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Abstract: The paper explores the application of Steiner’s most-frequent-value (MFV) statistical
method in sensor data analysis. The MFV is introduced as a powerful tool to identify the most-
common value in a dataset, even when data points are scattered, unlike traditional mode calculations.
Furthermore, the paper underscores the MFV method’s versatility in estimating environmental
gamma background blue (the natural level of gamma radiation present in the environment, typically
originating from natural sources such as rocks, soil, and cosmic rays), making it useful in scenarios
where traditional statistical methods are challenging. It presents the MFV approach as a reliable
technique for characterizing ambient radiation levels around large-scale experiments, such as the
DEAP-3600 dark matter detector. Using the MFV alongside passive sensors such as thermolumines-
cent detectors and employing a bootstrapping approach, this study showcases its effectiveness in
evaluating background radiation and its aptness for estimating confidence intervals. In summary,
this paper underscores the importance of the MFV and bootstrapping as valuable statistical tools
in various scientific fields that involve the analysis of sensor data. These tools help in estimating
the most-common values and make data analysis easier, especially in complex situations, where
we need to be reasonably confident about our estimated ranges. Our calculations based on MFV
statistics and bootstrapping indicate that the ambient radiation level in Cube Hall at SNOLAB is
35.19 µGy for 1342 h of exposure, with an uncertainty range of +3.41 to −3.59 µGy, corresponding to
a 68.27% confidence level. In the vicinity of the DEAP-3600 water shielding, the ambient radiation
level is approximately 34.80 µGy, with an uncertainty range of +3.58 to −3.48 µGy, also at a 68.27%
confidence level. These findings offer crucial guidance for experimental design at SNOLAB, especially
in the context of dark matter research.

Keywords: sensor data analysis; most-frequent-value; thermoluminescent dosimeters; environmental
gamma background; dark matter; bootstrapping; confidence intervals

1. Introduction

SNOLAB [1,2], located beneath the Creighton nickel mine in Ontario, Canada, is
a critical hub for conducting ultra-sensitive physics experiments that demand minimal
background radiation. Its unique features, including a complex layout and depth of 2 km
underground, make it an ideal environment for cutting-edge research. The facility, origi-
nally established for the Sudbury Neutrino Observatory (SNO) [3], now hosts numerous
experiments. Notably, DEAP-3600 [4–8], the world’s largest liquid argon dark matter
detector, operates in Cube Hall, alongside the MiniCLEAN [9] (now decommissioned)
and the NEWS-G [10] (now at the commissioning stage) experiments. These endeavors
primarily focus on detecting interactions between weakly interacting massive particles
(WIMPs) and argon nuclei, offering insights into dark matter, which comprises a significant
portion of the universe’s mass. Overall, SNOLAB’s contributions are crucial to advancing
the understanding of fundamental physics and unraveling the mysteries of the cosmos.
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The difficulties of searching for rare events, such as dark matter, include reducing
unwanted background noise and improving the ratio of useful signal to unwanted noise in
order to detect these uncommon events. This involves dealing with statistical limitations,
the sensitivity of the equipment, and being able to differentiate between actual signals and
noise. One specific type of noise is the gamma radiation from the surrounding environment
that affects the detector.

Various methods are employed to assess low-level gamma-ray background in under-
ground laboratories. For instance, at SNOLAB’s Cube Hall, external gamma radiation
characterization techniques for the DEAP-3600 detector are detailed [11]. DEAP-3600 is a
liquid argon dark matter detector with tight control over radioactive backgrounds [12]. It
is placed in a water tank to shield it from rock radioactivity and cosmic ray muons.

Thermoluminescent detector (TLD) systems, functioning as passive sensors, are valu-
able for background monitoring in places such as Cube Hall because they are cost-effective,
compact, and non-intrusive. They help detect any background variations that might affect
measurements. Measurements around DEAP-3600’s water shielding have been performed
using TLDs [11].

The uniformity or non-uniformity of environmental gamma-ray backgrounds in un-
derground labs can result from various factors. This study employed TLDs similar to
those used at Chalk River Laboratories (CRL) to measure doses. The assessments of the
doses and dose rates with TLDs undergo regular independent blind tests [13,14] and have
been successful.

The water shielding for DEAP-3600 is designed based on extensive Monte Carlo
studies to optimize background rejection and environmental gamma background protection.
These studies assume a uniform background distribution. This paper reports on external
dose measurements in SNOLAB’s Cube Hall using TLD dosimeters placed around DEAP-
3600’s water shielding.

Scope of Work

In prior research [11], the effectiveness of employing integrating passive detectors
such as TLDs to measure ambient radiation levels in SNOLAB, an underground facility
with extremely low background radiation, was established successfully. Moreover, the
research found that the background radiation does not spread uniformly around the water
shielding of the DEAP-3600 detector. This discovery holds importance for both Monte
Carlo simulation studies and the design of shields for upcoming large-scale dark matter
detectors [15–17].

In this study, our primary objective was to confirm the variations we previously
observed in the data with a high degree of confidence. We wanted to establish reliable
confidence intervals for the non-uniform background radiation based on the data we have
collected. Therefore, in the next section, we present our findings and the methodology of
the data analysis, which underscores the significance of using Steiner’s most-frequent-value
method in combination with bootstrapping.

2. Materials and Methods
2.1. Integrating Passive Detectors

This section offers a concise explanation of how passive detectors, in particular TLDs,
are used as sensors to measure the overall environmental exposure to direct gamma
radiation. More detailed information about TLDs and the specific method for calculating
ambient doses from them are covered in another paper [11]. In this study, we used TLD-100s
to measure environmental doses from photons. These detectors are mounted on dosimeter
plaques and inserted into badges. The badges include aluminum filters to measure gamma
radiation accurately and prevent dust and light interference.

Control dosimeters, kept alongside the DEAP-3600 detector in a well-shielded location,
monitor doses unrelated to the test exposure, such as background radiation and transport
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or storage doses. These control dosimeters are subtracted from the deployed dosimeters’
readings to determine the net ambient dose accurately.

Quality assurance and control programs, in compliance with Canadian regulatory
requirements [18,19], are implemented to ensure the precision and reliability of dose
estimates. Annual independent blind tests [13,14] validate the accuracy of the results from
CRL Dosimetry Services.

Despite the expectations of a low gamma background in Cube Hall at SNOLAB, rig-
orous measures are taken to improve measurement quality, including using two TLD-100
chips in the same badge casing for cross-verification. If ambient dose values deviate sig-
nificantly, they are excluded from the analysis. Additional specific information about the
criteria for excluding dose values from the analysis can be found in a separate publica-
tion [11].

2.2. Most-Frequent-Value Approach

Usually, the mode in statistics [20] is the value that appears most frequently in a
dataset, often referred to as the dataset’s “peak”. It is like finding the most-common
number. Some datasets might have more than one mode if multiple values have the same
highest frequency. To determine the mode, one arranges the data and counts how often
each value appears. The one with the highest count is the mode. If several values share this
highest count, a multimodal dataset exists. If all values appear equally often, there is no
mode. The mode is just one of the measures of central tendency used to describe a dataset’s
typical or central value. The mode, alongside the mean and median, helps describe the
dataset’s typical value and central tendency [20].

An alternative approach could involve using the most-frequent-value (MFV)
method [21–23], as demonstrated in recent studies. The MFV approach, based on min-
imizing information loss, has been successfully applied in various fields [24]. Both the
traditional mode and the MFV statistic are used to find the most-common value in a dataset,
but they have a key difference. Consider this dataset: 5, 7, 9, 7, 8, 7, 4, 15. The mode is 7 since
it appears three times, more than any other number. Now, alter the data slightly: 5, 6.9, 9,
7, 8, 7.1, 4, 15. Here, the old mode, 7, no longer works because no number appears more
frequently than the rest. Although the values still center on 7, they are more spread out.
The example provided here is a basic made-up dataset used to demonstrate the distinction
between the mode and MFV in statistics. To explore more-recent and intriguing datasets,
as well as the benefits of using the MFV approach compared to other statistical methods,
one can refer to the following sources: Zhang (2017) [24], Zhang (2018) [25], Zhang et al.
(2022) [26], and Golovko (2023) [27].

Steiner’s MFV method [21–23] can handle this situation. It identifies the most-common
value, even if it is not the same as the traditional mode. In simple terms, the MFV helps find
the most-common value, even when the data are somewhat scattered. This example illus-
trates the difference between the traditional “mode” and the “MFV” method in statistics.

Steiner’s MFV approach was used to analyze geophysical sounding logs in shallow, dry
sediments [28]. This approach enhanced the analysis by employing an improved method
that iteratively re-evaluated the data using factor analysis [29]. In addition, the MFV method
has proven effective in groundwater modeling as a geostatistical technique [30]. Notably, it
was used to determine the Hubble constant, irrespective of the data distribution [25], and
addressed challenges in nuclear astrophysics, such as the lithium abundance problem [24].
The MFV method improves neutron lifetime estimation with non-Gaussian data [26].
Recently, a method, based on the MFV approach combined with bootstrap analysis, was
used to provide a more-robust way to estimate historical measurements of 39Ar’s half-
life [27]. This method has resulted in the uncertainty being a factor of three smaller than
that of the most-precise re-calculated 39Ar half-life measurements corresponding to the 68%
confidence level.

The MFV statistical technique offers several advantages [31,32]. It remains robust
even when dealing with non-normally distributed data or outliers. Moreover, it provides



Sensors 2023, 23, 8856 4 of 14

a reliable estimate by calculating weighted averages efficiently. The MFV method also
automatically calculates scale parameters during iterations [33], allowing for optimal
weight coefficients to be determined for any given dataset.

The explicit equation for the iterations to find the MFV (M) is as follows:

Mj+1 =

∑N
i=1 xi ·

ε2
j

ε2
j+(xi−Mj)

2

∑N
i=1

ε2
j

ε2
j+(xi−Mj)

2

. (1)

In this equation, Mj+1 represents the value obtained in the (j + 1)-th step of the iteration
process to determine the MFV. xi corresponds to the i-th element in the dataset, while N
represents the total number of elements in the dataset. In addition, ε j refers to the dihesion
(also known as Steiner’s scale factor [33]). For the initial value of the iteration, one can use
the mean value of all the data in the sample, denoted as M(0) =

1
N ∑N

i=1 xi.
The equation describing the iterations for the dihesion ε j+1 is as follows:

ε2
j+1 = 3 ·

∑N
i=1

(xi−Mj)
2(

ε2
j+(xi−Mj)

2)2

∑N
i=1

1(
ε2

j+(xi−Mj)
2)2

. (2)

In this equation, ε j stands for the value we calculated in the previous step. The “dihesion”
is what determines how important each data point is when calculating the MFV. When it is
big, every data point is equally significant. When it is small, only the ones close to the MFV
truly count. One can find information on how the dihesion parameter is determined in the
books [22,23]. For a practical example of how the dihesion is derived, one can refer to the
sources [21,29]. The initial value for ε(0) can be selected as ε(0) =

√
3

2 · (xmax − xmin), where
xmax and xmin denote the maximum and minimum values within the complete dataset used
for the MFV (M) estimation. Both equations, labeled as Equations (1) and (2), which are
used to calculate the values of Mj+1 and ε2

j+1 from the datasets, need to be satisfied at the
same time.

The iteration threshold value in Equations (1) and (2) can be set to a suitably small
value, for instance 10−5. In essence, this threshold value signifies the limit that must
be achieved through successive iterations concerning the next difference

∣∣Mj+1 −Mj
∣∣ in

Equation (1). When dealing with many data, the MFV method may take more time to
compute compared to other statistical methods. This is because the MFV method requires
multiple iterations, while other methods may be faster since they do not need multiple
iterations. It is important to think about the balance between accuracy and computation
time when deciding which method to use for analyzing large amounts of data. In this
study, the MFV method had a maximum of 80 iterations, which is longer than the mean
value method, for example. However, it still took a reasonable amount of time to estimate
the MFV.

Steiner (1988) [21] demonstrated that the iteration process described by Equations (1)
and (2) approximates a value that characterizes the concentration of data, and as a result, it
is referred to as the most-frequent value (M) [23].

For a symmetrical distribution, as with normally distributed data, Csernyák and
Steiner [23] provided a simple formula for calculating the variance (σM) when M is deter-
mined according to Equation (1):

σM =
ε√
neff

. (3)
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In this equation, ε represents the dihesion (ε here is the convergence value of the iterations
as defined in Equation (2)), and neff is the effective number of data points. The effective
number is computed as:

neff =
N

∑
i=1

ε2

ε2 + (xi −M)2 . (4)

This formula provides a means to calculate the variance when estimating M for symmetrical
distributions, as with normally distributed data. For instance, in both of the previously
mentioned datasets, the most-common value is M = 7.0, while the average is x = 7.8. If
we remove the last value from both datasets (for example, if it is considered an outlier), the
most-frequent value remains M = 7.0, while the mean becomes x = 6.7. This demonstrates
that the MFV approach is more robust and stable.

As mentioned earlier, the MFV technique and confidence interval bootstrapping were
used to analyze neutron lifetime measurements. We used the original neutron lifetime
data from a study Zhang et al., (2022) [26] as a test to check if the MFV and bootstrapping
algorithms give consistent results. Even though the bootstrap process is random, we found
that it is better to use a confidence level specificto the second decimal place (for example,
1 sigma corresponds to 68.27%) in order to replicate the MFV confidence interval for neutron
lifetime measurements. Therefore, we adopted the same approach in this study.

2.3. Bootstrapping Approach for Confidence Intervals

In this section, we aim to outline a general approach for bootstrapping confidence
intervals. In the next section, we will delve into the specific method used for analyzing
ambient dose results.

Bootstrapping [34,35] is a statistical method for estimating the confidence interval of
a sample statistic, such as the mean, or median, or MFV, when one does not know the
population’s underlying distribution. Instead of making assumptions about the population,
bootstrapping relies on resampling from observed data.

The bootstrapping technique operates in the following manner. Initially, it commences
with an original dataset and subsequently generates numerous new datasets through the
random selection of data points from the original dataset. This process permits some data
points to be selected multiple times, while others may not be chosen at all. Subsequently, for
each of these freshly generated datasets, a target statistic, such as the mean or most-frequent
value, is computed. Consequently, this yields a compilation of these computed statistics,
constituting a distribution, which serves as an approximation of the sampling distribution
of the designated statistic. Finally, this distribution is employed to determine the range of
values encompassing the statistic of interest at a specific confidence level, typically set at
95.45%. This derived range is formally recognized as a confidence interval [36,37].

Bootstrapping offers a robust methodology, especially when one is confronted with
limited data or intricate scenarios where traditional statistical approaches may not be appli-
cable. It allows researchers to make informed estimations based on observed data, thereby
facilitating a deeper comprehension of the plausible range for the true population statistic.

3. Results

Detectors were positioned within Cube Hall at SNOLAB (see Figure 1 in [11]), with a
focus on the DEAP-3600 water shield area (see Figure 4 in [11]). Table 1 presents data for
detectors that met a specific selection criterion (which is explained later). It includes both
“rear” and “front” TLD chips (see Figure 3 in [11]), along with their average values and
standard deviations. These detectors were deployed on 27 November 2018 and removed
on 22 January 2019, totaling 1342 h of exposure. The deployment and removal took 2 h, and
this time was considered when measuring the interval. A calibration method recommended
by NIST [38] was used to ensure that the timer’s accuracy was within 0.02%. However,
the timer’s accuracy was not considered in the ambient dose rate measurements, as it was
much smaller than the standard deviation in the dose measurements.
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Table 1. This dataset comprises measurements obtained from passive detectors, specifically TLDs,
used for quantifying exceptionally low-level ambient radiation doses and dose rates at the surface
of the water shielding of the DEAP-3600 detector. However, TLDs with Badge IDs 25 and 26 were
an exception; they were positioned near the fire door. Furthermore, TLD detectors within Badge
ID 28 were situated on the Cube Hall’s deck, while those in Badge 29 were positioned on top of the
DEAP-3600 detector’s water shielding.

Badge
ID

Rear
Exposure

(µGy)

Front
Exposure

(µGy)

Average
Exposure

(µGy)

Average
Rate

(nGy/h)

4 38.7 45.8 42.2 ± 5.0 31.5 ± 3.7
11 24.6 26.4 25.5 ± 1.2 19.0 ± 0.9
12 36.1 36.1 36.1 ± 0.0 26.9 ± 0.0
13 19.4 17.6 18.5 ± 1.2 13.8 ± 0.9
16 17.6 20.2 18.9 ± 1.9 14.1 ± 1.4
17 22.0 23.8 22.9 ± 1.2 17.0 ± 0.9
19 48.4 43.1 45.8 ± 3.7 34.1 ± 2.8
20 42.2 53.7 48.0 ± 8.1 35.7 ± 6.0
23 36.1 32.6 34.3 ± 2.5 25.6 ± 1.9
24 47.5 47.5 47.5 ± 0.0 35.4 ± 0.0
25 76.6 91.5 84.0 ± 10.6 62.6 ± 7.9
26 78.3 81.0 79.6 ± 1.9 59.3 ± 1.4
28 29.9 25.5 27.7 ± 3.1 20.7 ± 2.3
29 37.0 34.3 35.6 ± 1.9 26.6 ± 1.4

Accurately measuring radiation exposure, especially in environments rich in X-rays
and gamma-rays such as Cube Hall at SNOLAB, poses a significant challenge [11]. This
is due to the need to obtain precise data on the ambient radiation levels within Cube
Hall, where radiation levels can vary considerably across different locations. This involves
choosing the right data to determine the true ambient radiation for passive TLD sensors in
the same badge.

To do this, statistical analysis considers variability within and between groups of TLD
badges. These variations are seen as random effects and are described by their associated
components of variance. For TLD badges with unique IDs, only two TLD chips were placed
in the same spot in Cube Hall. Through calibration, it was confirmed that the measured
doses from these chips in the same badge were consistent within their variance, serving as
a selection criterion for the ambient dose.

Table 1 displays the results for TLDs that met this criterion, meaning the ambient
dose results for the rear and front TLD chips in the same badge were within one standard
deviation of each other. Control dosimeters detected 83.6± 9.7 µGy (9.5 ± 1.1 mR) of
radiation during transportation and storage (information about how the control dosimeters
are used can be found in [11]). We also provide the dose value in milliroentgens (mR) to
align with the dose value previously published [11]. The data presented in Table 1 of the
reference paper by Golovko et al. [11] were used for the results shown in Table 1. The
only change made here was the conversion of the dose measurements into gray (Gy) units
(8.8 µGy/mR [39,40]).

The TLD detectors with IDs from 4 to 24 were on the DEAP-3600 water shield, IDs 25
and 26 were near a fire door (see Figure 2 in [11]); ID 28 was on the Cube Hall deck; ID 29
was on top of the DEAP-3600 water shield. The specific locations within Cube Hall are not
detailed in this paper.

In principle, one expensive and time-consuming option to obtain a confidence interval
would be to replicate the TLD measurement at the DEAP-3600 water shield several times.
If one repeats the experiment several times, then one can keep track of each ambient
dose value and end up with a larger set of dose data, which could be used to estimate
the confidence interval. However, as mentioned earlier [11], repeating the ambient dose
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measurements with multiple passive TLD sensors several times is both expensive and time-
consuming, although it requires much less time compared with the use of active detectors.

Suppose one possesses a dataset [11] reflecting authentic ambient dose measurements
(refer to Table 1) and one requires a confidence interval determined through statistical
methods, such as the MFV. Instead of replicating ambient dose measurements multiple
times, one can consider a bootstrap approach [36,37]. An additional advantage of boot-
strapping is its applicability in cases with or without a well-defined probability model for
the data [35]. Thus, let us use the bootstrapping technique to gain deeper insights into
which confidence interval more accurately represents the ambient dose measurements at
Cube Hall. As previously noted, the MFV technique and confidence interval bootstrapping
were applied to perform a reliable analysis of neutron lifetime measurements [26]. In this
work, we aimed to use the same approach to establish a confidence interval for ambient
dose measurements at Cube Hall.

The average radiation levels were measured in two different situations at SNOLAB’s
Cube Hall. In one scenario, we placed TLD sensors both at the front and rear positions,
and these sensors were spread out around the water shielding of the DEAP-3600 detector.
In another scenario, we used passive integrating sensors, again at the front and rear
positions, and these sensors were positioned in two places: around the water shielding of
the DEAP-3600 detector and inside Cube Hall itself. More information with pictures about
the positions of the TLDs badges mentioned in Table 1 can be found in [11].

The mean of all ambient dose measurements taken at the “front” and “rear” positions
of the TLD sensors in Cube Hall at SNOLAB, as listed in Table 1, was calculated to be
40.48± 20.03 µGy (or 4.6± 2.3 mR [11]), with the error indicating the standard deviation.
The quoted uncertainties are given at the 68.27% confidence level, which corresponds to the
[20.45, 60.51] confidence interval, whereas the 95.45% confidence interval for all data is [0.42,
80.54]. The reason why the confidence level was chosen as 68.27% or 95.45% is because
these values are widely used in statistical analysis and associated with 1 and 2 sigma errors.
In contrast, the MFV for these measurements was determined to be 35.19± 3.30 µGy. It
is important to note that this error reflects the variance of the MFV, as calculated using
Equation (3). This equation assumes that the data follow a symmetrical distribution, which
may not necessarily be true in this particular scenario. Therefore, it would be advantageous
to employ a bootstrap approach to establish a reliable confidence interval with a high level
of confidence. The mean and MFV values are shown as vertical lines in Figure 1.

MFV = 35.19 Mean = 40.48

0.000
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0.050

0.075

0.100

25 50 75
Ambient Exposure, µGy

D
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si
ty

Figure 1. Histogram and probability density (represented by the dotted–dashed line) show the
distribution of ambient dose data at Cube Hall (see Table 1). The vertical solid line marks the MFV,
while the vertical dashed line represents the mean value. The ambient radiation levels outside of the
DEAP-3600 water shielding are emphasized with a darker color.
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The mean of the ambient dose measurements gathered from passive integrating
sensors positioned at various locations of the water shielding surrounding the DEAP-3600
detector within Cube Hall at SNOLAB from both the front and rear TLDs, as indicated
in Table 1, was computed to be 34.12± 11.19 µGy (or 3.9± 1.3 mR [11]). The provided
uncertainties are expressed at the 68.27% confidence level, corresponding to the confidence
interval [22.93, 45.31]. The 95.45% confidence interval for all the data is [11.74, 56.50]. In
contrast, the MFV derived from these measurements was determined to be 34.80± 3.36 µGy.
It is crucial to emphasize that this error corresponds to the variance of the MFV, calculated
using Equation (3). These values are visually depicted as vertical lines in Figure 2. It
is worth noting that the MFV for the ambient dose around the water shielding of the
DEAP-3600 detector is quite similar to the MFV ambient dose observed in Cube Hall.

MFV = 34.8Mean = 34.12

0.00

0.05

0.10

0.15

0.20

25 35 45 55
Ambient Exposure, µGy

D
en

si
ty

Figure 2. Histogram and probability density (represented by the dotted–dashed line) show the
distribution of ambient dose data at the water shielding of the DEAP-3600 detector in Cube Hall (see
Table 1). The vertical thin solid line marks the MFV, while the vertical thin dashed line represents the
mean value.

In essence, the average statistic from the data in Table 1 can give us a confidence
interval at both the 68.27% and 95.45% confidence levels. This information could help
us estimate the maximum ambient radiation levels in Cube Hall and around the water
shielding of the DEAP-3600 detector. However, there is a catch—the average statistic
assumes that the data follow a normal (or Gaussian) distribution. As we discussed in
Section 2.2, this method is not always reliable and stable.

Our research revealed a more-dependable approach: using the most-frequent value
along with bootstrapping. This combination provides trustworthy estimates of the ambient
radiation levels both at the water shielding surrounding the DEAP-3600 detector and
within Cube Hall at SNOLAB. It offers an efficient alternative to traditional data-collection
methods. Specifically, it helps us pinpoint the most-common values and simplifies the data
analysis, which are crucial when we need precise ranges of values.

As we already mentioned, an alternative method is to use a statistical technique
called bootstrapping. It is particularly useful when the original dataset lacks observa-
tional errors [41]. One repeats this bootstrapping process multiple times (typically 1000 to
3000 times) to create a distribution of a statistic called the MFV. From this MFV distribution,
one can calculate confidence intervals at different confidence levels, such as 68.27% and
95.45%. It is important to note that gathering a comparable set of ambient dose data using
the traditional method, as described in the previous study [11], would take an impractical
459 years (3000 tests, each taking 1342 h) using passive integrating sensors such as TLDs.
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Using the bootstrapping technique for all the ambient dose measurements taken at
both the front and rear positions of TLD sensors in Cube Hall at SNOLAB, as listed in
Table 1, along with the MFV statistics at the 68.27% confidence level, yielded a confidence
interval for all the measurements of [31.60, 38.60]. Meanwhile, the 95.45% confidence
interval for all the data was [28.10, 42.11]. The histogram in Figure 3 presents the MFV
derived from 3000 replicates of the bootstrapped data. In simpler terms, estimating the
ambient dose in Cube Hall at SNOLAB using the MFV statistics and a bootstrapping
technique resulted in a value of

DCH(M) = 35.19+3.41
−3.59 µGy, (5)

with a range of [31.60, 38.60], representing the uncertainty at the 68.27% confidence level.
Comparing these bootstrapping errors to the MFV variance estimated using Equation (3),
which resulted in σM = 3.30µGy, we found that the variance was of the same order as the
bootstrap uncertainty indicated in Equation (5). The advantage of bootstrapping over the
MFV variance is that the former does not rely on assumptions about the data distribution.

MFV = 35.19

0.00

0.05

0.10

0.15

30 40 50
Bootstrap Sample of Ambient Exposure, µGy

D
en

si
ty

Figure 3. The histogram represents the MFV of the bootstrapped data (based on 3000 replicates), while
the dotted–dashed line represents the probability density, illustrating the distribution of ambient
dose data in Cube Hall. The vertical thin solid line indicates the MFV calculated from the data in
Table 1.

Applying the bootstrapping approach to the entirety of the ambient dose measure-
ments gathered from the passive integrating sensors positioned at various locations of the
water shielding surrounding the DEAP-3600 detector within Cube Hall at SNOLAB from
both the front and rear TLDs, as indicated in Table 1, combined with the MFV statistics at a
68.27% confidence level, produced a confidence interval for these measurements within the
range of [31.32, 38.38]. Furthermore, a 95.45% confidence interval for all the data was deter-
mined to be [27.79, 41.91]. The histogram featured in Figure 4 showcases the MFV derived
from 3000 replicates of the bootstrapped data. In more-accessible terms, estimating the
ambient dose of the water shielding surrounding the DEAP-3600 detector within Cube Hall
at SNOLAB through the use of the MFV statistics in conjunction with the bootstrapping
methods yielded a result represented as:

Dw.sh.(M) = 34.80+3.58
−3.48 µGy, (6)

with an associated range of [31.32, 38.38], which denotes the level of uncertainty at the
68.27% confidence level. When comparing these bootstrapping errors to the MFV variance,
as computed through Equation (3) and yielding σM = 3.36µGy, it becomes evident that the
variance aligns with the magnitude of the bootstrap uncertainty presented in Equation (6).
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The advantage of using bootstrapping, as opposed to the MFV variance (see Equation (3)),
is its ability to remain unaffected by assumptions about how the data are distributed,
whether they follow a symmetric (balanced) or asymmetric (unbalanced) pattern.

MFV = 34.8

0.00

0.05

0.10

0.15

0.20

20 30 40
Bootstrap Sample of Ambient Exposure, µGy

D
en

si
ty

Figure 4. The histogram represents the MFV obtained from 3000 replicates of the bootstrapped data
based on ambient dose data collected through passive integrating sensors positioned at different
locations around the water shielding encircling the DEAP-3600 detector. In contrast, the dotted–
dashed line illustrates the probability density. The vertical thin solid line serves as a reference point,
marking the MFV calculated from the dataset listed in Table 1.

In contrast, if one wants to determine the uncertainty of the MFV using Equation (3),
there is no need to use the bootstrapping technique to measure the extent of the bootstrap
uncertainty. However, one must possess prior knowledge that the observed measurements
adhere to a Gaussian (or normal) distribution. This requirement is akin to what is needed
for calculating the mean or weighted mean statistic. Nevertheless, it is important to
note that data do not always follow a Gaussian distribution, even if the dataset is quite
extensive [24–26,42]. For instance, studies have indicated that, if two independent variables
adhere to a normal distribution, their ratio does not [43]. This clearly illustrates the
limitation of applying standard normal statistics in certain physical scenarios.

Taking into account the 1342-h exposure of passive integrating TLD sensors and using
the MFV ambient doses from Equations (5) and (6), we can compute the ambient dose rates
within Cube Hall and around the DEAP-3600 water shielding at SNOLAB, yielding:

RCH(M) = 26.22+2.54
−2.67 nGy/h and Rw.sh.(M) = 25.93+2.67

−2.59 nGy/h (7)

with uncertainty representing the 68.27% confidence level. Specifically, the one-σ range for
the ambient dose rate within Cube Hall, as deduced from MFV bootstrapping (RCH(M)),
encompasses [23.55, 28.76], while the ambient dose rate encompassing the DEAP-3600
water shielding (Rw.sh.(M)) lies within [23.34, 28.60]. Furthermore, the two-σ range for the
ambient dose rate in Cube Hall, determined via MFV bootstrapping (RCH(M)), is [20.94,
31.38], and the corresponding range around the DEAP-3600 water shielding (Rw.sh.(M)) is
[20.71, 31.23]. Both of these ranges signify a 95.45% confidence level.

4. Discussion

In our prior research [11], we verified the effectiveness of passive detectors such as
TLDs for measuring low-level radiation at SNOLAB. Moreover, we observed non-uniform
environmental ambient doses around the water shielding. Table 1 emphasizes noticeable
variations within one standard deviation of the outcomes, mainly influenced by the nearby
MiniCLEAN water tank near the DEAP-3600 detector. These data are important for Monte
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Carlo simulations used to evaluate background levels for DEAP-3600 or any potential
large-scale dark matter experiments.

Nonetheless, a lingering question was the determination of a highly accurate confi-
dence interval for this non-uniform background radiation. Employing the most-frequent-
value method in combination with bootstrapping, we tackled this inquiry and established
suitable confidence intervals for both Cube Hall and the DEAP-3600 water shielding,
achieving confidence levels of 68.27% and 95.45%.

The ambient dose and dose rate information can serve as cautious upper bounds for
gamma radiation in the vicinity of the DEAP-3600 water shield. These data are instrumental
in determining the required shielding thickness to ensure that detectors, such as DEAP-
3600, remain unaffected by environmental gamma background. Specifically for DEAP-3600,
the maximum ambient dose around the water shielding and the highest ambient dose rate
are 41.91 µGy and 31.23 nGy/h, respectively, with a 95.45% level of confidence.

In a similar way, we can calculate the maximum expected levels of environmental
gamma radiation in Cube Hall for any extensive detector setup. These calculations offer
average values and statistical margins, essentially providing us with a safety buffer. For
Cube Hall, in particular, the highest expected ambient dose is 42.11 µGy, and the maximum
anticipated ambient dose rate is 31.38 nGy/h, both with a 95.45% confidence level. This
method proves to be more efficient than deploying a single active detector at various spots
one after the other, a process that would be significantly more time-consuming.

As we mentioned before, the unevenness of the radiation levels around the DEAP-3600
detector and in the Cube Hall at SNOLAB have been discussed in a previous study [11].
In this work, our main focus was to determine the range of uncertainty based on actual
measurements using passive sensors like TLDs, with a specific level of confidence (for
example, 68.27% or 95.45%). For future dark matter detectors, it would be helpful to know
the upper limit of the uncertainty range, which can be used as a cautious estimate of the
background radiation level for designing the shielding. Shielding against the background
radiation can improve the accuracy of dark matter measurements by providing better
control over the experimental conditions and reducing uncertainties. However, designing
and implementing such shielding can be expensive and technically challenging. It may
require advanced materials, sophisticated techniques, and additional infrastructure, which
can increase the complexity and cost of the experiment. So, if we use passive sensors
such as TLDs and specific statistical methods such as the MFV and bootstrapping, we can
provide a range of uncertainty with a known level of confidence. This will give accurate
and dependable results.

In summary, this study showcased the effectiveness of passive detectors such as TLDs
as sensors in gauging minimal radiation levels at SNOLAB. It also furnished crucial infor-
mation for evaluating the ambient radiation in the vicinity of the DEAP-3600 detector and
within Cube Hall. In addition, the use of the MFV coupled with bootstrapping techniques
enables the determination of confidence intervals with a high level of certainty. For direct
dark matter detection experiments, such as DEAP-3600, which rely on extremely sensitive
detectors, understanding the distinction between dark matter signals and background
interference is paramount.

5. Conclusions

Using passive sensors such as TLDs and the MFV statistical method, we estimated
the ambient radiation levels in Cube Hall and around the DEAP-3600 water shielding at
SNOLAB. This approach provides a cost-effective and efficient alternative to traditional
methods. The data are crucial for simulating how unwanted radiation might impact
experiments, especially when searching for dark matter particles such as WIMPs.

Our calculations showed that, in Cube Hall at SNOLAB, the ambient radiation level,
determined using the MFV statistics and bootstrapping, for 1342 h of exposure is approxi-
mately 35.19 µGy, with an uncertainty range of +3.41 to −3.59 µGy, representing a 68.27%
confidence level. Around the DEAP-3600 water shielding, the ambient radiation level
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is about 34.80 µGy, with an uncertainty range of +3.58 to −3.48 µGy, also at a 68.27%
confidence level. These estimates provide essential insights for experimental planning in
SNOLAB, particularly for dark matter research.

We harnessed the bootstrapping technique to compute confidence intervals for our
ambient dose measurements. This method is advantageous because it does not assume a
specific data distribution and can be used with data that do not follow a normal distribution.
By combining the MFV statistic with bootstrapping, we established confidence intervals
at the 68.27% and 95.45% levels for ambient dose levels. This information is vital for
evaluating the potential impact of environmental electromagnetic background radiation on
large-scale dark matter experiments.

Moreover, this research showed that using the MFV method along with bootstrapping
gives results similar to those of traditional methods, but in a much shorter time. We found
that, gathering equivalent data using traditional approaches would be extremely time-
consuming and impractical. These techniques are not just useful for measuring ambient
dose and dose rates; they can also be used in other scientific fields where analyzing sensor
data is necessary, especially when dealing with complex data distributions.

In conclusion, this study underscored the efficacy of employing the MFV and boot-
strapping methodologies for precise ambient radiation level estimation, thereby furnishing
invaluable guidance for radiation exposure control within facilities such as SNOLAB. These
approaches present pragmatic and efficient alternatives to traditional data-acquisition
methods. Notably, this research represents the first documented instance of using the
most-frequent value in conjunction with bootstrapping techniques to calculate confidence
levels with exceptional precision using TLDs as sensor detectors.
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suggestions, which significantly enhanced the quality of this manuscript. The authors wish to thank
Helena Rummens for her careful editing of the paper. We would also like to extend our thanks to the
entire Canadian Nuclear Laboratories team, as well as the SNOLAB underground laboratory and
DEAP collaboration, for their contributions and cooperation throughout this study. Their collective
efforts and expertise have greatly enriched this research. Their commitment to advancing scientific
knowledge in this field is truly commendable, and we are grateful for the opportunity to collaborate
with such a dedicated and talented group of individuals. Thank you all for your unwavering
support of and contributions to this project. Furthermore, we would like to express our thanks to the
anonymous referees for their helpful comments and suggestions, which have greatly contributed to
the improvement of this work.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2023, 23, 8856 13 of 14

Abbreviations
The following abbreviations are used in this manuscript:

CNL Canadian Nuclear Laboratories
CRL Chalk River Laboratories
DEAP Dark matter Experiment using Argon Pulse-shape discrimination
ID identification
MFV most-frequent value
NEWS-G New Experiments With Spheres-Gas
TLD thermoluminescent dosimeter
SNO Sudbury Neutrino Observatory
SNOLAB a lab created to host other neutrino and dark

matter experiments after the success of the SNO experiment
WIMP weakly interacting massive particle
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4. Kuźniak, M.; Amaudruz, P.A.; Batygov, M.; Beltran, B.; Bonatt, J.; Boulay, M.; Broerman, B.; Bueno, J.; Butcher, A.; Cai, B.; et al.
DEAP-3600 Dark Matter Search. Nucl. Part. Phys. Proc. 2016, 273–275, 340–346. [CrossRef]

5. Ajaj, R.; Amaudruz, P.A.; Araujo, G.E.; Baldwin, M.; Batygov, M.; Beltran, B.; Bina, C.E.; Bonatt, J.; Boulay, M.e.; Broerman, B.; et al.
Search for Dark Matter with a 231-Day Exposure of Liquid Argon Using DEAP-3600 at SNOLAB. Phys. Rev. D 2019, 100, 022004 .
[CrossRef]

6. Adhikari, P.; Ajaj, R.; Alpízar-Venegas, M.; Amaudruz, P.A.; Auty, D.J.; Batygov, M.; Beltran, B.; Benmansour, H.; Bina, C.E.;
Bonatt, J.; et al. Pulse-Shape Discrimination against Low-Energy Ar-39 Beta Decays in Liquid Argon with 4.5 Tonne-Years of
DEAP-3600 Data. Eur. Phys. J. 2021, 81, 823. [CrossRef]

7. Adhikari, P.; Ajaj, A.R.; Araujo, G.R.; Batygov, M.; Beltran, B.; Bina, C.E.; Boulay, M.G.; Broerman, B.; Bueno, J.F.; Butcher, A.; et al.
The Liquid-Argon Scintillation Pulseshape in DEAP-3600. Eur. Phys. J. 2020, 80, 303. [CrossRef]

8. Adhikari, P.; Ajaj, R.; Alpízar-Venegas, M.; Auty, D.J.; Benmansour, H.; Bina, C.E.; Bonivento, W.; Boulay, M.G.; Cadeddu, M.;
Cai, B.; et al. First Direct Detection Constraints on Planck-scale Mass Dark Matter with Multiple-Scatter Signatures Using the
DEAP-3600 Detector. Phys. Rev. Lett. 2022, 128, 011801. [CrossRef]

9. Akashi-Ronquest, M.; Bacon, A.; Benson, C.; Bhattacharya, K.; Caldwell, T.; Formaggio, J.A.; Gastler, D.; Grado-White, B.; Griego,
J.; Gold, M.; et al. Triplet Lifetime in Gaseous Argon. Eur. Phys. J. 2019, 55, 176. [CrossRef]

10. Balogh, L.; Beaufort, C.; Brossard, A.; Bunker, R.; Caron, J.F.; Chapellier, M.; Coquillat, J.M.; Corcoran, E.C.; Crawford, S.; Fard,
A.D.; et al. Copper Electroplating for Background Suppression in the NEWS-G Experiment. Nucl. Instruments Methods Phys. Res.
Sect. Accel. Spectrometers Detect. Assoc. Equip. 2021, 988, 164844. [CrossRef]

11. Golovko, V.V.; Kamaev, O.; Sun, J.; Jillings, C.J.; Gorel, P.; Vázquez-Jáuregui, E. Ambient Dose and Dose Rate Measurement in
SNOLAB Underground Laboratory at Sudbury, Ontario, Canada. Sensors 2023, 23, 1945. [CrossRef] [PubMed]

12. Ajaj, R.; Araujo, G.R.; Batygov, M.; Beltran, B.; Bina, C.E.; Boulay, M.G.; Broerman, B.; Bueno, J.F.; Burghardt, P.M.; Butcher, A.;
et al. Electromagnetic Backgrounds and Potassium-42 Activity in the DEAP-3600 Dark Matter Detector. Phys. Rev. D 2019,
100, 072009. [CrossRef]

13. Guindon, L. 2018 Annual Compliance Report Dosimetry Services, DSP-508760-REPT-2018; Technical Report; unrestricted; Canadian
Nuclear Laboratories: Chalk River, ON, Canada, 2019.

14. Guindon, L. 2019 Annual Compliance Report Dosimetry Services, DSP-508760-REPT-2019; Technical Report; unrestricted; Canadian
Nuclear Laboratories: Chalk River, ON, Canada, 2020.

15. Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F.D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; et al.
DARWIN: Towards the Ultimate Dark Matter Detector. J. Cosmol. Astropart. Phys. 2016, 2016, 017. [CrossRef]

16. Zhang, H.; Abdukerim, A.; Chen, W.; Chen, X.; Chen, Y.; Cui, X.; Dong, B.; Fang, D.; Fu, C.; Giboni, K.; et al. Dark Matter Direct
Search Sensitivity of the PandaX-4T Experiment. Sci. China Phys. Mech. Astron. 2018, 62, 31011. [CrossRef]

17. Schumann, M. Direct Detection of WIMP Dark Matter: Concepts and Status. J. Phys. Nucl. Part. Phys. 2019, 46, 103003. [CrossRef]
18. Canadian Nuclear Safety Commission. Technical and Quality Assurance Requirements for Dosimetry Services; Regulatory Standard

S-106 Revision 1; CNSC: Ottawa, ON, Canada, 2006. Available online: https://nuclearsafety.gc.ca/pubs_catalogue/uploads/S1
06R1_e.pdf (accessed on 23 October 2023).

19. Canadian Nuclear Safety Commission. REGDOC-2.7.2, Dosimetry, Volume II: Technical and Management System Require-
ments for Dosimetry Services; CNSC: Ottawa, ON, Canada, 2018. Available online: http://nuclearsafety.gc.ca/eng/acts-and-
regulations/regulatory-documents/published/html/regdoc2-7-2-v2/index.cfm (accessed on 23 October 2023).

http://doi.org/10.1140/epjp/i2012-12108-9
http://dx.doi.org/10.1088/1742-6596/1468/1/012252
http://dx.doi.org/10.1016/S0168-9002(99)01469-2
http://dx.doi.org/10.1016/j.nuclphysbps.2015.09.048
http://dx.doi.org/10.1103/PhysRevD.100.022004
http://dx.doi.org/10.1140/epjc/s10052-021-09514-w
http://dx.doi.org/10.1140/epjc/s10052-020-7789-x
http://dx.doi.org/10.1103/PhysRevLett.128.011801
http://dx.doi.org/10.1140/epja/i2019-12867-2
http://dx.doi.org/10.1016/j.nima.2020.164844
http://dx.doi.org/10.3390/s23041945
http://www.ncbi.nlm.nih.gov/pubmed/36850546
http://dx.doi.org/10.1103/PhysRevD.100.072009
http://dx.doi.org/10.1088/1475-7516/2016/11/017
http://dx.doi.org/10.1007/s11433-018-9259-0
http://dx.doi.org/10.1088/1361-6471/ab2ea5
https://nuclearsafety.gc.ca/pubs_catalogue/uploads/S106R1_e.pdf
https://nuclearsafety.gc.ca/pubs_catalogue/uploads/S106R1_e.pdf
http://nuclearsafety.gc.ca/eng/acts-and-regulations/regulatory-documents/published/html/regdoc2-7-2-v2/index.cfm
http://nuclearsafety.gc.ca/eng/acts-and-regulations/regulatory-documents/published/html/regdoc2-7-2-v2/index.cfm


Sensors 2023, 23, 8856 14 of 14

20. Illowsky, B.; Dean, S. Introductory Statistics; Rice University: Houston, TX, USA, 2018.
21. Steiner, F. Most Frequent Value Procedures (a Short Monograph). Geophys. Trans. 1988, 34, 139–260.
22. Steiner, F. The Most Frequent Value. Introduction to a Modern Conception of Statistics; Akadémiai Kiadó: Budapest, Hungary, 1991.
23. Steiner, F. Optimum Methods in Statistics; Akadémiai Kiadó: Budapest, Hungary, 1997.
24. Zhang, J. Most Frequent Value Statistics and Distribution of 7Li Abundance Observations. Mon. Not. R. Astron. Soc. 2017,

468, 5014–5019. [CrossRef]
25. Zhang, J. Most Frequent Value Statistics and the Hubble Constant. Publ. Astron. Soc. Pac. 2018, 130, 084502. [CrossRef]
26. Zhang, J.; Zhang, S.; Zhang, Z.R.; Zhang, P.; Li, W.B.; Hong, Y. MFV Approach to Robust Estimate of Neutron Lifetime. Eur. Phys.

J. 2022, 82, 1106. [CrossRef]
27. Golovko, V.V. Application of the Most Frequent Value Method for 39Ar Half-Life Determination. Eur. Phys. J. 2023, 83, 930.

[CrossRef]
28. Szabo, N.P.; Balogh, G.P. Most Frequent Value Based Factor Analysis of Engineering Geophysical Sounding Logs. In Proceedings

of the 78th EAGE Conference and Exhibition 2016, Vienna, Austria, 30 May–2 June 2016; pp. 1–5.
29. Szabó, N.P.; Balogh, G.P.; Stickel, J. Most Frequent Value-Based Factor Analysis of Direct-Push Logging Data: MFV-based Factor

Analysis. Geophys. Prospect. 2018, 66, 530–548. [CrossRef]
30. Szucs, P.; Civan, F.; Virag, M. Applicability of the Most Frequent Value Method in Groundwater Modeling. Hydrogeol. J. 2006,

14, 31–43. [CrossRef]
31. Steiner, F. Possibilities to Realize Higher Efficiency in Geophysical Interpretation. Geophys. Trans. 1987, 33, 3–9.
32. Steiner, F.; Hajagos, B.; Hursán, G. MFV-corrected Variances. Geophys. Trans. 1997, 40, 191–216.
33. Szegedi, H.; Dobróka, M. On the Use of Steiner’s Weights in Inversion-Based Fourier Transformation: Robustification of a

Previously Published Algorithm. Acta Geod. Geophys. 2014, 49, 95–104. [CrossRef]
34. Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; CRC Press: Boca Raton, FL, USA, 1994.
35. Davison, A.C.; Hinkley, D.V. Bootstrap Methods and Their Applications; Cambridge University Press: Cambridge, UK, 1997.
36. DiCiccio, T.J.; Efron, B. Bootstrap Confidence Intervals. Stat. Sci. 1996, 11, 189–228. [CrossRef]
37. Carpenter, J.; Bithell, J. Bootstrap Confidence Intervals: When, Which, What? A Practical Guide for Medical Statisticians. Stat.

Med. 2000, 19, 1141–1164. [CrossRef]
38. Gust, J.C.; Graham, R.M.; Lombardi, M.A. Stopwatch and Timer Calibrations; US Department of Commerce, Technology Adminis-

tration, National Institute of Standards and Technology: Washington, DC, USA, 2009 .
39. Grupen, C. Introduction to Radiation Protection: Practical Knowledge for Handling Radioactive Sources; Springer Science & Business

Media: Berlin/Heidelberg, Germany, 2010.
40. Kumar, V.; Chaudhary, B.; Sharma, V.; Verma, K. Radiation Effects in Polymeric Materials; Springer Nature: Cham, Switzerland,

2019.
41. Gott, J.R., III; Vogeley, M.S.; Podariu, S.; Ratra, B. Median Statistics, H0, and the Accelerating Universe. Astrophys. J. 2001, 549, 1.

[CrossRef]
42. Chen, G.; Gott Iii, J.R.; Ratra, B. Non-Gaussian Error Distribution of Hubble Constant Measurements. Publ. Astron. Soc. Pac. 2003,

115, 1269–1279. [CrossRef]
43. Walck, C. Handbook on Statistical Distributions for Experimentalists, University of Stockholm Internal Report SUF-PFY/96-01; Technical

Report; University of Stockholm: Stockholm, Sweden, 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1093/mnras/stx627
http://dx.doi.org/10.1088/1538-3873/aac767
http://dx.doi.org/10.1140/epjc/s10052-022-11071-9
http://dx.doi.org/10.1140/epjc/s10052-023-12113-6
http://dx.doi.org/10.1111/1365-2478.12573
http://dx.doi.org/10.1007/s10040-004-0426-1
http://dx.doi.org/10.1007/s40328-014-0041-0
http://dx.doi.org/10.1214/ss/1032280214
http://dx.doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F
http://dx.doi.org/10.1086/319055
http://dx.doi.org/10.1086/379219

	Introduction
	Materials and Methods
	Integrating Passive Detectors
	Most-Frequent-Value Approach
	Bootstrapping Approach for Confidence Intervals

	Results
	Discussion
	Conclusions
	References

