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Abstract: The key system serves as a vital foundation for ensuring the security of information
systems. In the presence of a large scale of heterogeneous sensors, the use of low-quality keys directly
impacts the security of data and user privacy within the sensor network. Therefore, the demand
for high-quality keys cannot be underestimated. Random numbers play a fundamental role in the
key system, guaranteeing that generated keys possess randomness and unpredictability. To address
the issue of random number requirements in multi-sensor network security, this paper introduces a
new design approach based on the fusion of chaotic circuits and environmental awareness for the
entropy pool. By analyzing potential random source events in the sensor network, a high-quality
entropy pool construction is devised. This construction utilizes chaotic circuits and sensor device
awareness technology to extract genuinely random events from nature, forming a heterogeneous
fusion of a high-quality entropy pool scheme. Comparatively, this proposed scheme outperforms
traditional random entropy pool design methods, as it can meet the quantity demands of random
entropy sources and significantly enhance the quality of entropy sources, ensuring a robust security
foundation for multi-sensor networks.

Keywords: multi-sensor networks; information security; entropy; random numbers

1. Introduction

A multi-sensor network (MSN) is a network system composed of multiple heteroge-
neous sensors, designed to collaborate in order to collect, process, and transmit various
types of information within the environment [1,2]. These sensors encompass diverse types,
including image sensors, temperature sensors, sound sensors, motion sensors, and others,
capable of gathering a wide range of data such as temperature, humidity, sound, light
intensity, and motion patterns [3]. Through collaborative efforts, these sensors can provide
a more comprehensive and accurate environmental perception and information acqui-
sition. Coupled with data analysis and processing on relevant platforms, multi-sensor
networks have broad applications in fields such as environmental monitoring, smart homes,
healthcare, and digital twin [4–7].

The sensor network, as well as its derivative, the wireless sensor network, along
with their integration into the realm of the Internet of Things (IoT), inherently harbor
certain intrinsic vulnerabilities. These include susceptibilities such as weak cryptographic
passwords, the dearth of periodic patching and updates, insecure application layers, and
inadequacies in data protection protocols [8,9]. These vulnerabilities create exploitable
opportunities for malicious actors to mount attacks. Contemporary advancements in the
field of cryptography offer a robust avenue to fortify the security of sensor networks,
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with randomness playing a pivotal role as the foundational bedrock of the key manage-
ment system. To ensure the utmost security of cryptographic frameworks, it is imperative
that the random numbers employed possess an exceptional degree of entropy, thus en-
suring the preservation of the integrity and uninterrupted availability of the encryption
validation ecosystem.

The quality of randomness serves as a pivotal factor determining the quality of an
entire key system. As such, a high-quality random source is of utmost significance in the
construction of secure and reliable cryptographic keys. The predictability of cryptographic
algorithms’ security is significantly compromised when random numbers become fore-
seeable. In fact, the majority of routines and programming languages generate random
numbers through deterministic functions utilizing a random seed, such as an internal
clock [10]. Common methods for generating random numbers include [11]: the linear con-
gruential method, the Mersenne Twister algorithm, and the WELL (well-equidistributed
long-period linear) algorithm, and the like.

The primary contributions of this paper can be summarized as follows: Firstly, an
in-depth analysis of natural sources of randomness, with a particular focus on their ap-
plication within sensor networks, was conducted. Secondly, an innovative approach was
proposed for constructing a high-quality entropy pool by combining chaotic circuits and
environmental sensing techniques. This serves to meet the demands for random number
generation in the context of multi-sensor network security. Our work is structured as
follows: Section “Related Work” discusses the ingestion of randomness in sensor networks.
Section 2 is focused on the design of the proposed system and gives details on the en-
tropy pool design. Experimental results are presented in Section 3 and conclusions are in
Section 4.

Related Work

“Randomness” is just a way to refer to systems where the observer cannot predict
the outcome with certainty [12]. Computers themselves are incapable of generating truly
random numbers; they can only simulate randomness through intricate algorithms. To
achieve the generation of high-quality random numbers, it is imperative to acquire a
sufficient quantity of randomness from external sources with the requisite quality.

1. Entropy Sources in the Natural World.

In the realm of the natural world, a multitude of stochastic events are inherently
present. Through purposeful design, an electronic apparatus can effectively extract these
manifestations of randomness and subsequently employ them within domains of height-
ened security significance, including but not limited to key administration and identity
validation. This strategy, involving the harnessing of natural stochasticity to augment
security parameters, undeniably crystallized as a pivotal and imperative technological
modality within the contemporary landscape of security discourse.

Meteorological data encompass a plethora of factors characterized by stochastic varia-
tions, such as temperature, precipitation, wind velocity, and others. It can be conceived as a
form of a stochastic entropy source. In practical instances, random.org [13] leverages the
randomness generated by atmospheric noise to offer a bona fide random number service.

The intensity and frequency of electromagnetic radiation from celestial bodies such
as radiation sources in the universe are subject to stochastic variations, rendering them
akin to a stochastic source of randomness. Leveraging the stochastic nature of pulsar
pulse flux density, a research team from the Australian National Observatory devised an
innovative random number generator [14]. This method successfully underwent validation
in accordance with the NSP800 standard [15].

In biological genetics, the combination of genes is subject to stochastic variation,
determining the traits and characteristics of organisms. For instance, in the DNA sequence,
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the arrangement of nucleotide bases denoted as “s” can be transformed into a random
number through the utilization of a hash function:

r = H(s). (1)

Herein, H represents a hash function that maps s to a random number r.

2. Entropy sources within a sensor network ecosystem.

In the context of sensor networks, various sources of randomness also exist. For example:

(1) Genuine randomness of noise: Utilizing a physical circuit with noise to generate
random numbers, where noise sources could encompass thermal noise, photoelectric
noise, semiconductor device noise, among others. For instance, when powered on,
static random access memory (SRAM) populates with random sequences of 0 s and
1 s. This powered-on pattern is unique to each chip, and is thereby feasible for use
as a device identifier. This method is referred to as physically unclonable functions
(PUF) [16], resulting in high-quality entropy for the generated random numbers.

(2) Inherent randomness of integrated components: Instabilities caused by competition
lead to uncertain outputs from logic gates, flip-flops, and triggers. This uncertainty
stems from electrical noise within the circuit, rendering the eventual state unpre-
dictable [17].

(3) Genuine randomness of wireless signals: Communication between sensor network
devices often employs wireless technology; however, due to environmental influences,
wireless signal attenuation and envelope variations are imbued with uncertainty.
Hence, in certain wireless communication devices, randomness can be extracted
by statistically analyzing received signals, subsequently employed in generating
random numbers.

(4) Genuine randomness sensed by environmental sensors: Environmental sensors (such
as temperature, humidity, pressure, light, etc.) possess the capability to perceive
the ambient environmental conditions. Due to various factors (including weather
fluctuations and human interference), these environmental conditions often exhibit
inherent randomness. Therefore, by means of analyzing readings from environmental
sensors, it becomes possible to extract a measure of randomness, subsequently applied
in the generation of random numbers.

3. Entropy source within chaotic circuits.

In electronic devices, randomness can also be extracted through specific circuit de-
signs. Research indicates that chaotic circuits can serve as random number generators
due to their inherent uncertainty and sensitivity to initial conditions, thus making them
suitable for constructing random number generators based on chaotic systems [18]. Chaotic
circuits typically employ nonlinear circuit components such as variable resistors, variable
capacitors, operational amplifiers, analog multipliers, etc., and are implemented using
analog/digital circuit techniques [19]. This type of random number generator leverages
the initial condition sensitivity of chaotic systems and the long-term unpredictability of
their behavior, offering distinct advantages over traditional random number generators.

In practical applications, there are two forms of generating random numbers using
chaotic systems: one is a true random number generator based on circuit design, and
the other is a pseudo-random number generator designed by numerically solving chaotic
systems (e.g., Euler’s method, Runge–Kutta method). However, implementing chaotic
systems in computers is constrained by computational accuracy, making it challenging to
theoretically prove the absence of short-term periodicity in the designed system. To address
the precision issues inherent in numerical computation, hardware devices can be employed
to implement chaotic systems. This approach helps circumvent the limitations associated
with the aforementioned numerical accuracy constraints and potential drawbacks.
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2. Design of Hybrid Entropy Source Pool

In engineering applications, due to the distinct advantages and limitations of various
methods for acquiring randomness, combining them in a cascading manner becomes a
practical choice. Thus, a pool of entropy can be established through the fusion of multiple
entropy sources. This approach involves collecting input from these sources and injecting
the available entropy into the entropy pool to generate non-deterministic random numbers.

The entropy pooling mechanism ensures that the generated random numbers pos-
sess a high degree of uncertainty and unpredictability, making it crucial in cryptographic
scenarios. These random numbers can be used directly or serve as seeds for cryptographi-
cally secure pseudo-random number generators (CSPRNGs). These pseudo-random num-
bers approach true randomness and exhibit resistance against computational attacks. By
utilizing entropy pooling and pseudo-random number algorithms, it becomes possible
to obtain high-quality random numbers, thereby providing robust security and crypto-
graphic protection.

The utilization scenarios of sensor networks are closely aligned with the external
natural environment. Consequently, within these scenarios, the perceived information
contains a multitude of random factors that can be designed as entropy sources. However,
individual random events often fall short of meeting the requirements for both quantity
and quality of random numbers. Therefore, this section introduces an entropy source
design approach tailored to practical sensor network applications, with the proposed
model depicted in Figure 1.
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This approach amalgamates the randomness extracted from the environment by sensor
network devices with the randomness present in chaotic systems. This fusion overcomes
the limitations of inadequate randomness in single entropy source acquisition and the
precision deficiencies and short-cycle issues in random number algorithms. This design
satisfies the randomness needs of a key system. By employing this hybrid entropy source
approach, the high demands for randomness in information systems can be met, yielding a
more dependable and secure random number generation.

2.1. Chaos Circuit Entropy Source Acquisition

In the chosen design scheme, the Chen chaotic circuit [20] is selected as a category of
entropy source. It possesses a more complex topological structure and dynamic behavior
compared to the Lorenz chaotic system [21], making it more versatile in domains such as
information encryption and secure communication. The description of this chaotic system
is as follows: 

.
x = a(y− x),

.
y = (c− a)x− xz + cy,

.
z = xy− bz.

(2)
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The system exhibits intricate nonlinear behavior, including the formation of chaotic
attractors and high sensitivity to initial conditions, contingent upon the parameter values
such as a, b, and c. Typically implemented as an analog circuit, the Chen chaotic system
utilizes operational amplifiers and electronic components to simulate the system’s differ-
ential equations. Its application spans diverse fields such as information security, chaotic
communication, and random number generation, leveraging its unpredictable and random
signal characteristics. The circuit design and parameter selection play a crucial role in shap-
ing the chaotic nature of the system, when a = 35, b = 3, and c = 28, the system exhibits
chaotic behavior. The implementation of the Chen chaotic system circuit is depicted in
Figure 2, and the phase plot composed of pairs of outputs is illustrated in Figure 3, vividly
showcasing the system’s chaotic state. In Figure 3, choose two from the trio of outputs to
generate the phase diagrams; these diagrams encapsulate intricate, non-repeating patterns
within the system’s dynamic behavior.
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Due to the sensitivity of chaotic systems to initial conditions, discrepancies between
theoretical designs and practical implementations can arise. Therefore, in the next section,
we will delve into the exploration of enriching the entropy pool through the utilization of
various types of sensor network application devices.

2.2. Entropy Source Acquisition in Sensor Networks
2.2.1. Thermal Noise Amplification Method

The thermal noise amplification method is an effective approach for generating a true
random binary sequence by sampling analog signals with quantizing comparators. Thermal
noise, also known as white noise, is generated by the thermal agitation of electrons within
conductors. It is present in all electronic devices and transmission media. Thermal noise
remains unaffected by external biases and is solely determined by the material properties
and operating temperature.

The algorithm for random number generation using the thermal noise amplification
method is depicted in Algorithm 1. The basic process is as follows:

(a) Generation of thermal noise:

Vn(t) =

√
4kBTR

∆ f
· η(t), (3)

where kB represents the Boltzmann constant, T is the absolute temperature, R denotes
the input resistance of the amplifier, ∆ f represents the bandwidth, and η(t) is a
Gaussian white noise with zero mean and a variance of 1.

(b) Filtering:

Vs(t) = H(f) ·Vn(t), (4)

where H(f) is the frequency response function of the bandpass filter. It refines the
signal to a specific frequency range, rendering it suitable for subsequent processing
and analysis.

(c) Amplification:

Vo(t) = A ·Vs(t), (5)

where A represents the amplification factor.

(d) Sampling and quantization:

xi = Q[Vo(ti)], (6)

where ti is the sampling moment, and Q is the quantization function.

Algorithm 1: Random number generation using thermal noise amplification method

1: Input: Select the target device as the thermal noise source, set the amplifier gain G, and
determine the number of bits N for the quantizer.
2: Output: Random number.
3: Collect the voltage or current at the output of the amplifier to obtain the analog noise signalV.
4: Vfiltered = Apply filtering process to V;

5: Vquantized = round
(

Vfiltered
δ

)
; //quantization, where δ is the quantization step size

6: R = binary_encode
(

Vquantized, N
)

;
7: Rextracted = extract_bits(R, M);
8: OUTPUT Rextracted.

2.2.2. Video Surveillance Devices

In sensor network devices, a primary functional module involves perceiving the
surrounding environment through various types of sensors. Given the prevalence of



Sensors 2023, 23, 8497 7 of 16

diverse random factors in the natural environment, it is beneficial to introduce them into
the entropy pool to enhance its randomness. This section utilizes video surveillance as an
example for the design process.

A camera translates the optical characteristics of a target object into a digital image,
and the brightness (pixel value) of each point in the image is incorporated into a sequence,
thereby generating a file. If the camera is directed at a dynamic scene, the resulting
sequence could exhibit randomness. Similar to the inherent thermal noise in electronic
devices, digital images also encompass a noise component. A frame captured by the camera
can be expressed as follows:

p = pNF + noise. (7)

Here, p represents the final image, pNF signifies the noise-free image, and noise
denotes additive noise.

The noise noise can be represented as
√

It + Ndt + N2
t . This encompasses the

following components:

1. Shot noise (photon noise) is described by the quantum nature of light and can be
modeled with a Poisson distribution. If the light incident on an optical sensor has a
photon flux I, the total number of photons received by the sensor within time t is It,
and the noise signal is

√
It [22].

2. Dark noise is generated by electrons within the silicon layer of the sensor itself and is
quantified as Nd, following Poisson statistics. The total noise during time t is

√
Ndt.

3. Read–write noise Nt arises during data reading and writing between chips and is a
transient noise introduced during these processes.

Hence, the signal-to-noise ratio can be expressed as It√
It+Ndt+N2

t
[23].

In recording devices, noise is an inevitable presence. Although these noises might have
a detrimental impact on image quality, in the context of this design, they can be harnessed.
In actual captured frames, there usually exist changing object components between two
frames, and these changes are random in nature. Consequently, these components can
be captured and integrated into the design of the entropy pool. By conducting statistical
analysis and processing on these changing components, randomness can be extracted and
employed for random number generation.

2.2.3. Wireless Intelligent Routing Devices

In sensor networks, extensive employment of wireless communication technologies is
observed. Numerous studies harnessed the state of wireless channels to obtain random-
ness [24–26]. These investigations primarily rely on principles such as time variability,
channel reciprocity, and spatial decorrelation within the communication process.

By investigating channel characteristics, it is possible to design unpredictable random
sources based on correlated features in wireless communication. These sources can be
characterized using typical channel parameters. Cooperative relaying and physical layer
security networks can utilize wireless broadcast channels, implying that with proper
design, cooperative relay network channels can provide a novel and effective approach for
extracting randomness.

Intelligent routing devices in sensor networks can effectively amplify and forward
wireless signals. The amplify forward (AF) protocol, initially proposed by Laneman [27],
is a straightforward relaying cooperation protocol. Relaying techniques are often used in
resource-limited or resource-scarce relay nodes. When a relay node receives an attenuated
signal from the sender, it amplifies and forwards it to the receiver.

Natural noise and interference sources in the environment play a significant role
in signal attenuation. In the process of signal amplification and recovery, these random
influences are reflected and compensated for. The amplify forward relay model is depicted
in Figure 4.
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The signals received at the relay node and the receiving node from the source are,
respectively, represented as:

ySR =
√

PhSRx + nSR, (8)

ySD =
√

PhSDx + nSD. (9)

In this context, P represents the transmitting power of the source; x signifies the
transmitted signal; and nSR and nSD denote the introduced noise during transmission. hSR
and hSD correspond to the channel transfer characteristics between the source and the relay,
as well as between the source and the destination node, respectively. The primary function
of the amplify and forward (AF) relay node involves the amplification of the received signal,
which can be mathematically expressed by the following equation:

f AF(ySR) = βySR. (10)

β is denoted as an amplification factor subject to an average power constraint on relay
transmission. It ensures that the average transmit power at the relay node remains less than
or equal to the device power P. As a result, β can be derived using the following formula:

E[|f(ySR)|2] ≤ P, (11)

E[|βySR|2] ≤ P, (12)

β ≤
√

P
h2

SRE(x) + 1
. (13)

When β is set as a constant value, it is referred to as fixed-gain cooperation. On the
other hand, when β is a variable, it is termed variable-gain cooperation. By analyzing
Equation (9), it can be observed that the value of β is correlated with the channel state hSR
from the source to the relay, where channel states possess a stochastic nature. As a result,
the value of β can meet the entropy source requirements for key generation. It is worth
noting that the amplification factor β is a scalar, which is more readily extractable and
exploitable compared to the vector values within the channel transmission characteristics.

In addition to the entropy source mentioned earlier, other sensors within sensor
network devices, such as microphones, accelerometers, and gyroscopes, can also contribute
valuable randomness. These sensors have the capability to perceive uncertainties and
stochastic variations in the environment, which they can then convert into random data.
Once various sources of entropy enter the entropy pool, they can be fused using operations
such as XOR to enhance the strength and unpredictability of randomness.
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2.3. The Construction of Entropy Pool

In the system, it is necessary to effectively combine various types of random entropy
sources to enhance the randomness and uniformity of collected entropy data and eliminate
potential correlations. Common methods include:

Bit operations: The collected entropy data might exhibit patterns or biases. To break
these patterns, bit operations are often used to manipulate the data. Bit operations can
include bitwise shifts, XOR, AND, OR, and NOT operations. These operations disrupt the
bit patterns, increasing randomness.

Hash functions: Hash functions map input data to shorter fixed-length outputs and
have the property of uniformly distributing arbitrary-length inputs. In the entropy pool,
hash functions can be used to process data, ensuring randomness and uniformity. Common
hash functions include MD5, SHA-1, SHA-256, etc.

Confusion algorithms: Confusion algorithms involve complex processing of data to
increase randomness and unpredictability. These algorithms can use a series of operations
such as computations, permutations, and substitutions to ensure uniform distribution
and randomness.

Mixing with historical data: To enhance the complexity of data in the entropy pool,
current entropy data can be mixed with previous historical data. This approach can par-
tially eliminate potential temporal correlations and increase the randomness of generated
random numbers.

The merits and demerits of the aforementioned methods are delineated in Table 1.
These methods offer different trade-offs between simplicity, effectiveness, computational
overhead, and impact on system resources. The choice of a mixing method should be based
on the specific requirements and constraints of the application at hand.

Table 1. Comparison of various entropy source mixing methods.

Mixing Method Advantages Disadvantages

Bit Operations - Simple and fast.
- May not completely eliminate patterns

or correlations.
- Effect influenced by specific data sets.

Hash Functions - Achieves even distribution
via mapping.

- High computational overhead of
hash functions.

- Potential impact on system performance.

Confusion Algorithms - Provides stronger confusion effect.
- High computational complexity of

confusion algorithms.
- Demands significant system resources.

Mixing with Historical Data
- Eliminates temporal correlations.
- Increases randomness

and unpredictability.

- Requires maintenance and management of
historical data.

- Potential high storage consumption.

In the context of sensor networks, when blending the perceived entropy sources,
several factors need to be considered. Sensor network devices typically possess limited
computational capabilities and storage space. Certain sensor network scenarios might
demand real-time generation of random numbers. In such cases, it is essential to choose
methods that have low computational overhead and fast generation speed. Given these
characteristics, this paper, after comprehensive consideration, selects bit operations as the
method for mixing entropy sources to construct the entropy pool.
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3. System Simulation and Testing
3.1. Presentation of Entropy Sources

Simulations were conducted on Chen’s chaotic circuit depicted in Figure 2 using
Multisim12 software. The component parameters are presented in Table 2. The resulting
time-domain plots are illustrated in Figure 5, showcasing distinct temporal characteristics
of each output.

Table 2. Component list.

Description Quantity Identifier

OPAMP_3T_VIRTUAL 8 U1, U2, U3, U4, U5, U6, U7, U8
MULTIPLIER, 1 v/v 0 V 2 A1, A2
RESISTOR, 100 kΩ 5% 7 R6, R7, R13, R14, R16, R17, R19
RESISTOR, 200 kΩ 5% 1 R8
RESISTOR, 10 kΩ 5% 2 R9, R12
RESISTOR, 49.9 kΩ 5% 1 R10
POTENTIOMETER, 100 kΩ 1 R11
RESISTOR, 40.2 kΩ 5% 1 R15
POTENTIOMETER, 66.5 kΩ 1 R18
RESISTOR, 158 kΩ 5% 1 R20
DC_POWER, 5 V 1 V1
POWER_SOURCES, DGND 1 GND
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To verify thermal noise amplification, this study utilized the/dev/hwrng device
within the Raspberry Pi. This device serves as a hardware random number generator,
capable of producing high-quality random numbers. The algorithm (Algorithm 2) is
as follows:
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Algorithm 2: Random number generation via thermal noise amplification in Raspberry Pi

1: Input: num_bytes (number of bytes to read for random number generation).
2: Output: output_file (output file path).
3: dev_random = OPEN_DEVICE(“/dev/hwrng”); //open the hardware random number
generator device.
4: random_data = READ_RANDOM_DATA(dev_random, num_bytes); //read random data
from the device.
5: CLOSE_DEVICE (dev_random); //close the device.
6: R = binary_encode (V_quantized, N); //encode the quantized voltage values.
7: R_extracted = extract_bits(R, M); //extract the required number of bits as random numbers.
8: WRITE_TO_FILE (output_file, random_data); //write the random data to the output file.

Generate random numbers using Algorithm 2, then create an image matrix of the
appropriate size, map binary bits to the 0 to 255 color range based on the number of
channels, and represent the data as an RGB image, as illustrated in Figure 6.
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To validate the performance of the proposed intelligent routing randomness extrac-
tion method, simulation experiments were conducted using MATLAB regarding the gain
parameter β in a wireless channel. It was assumed that both the transmitter and re-
ceiver employed digital signal processing, with each number represented using a 10-bit
binary format. The channel model used was Gaussian. Using the Monte Carlo method,
1000 experiments (N = 1000) were carried out. The amplification factor β, as illustrated in
Figure 7, is characterized by formula (13).
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The plots corresponding to Figures 5–7 depict the outputs of Chen’s chaotic cir-
cuit, thermal noise in electronic terminals, and the forwarding amplification factors in
wireless intelligent routing devices. The results suggest that these numerical values
manifest a distinctive ‘noise’ characteristic. Upon scrutinizing the images, it becomes
apparent that they portray a state of disorder and chaos, making them suitable for key
generation purposes.

The video frames are replete with inherent random variations. Leveraging the OpenCV
library, two frames were selected from a surveillance video with a 2-s interval, as shown in
Figure 8a. Additionally, observations were made and captured on a heating device, and the
changes at 2-s intervals are depicted in Figure 8b.
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Figure 8. Differences in adjacent 2-s intervals for different monitoring.

The video frames under consideration exhibit inherent random variations, presumably
stemming from environmental factors such as lighting dynamics, motion, and potential
camera perturbations. Employing the OpenCV library, two frames were systematically
chosen from a surveillance video, maintaining a temporal interval of 2 s, as elucidated in
Figure 8a. Simultaneously, meticulous observations were conducted on a thermal mon-
itoring device, capturing alterations at analogous 2-s intervals, graphically depicted in
Figure 8b. A discerning comparative analysis of the two datasets reveals subtle, albeit per-
ceptually imperceptible, stochastic alterations within the same camera’s field of view over a
brief temporal span. The proposition emerges to harness these nuanced variations through
methodologies such as binary stream conversion. The intended application involves their
assimilation as supplementary contributors to an entropy pool, enriching its reservoir of
unpredictability for potential cryptographic use cases.

3.2. Physical Entropy Source Assessment

For evaluating incoming physical random sources, the average entropy is employed
to quantify the average information content of each random datum. In this context, the
entropy source S generates random number events represented by the random variable X,
with samples denoted as x:

H(X) = −∑x Pr(X = x)log2Pr(X = x). (14)

When evaluating the process of random number generation, the adoption of a Markov
model is employed. In this context, each newly collected datum is correlated only with the
preceding m data points. The concept of average entropy is utilized to express the entropy
of each individual datum. Specifically, the average entropy is denoted using the mean
symbolic entropy.

H =
H(X1, . . . , Xm+1)

m + 1
. (15)
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The joint entropy of m + 1 data points is given by:

H(X1, . . . , Xm) = H(X1, . . . , Xk) + H(Xk+1, . . . , Xm+1|X1, . . . , Xk) ≥ H(X1, . . . , Xk). (16)

The average symbolic entropy can be determined based on the actual data’s com-
pressed bit width t and the number of relevant bits m. In practical computations, a trunca-
tion value k (where k < m + 1) can be designed for assessment. In other words:

H =
H(X1, . . . , Xm+1)

m + 1
≈ H(X1, . . . , Xk)

m + 1
(17)

Upon performing grayscale transformation on the aforementioned Figure 8, the cal-
culated results are illustrated in Figure 9. It is observable from the outcomes in the figure
that as the truncation value k increases, the entropy value of the image exhibits an initial
gradual decrease followed by a sharp decline. Consequently, in practical applications, the
appropriate truncation bit value can be selected based on the specific circumstances.
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3.3. Randomness Analysis

Random numbers play a crucial role in the construction of various information systems.
When it comes to generating random numbers, chaotic circuits, environmental sensing,
and their combination exhibit distinct characteristics. The Table 3 is a detailed comparison.

Table 3. Comprehensive comparison of random number generation approaches.

Features Chaotic Circuits Environmental Sensing Combined Approach

Nature of Randomness
Generates pseudo-random
numbers based on complex
nonlinear dynamics.

Produces true random
numbers based on natural
environmental variations.

Integrates pseudo-random and true
random, allowing adjustable balance.

Controllability Controllable through
parameter adjustments.

Dependent on natural
environmental changes. Adjustable mix to control the balance.

Stability
Sensitive to initial conditions
but stable outputs with
parameter tuning.

Susceptible to environmental
fluctuations, may result in
unstable outputs.

Balances the instability of chaos with
uncertainty of environmental sensing.

Quantity
Large quantity, capable of
producing a significant number of
pseudo-random numbers.

Limited by environmental
variations, may result in a
restricted quantity.

Adjustable mix to balance a large quantity
of pseudo-random with a relatively
smaller quantity of true random numbers.

Complexity Built upon complex
mathematical models.

Relies on natural
environmental changes,
avoiding complex algorithms.

Requires consideration of the
complexities of chaotic circuits and
environmental sensing.

Applicability
Suitable for scenarios requiring
controllable, large quantities of
pseudo-randomness.

Suitable for scenarios
demanding genuine,
high-quality randomness.

Adaptable to diverse scenarios
by choosing an optimal random
number generation strategy based on
specific needs.
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In order to validate the randomness of generated sequences, it is proposed to combine
chaotic circuit signals with physical entropy sources, following the Algorithm 3 below:

Algorithm 3: Mixed Entropy Random Number Generation

1: Input: Chaotic signal, physical entropy sources.
2: Output: Random number.
3: random_seed = 0; //initialize the random seed.
4: chaotic_seed = GENERATE_CHAOTIC_SEED (chaotic_signal); //generate a seed using the chaotic signal
as input.
5: entropy_sources = GENERATE_ENTROPY_SOURCES(); //generate physical entropy sources.
6: mixed_seed = MIX_ENTROPY_SOURCES(chaotic_seed, entropy_sources); //combine multiple entropy
sources to create a random seed.
7: random_number = GENERATE_RANDOM_NUMBER (mixed_seed); //generate a random number using
the mixed seed.
8: OUTPUT random_number; //output the random number.

Sensor network systems are composed of a diverse range of sensors and intelligent
devices [28]. In this section, we illustrate and compare two application scenarios.

Scenario 1: In the application of sensor network systems, there are numerous video
detection devices and wireless transmission switch devices. In this scenario, the ampli-
fication factor β from the wireless network and random factors from video images are
combined as entropy sources. Random numbers are generated using a random number
generation algorithm.

Scenario 2: Considering the demand for random numbers, chaotic circuits are em-
bedded in the devices. These circuits are combined with random factors from video
images as entropy sources, and random numbers are generated using a random number
generation algorithm.

The scheme employs the random number testing method NIST SP800 [15] provided
by the National Institute of Standards and Technology (NIST) for verification. The purpose
of this testing methodology is to assess randomness and entropy (i.e., uncertainty of
information) and is widely utilized for evaluating and validating the quality of random
or pseudorandom number generators. The method encompasses multiple statistical tests
covering various statistical features and characteristics, such as uniformity, repetitiveness,
and independence between sequences. These tests provide conclusions regarding the
sufficiency of randomness or security of the generated sequences.

In statistical testing, the p-value is a probability used to determine the likelihood of
the hypothesis being true, ranging between 0 and 1. Through testing and comparison, as
depicted in Table 4, it is observed that the data generated based on entropy extracted from
sensor network devices meet the requirements of randomness. In the proposed chaotic
circuit method in this paper, achieving the non-linear parameters in chaos only requires
a few operational amplifiers, avoiding the need for more complex multipliers and thus
reducing the demand on hardware resources.

Table 4. p-value comparison.

Statistical Test Scenario 1
p-Value

Scenario 2
p-Value

Huang et al. [29]
p-Value

Tuncer et al. [30]
p-Value Results

Frequency Test 0.226567654 0.616726644 0.322332 0.757 Pass

Block Frequency Test 0.05437972 0.758595049 0.155513 0.135 Pass

Run Test 0.048433065 0.0421974 0.979957 0.801 Pass

Longest Run in a Block Test 0.609463496 0.421431103 0.951515 0.497 Pass

Binary Matrix Rank Test 0.924208024 0.181719167 0.767895 0.336 Pass

Discrete Fourier Transform Test 0.347599557 0.542408684 0.42673 0.501 Pass

Non-overlapping Template Matching Test 0.993558299 0.999687692 0.999103 0.698 Pass

Overlapping Template Matching Test 0.944470195 0.987985525 0.640417 0.63 Pass
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Table 4. Cont.

Statistical Test Scenario 1
p-Value

Scenario 2
p-Value

Huang et al. [29]
p-Value

Tuncer et al. [30]
p-Value Results

Maurer’s Universal Statistical Test 0.329927487 0.310222462 0.999914 0.435 Pass

Linear Complexity Test 0.759038639 0.722101991 0.351439 0.644 Pass

Serial Test 0.103259524 0.622267693 0.18509 0.444 Pass

Approximate Entropy Test 0.10352127 0.622150981 0.319519 0.949 Pass

Cumulative Sums Test 0.314853196 0.319493648 0.312105 0.88 Pass

Random Excursions Test 0.047498605 0.117704333 0.072597 0.77 Pass

Random Excursions Variant Test 0.113909966 0.207932487 0.480935 0.478 Pass

4. Conclusions

The demand for keys in a sensor network, characterized by a multitude of heteroge-
neous devices, is both urgent and essential. Various devices require a significant supply
of high-quality and efficient keys as their foundation. A high-quality security system
not only relies on advanced algorithms, but also relies on high-quality random numbers
as its foundation. The natural world is replete with randomness, and sensor networks,
with their excellent sensing capabilities, can effectively acquire these sources of entropy,
providing valuable ‘raw materials’ for building high-quality security systems based on
random numbers. This paper focuses on leveraging the unique characteristics of sensor
networks, utilizing simple chaotic circuit designs, and extracting randomness from sensor
network sensing devices to create an effective mixed entropy pool. This entropy pool can
support high-quality security systems.
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