%)

The proposed algorithm can be widely used in infrared imaging modules, which can be
applied to various military and civilian thermal imagers and scientific research equipment.
The infrared imager used in this study was small in size, as shown in Figure 10a, and the ef-
fect is shown in Figure 10b. It achieved good imaging results for different scenes. Figure 10c
is a schematic diagram of the imaging module mounted on the optomechanical system.
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4. Conclusions

In this study, an algorithm for enhancing the contrast and compressing the dynamic
range of infrared images with local optimal contrast was proposed. The focus was to
strengthen and improve the following aspects:

(1) Low-delay image processing technology. Most of the algorithms used for conven-
tional background layer image processing are Gamma correction algorithms or histogram-
based equalization algorithms. Among them, Gamma-based correction algorithms are
generally effective for comparing images, while histogram-based or improved algorithms
must count one frame before outputting the final image, which means that at least one
whole image will be delayed and there may be phenomena such as image overenhance-
ment. In particular, in continuous video sequences, we found in experiments that when
the histogram statistics of the previous frame are used as the current mapping curve, the
brightness of the continuous image will flicker due to the mismatch between the real image
and the mapping curve. Therefore, an image processing algorithm with a low delay (less
than one frame) focuses on the compression of the background layer, so this study proposed
a local contrast enhancement framework based on guided global compression of the image.

(2) Minimal storage resources. One of the most crucial components of FPGA-based
image processing algorithms is the Block RAM. It is necessary to keep more than one frame
of image data when an image processing algorithm has a delay of more than one frame.
The block-based local optimal contrast stretching algorithm proposed in this study uses
fewer storage resources and only needs two parameters for each local block.

(3) The design of the algorithm structure of the pipeline and the efficient implementa-
tion of the algorithm based on FPGA. The pipeline of the algorithm’s structure is conducive
to the implementation of FPGA; however, exponentiation, division, and other calculations
require a significant amount of the FPGA’s resources; therefore, this study designed the
entire algorithm in accordance with the pipeline and optimized the calculations in the
algorithm to facilitate the efficient operation of the FPGA.

(4) Consideration of both global and local contrast. Previous algorithms based on
local histograms are prone to block effects, and global class-based algorithms have poor
local contrast. Based on this, this study improved the local contrast while ensuring that the
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global contrast closely resembled the original image. Specifically, the global background
layer’s compressed image is used as the guide image to achieve the optimal enhancement
of local contrast.

In general, in order to effectively suppress local noise and the halo effect while main-
taining both global and local contrast, the proposed algorithm combines local information
with global information and uses the global contrast compression map as the guide image.
Meanwhile, this study used infrared image with a resolution of 1024 × 768 as an example
for optimization and implementation of the FPGA-based algorithm, and the entire algo-
rithm used 2.2554 Mb of Block RAM, five dividers, one root calculator, and some other
auxiliary computing resources, with a total image delay of 0.018 s. Finally, the image
processing results of different scenes showed that the algorithm proposed in this study had
good results in rich scenes, scenes with small targets, and indoor scenes. At the same time,
the algorithm has low complexity and low delay, which is beneficial for its application to
scenes with high requirements in real time.
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Abbreviations

Abbreviations Full Name
ADC Analog to digital converter
IR Infrared radiation
HDR High dynamic range
PHE Plateau histogram equalization
CLAHE Contrast-limited adaptive histogram equalization
GDHDRC Gradient domain-based high dynamic range image compression
FPGA Field-programmable gate array
CPU Central processing unit
DRCE Dynamic range compression and enhancement algorithm
LOC Local optimal contrast
BF-DRP Bilateral filter and dynamic range partitioning
LPF Low-pass filter
GF Guided filter
LEPF Local edge-preserving filter
DDE Digital detail enhancement
pix Pixel
AGC Adaptive gain control
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