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Abstract: The Azure Kinect DK is an RGB-D-camera popular in research and studies with humans.
For good scientific practice, it is relevant that Azure Kinect yields consistent and reproducible results.
We noticed the yielded results were inconsistent. Therefore, we examined 100 body tracking runs per
processing mode provided by the Azure Kinect Body Tracking SDK on two different computers using
a prerecorded video. We compared those runs with respect to spatiotemporal progression (spatial
distribution of joint positions per processing mode and run), derived parameters (bone length), and
differences between the computers. We found a previously undocumented converging behavior
of joint positions at the start of the body tracking. Euclidean distances of joint positions varied
clinically relevantly with up to 87 mm between runs for CUDA and TensorRT; CPU and DirectML
had no differences on the same computer. Additionally, we found noticeable differences between
two computers. Therefore, we recommend choosing the processing mode carefully, reporting the
processing mode, and performing all analyses on the same computer to ensure reproducible results
when using Azure Kinect and its body tracking in research. Consequently, results from previous
studies with Azure Kinect should be reevaluated, and until then, their findings should be interpreted
with caution.

Keywords: Azure Kinect; body tracking; skeleton tracking; Azure Kinect Body Tracking SDK;
reproducibility; quality assurance

1. Introduction

Reproducibility is one of the main quality criteria in research. Measurement errors
of instruments should be small and stable to ensure reproducible and consistent results.
Like any other measurement instrument, popular depth cameras do not provide error-free
measurements. A frequently used depth camera in research is the Microsoft Azure Kinect
DK RGB-D-camera with its Azure Kinect Body Tracking SDK. Among other things, it is
used for movement analysis [1,2] as well as posture analysis [3,4]. The Azure Kinect has
a 1-megapixel time-of-flight (ToF) camera installed for depth measurement, which has a
typical systematic error of <11 mm + 0.1% of the distance to the object and a random error
with a standard deviation of ≤17 mm according to its manufacturer [5]. These numbers
were confirmed in a study by Kurillo et al. [6]. The systematic error describes the difference
between the measured depth (time average over several frames) and the correct depth.
Multi-path interference, i.e., the condition when a sensor pixel integrates light reflected
from multiple objects, is not considered here. The random error, on the other hand, is the
standard deviation of the depth over time [7]. One source of depth noise is introduced by
the internal temperature of the depth sensor. Tölgyessy et al. found that the camera needed
to be warmed up for about 50–60 min before a stable depth output was acquired [8].
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Not only does the sensory system itself introduces measurement error, all elements in
the entire processing chain, such as the body tracking using Microsoft’s Azure Kinect Body
Tracking SDK [9], introduce additional measurement errors. Measurement errors propagate
and might be amplified further up the chain. Albert et al. found a mean Euclidean distance
between 10 mm and 60 mm, depending on the tracked joint, in a comparison between
the optical marker-based Vicon system (Vicon Motion Systems, Oxford, UK) as the gold
standard and the Azure Kinect [10]. Ma et al. found a Root Mean Square Error (RMSE)
of the joint angles in the lower extremities between 7.2° and 32.3° compared to the Vicon
system [11].

According to Tölgyessy et al., the depth mode of the camera (wide field of view
(WFOV) or narrow field of view (NFOV)), as well as the distance of the person to the
camera, also have a large influence on the accuracy of the body tracking [12]. They showed
a strong increase in the standard deviation by more than 2.2 m from the camera in WFOV
and more than 3.7 m in NFOV.

Romeo et al. have shown that ambient light conditions also influence the accuracy of
body tracking. They found an up to 2.4 times higher mean distance error when the subject
was illuminated with 1750 lux compared to 10 lux [13]. However, both light conditions
are not realistic for a study with human subjects. Furthermore, we question whether the
halogen light source used by Romeo et al. provided a considerable source of infrared light,
which might have influenced the results. Our original goal was to investigate the influences
of ambient (natural and artificial) light on body tracking accuracy.

During the initial data analysis of our data collected under different light conditions, we
found considerable differences in the body tracking results when running the Azure Kinect
Body Tracking SDK using the processing mode CUDA (short for Compute Unified Device
Architecture, developed by NVIDIA) repeatedly on the same video. These differences in
body tracking mean that results cannot be reproduced, and therefore, quality assurance and
good scientific practice are not assured. At first sight, the differences were not explainable
by the known sources of measurement error from previous studies described above. These
studies focused mainly on the validity of the Kinect’s measurements and its body tracking.
In contrast, the differences we observed are signs of a repeatability instead of solely a validity
problem. As a consequence, the inconsistent results of repeated body tracking runs may
have influenced the validity analyses in previous studies. Additionally, the dimension of the
measurement error introduced by repeated body tracking runs might be clinically relevant,
although unknown, since we did not find any literature describing differences between
multiple runs of the body tracking. Therefore, we decided to perform additional experiments
to further investigate the error introduced by the body tracking processing mode before
investigating the influence of ambient light. These additional experiments and their results
are the focus of this paper. The aim of this paper is to analyze and quantify the effects of the
chosen processing mode on the results when using the Azure Kinect DK in combination with
repeated body tracking runs using the Azure Kinect Body Tracking SDK.

The structure of this paper is as follows: Section 2 describes the experimental setup as
well as the used hardware and software. Section 3.1 presents the methods and results of
changes over time. Section 3.2 deals with the methods and results of the comparison of
processing modes. Section 3.3 handles the comparison of different computers, followed by
the discussion and conclusion in Sections 4 and 5, respectively.

2. Materials

In this paper, we aim to quantify the different results caused by the body tracking’s
processing mode. For all analyses, the experimental setup described in Section 2.1 was
used together with the hardware and software described in Section 2.2.

2.1. Experimental Setup

To analyze the effects of running body tracking multiple times, we created an experi-
mental setup designed to minimize the effects of other sources of noise that might influence
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the results. Therefore, we recorded a single 30-s video that served as input for all our
experiments. The video was recorded in a windowless room without reflective surfaces.

To exclude the influences of external light sources, which might have an effect on the
body tracking, as described by Romeo et al. [13], we turned off all lights in the room during
the recording. To exclude the effects of movement on the results, we used a mannequin of
1.72 m in height instead of a human (Figure 1). The mannequin was stationary, i.e., did not
move during the experiments, and was positioned in a neutral pose such that all joints were
within the camera’s field of view without (self-)occlusions (Figure 1b). The mannequin
was placed frontally to the camera in a distance of 1.9 m. This distance represents the
middle of the optimal range (0.5–3.86 m) for the NFOV of the camera [6,8]. According to
the literature, a lateral view of the person is useful when either only the side of the body
facing the camera is to be analyzed [14] or the side of the body facing away from the camera
occludes itself [15]. However, since there is no occlusion in this study and both sides of
the body are to be analyzed equally, the camera was placed frontally to the mannequin.
The camera was placed on a tripod in front of the mannequin at approximately 1 m height
to ensure a centered position of the mannequin in the depth camera’s field of view. In
addition, the camera case was aligned horizontally using a spirit level on top of the camera.
A schematic overview of the setup is shown in Figure 1a.

In accordance with the results of Tölgyessy et al. [8], the camera was warmed up
for an hour before recording. To check whether body tracking was able to estimate the
skeleton of the mannequin, we used the k4abt_simple_3d_viewer from the Azure Kinect Body
Tracking SDK. As shown in Figure 1c, the mannequin’s skeleton was recognized by the
body tracking.

(a) (b) (c)
Figure 1. Overview of the experimental setup. (a) Schematic setup. In addition, the coordinate
system of the depth camera is shown, which is tilted downwards by 6° with respect to the camera’s
case. (b) Mannequin from the camera’s point of view in a windowless dark room (picture taken with
the lights turned on). (c) Point cloud of the mannequin with overlaid body tracking. Screenshot of
k4abt_simple_3d_viewer from the Azure Kinect Body Tracking SDK.

2.2. Hardware and Software

The 30-s video was recorded with the Microsoft Azure Kinect DK, using the Azure
Kinect Recorder from the Azure Kinect SDK version 1.4.1 and the following parameters:

• Frame rate: 30 frames per second (FPS)
• Depth mode: narrow field of view, unbinned
• Color format: MJPG
• Color resolution: 2048 × 1536 pixels
• RGB camera firmware version: 1.6.110
• Depth camera firmware version: 1.6.80

The Azure Kinect DK depth camera’s coordinate system x-axis points to the right,
the y-axis to the bottom, and the z-axis to the front (seen from the camera’s perspective
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and visualized in Figure 1a). The depth camera is tilted downward by 6° relative to the
camera’s RGB-lens and the camera’s case [16].

For the body tracking, we used the recorded video as input for all analyses utilizing
the Microsoft Azure Kinect Body Tracking SDK version 1.1.2. The video was processed
using the offline_processor from the Azure Kinect Samples on GitHub downloaded on 30
June 2022 [17]. The results from the offline_processorwere stored in a JSON file.

The offline_processorwas executed 100 times for each of the four processing modes
(Central Processing Unit (CPU), Compute Unified Device Architecture (CUDA), Direct
Machine Learning (DirectML), and TensorRT) provided by the Azure Kinect Body Tracking
SDK. This process was performed on two desktop computers: computer A, with an Intel
Core i9-10980XE 18-Core Processor running at 4.80 GHz and NVIDIA GeForce RTX 3080
graphic card; and computer B, with an AMD Ryzen 7 5800X 8-Core Processor running at
3.80 GHz and a NVIDIA GeForce RTX 3070Ti graphic card. Both computers were running
Windows 10. In the remainder, we present the results from computer A for all analyses
unless stated otherwise. In Section 3.3, we present and compare the results from both
computers.

Of the 32 calculated joints provided by the Azure Kinect Body Tracking SDK, we
limited our analyses to the set of main joints listed in Table 1. This was performed to
provide a better overview of the relevant joints for posture analysis and because the
excluded joints are difficult for the camera to recognize accurately. The results of the body
tracking were analyzed using Python 3.8.10, except for the calculations of the ellipsoids for
which we used MATLAB (version 2022a, The MathWorks Inc., Natick, MA, USA).

Table 1. Included and excluded joints from the Azure Kinect Body Tracking SDK joints in our analysis
(for reference, see [18]).

Included Joints Excluded Joints

PELVIS CLAVICLE_LEFT
SPINE_NAVEL HAND_LEFT
SPINE_CHEST HANDTIP_LEFT
NECK THUMB_LEFT
SHOULDER_LEFT CLAVICLE_RIGHT
ELBOW_LEFT HAND_RIGHT
WRIST_LEFT HANDTIP_RIGHT
SHOULDER_RIGHT THUMB_RIGHT
ELBOW_RIGHT HEAD
WRIST_RIGHT NOSE
HIP_LEFT EYE_LEFT
KNEE_LEFT EAR_LEFT
ANKLE_LEFT EYE_RIGHT
FOOT_LEFT EAR_RIGHT
HIP_RIGHT
KNEE_RIGHT
ANKLE_RIGHT
FOOT_RIGHT

3. Methods and Results

To analyze the body tracking and their different results by processing mode, three
main experiments were conducted. In the first experiment (Section 3.1), we processed the
video of the static mannequin multiple times in each processing mode to analyze possible
changes in joint positions over time caused by the body tracking. The second experiment
(Section 3.2) deals with the effects of the individual processing modes on the joint positions,
analyzing both the spatiotemporal distribution and the effect on derived parameters (e.g.,
bone length). In the last experiment (Section 3.3), these analyses were performed on two
computers, and their results were compared. Figure 2 shows a schematic overview of the
data processing and the experiments.
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Figure 2. Schematic overview of the data processing and the three experiments.

3.1. Consideration of Change over Time
3.1.1. Methods

To visualize the changes in the body tracking results over time, the included joint
positions from Table 1 for the setup described in Section 2 were plotted in relation to the
depth sensor’s x-, y-, and z-axes for all body tracking runs and each processing mode.

In the resulting visualization, we noticed a converging behavior of the joint posi-
tions in the first few seconds from the start of the body tracking (described in detail
below in Section 3.1.2). To model and quantify this converging behavior, we fitted an
exponential curve for each axis, processing mode, and body tracking run using Python’s
scipy.optimize.curve_fit function and the following curve fitting formula:

f (x) = a · e−b·x + c (1)

where a, b, c ∈ R; constant coefficients calculated by Python’s curve_fit function, x ∈ R.
For each of the fitted curves, we calculated the half-life time T1/2 using the formula:

T1/2 =
ln(2)

b
(2)

with b from Equation (1). We considered four times T1/2 (93.75%) as the cut-off point between
the convergence and the random noise in the signal, i.e., considered the end of the convergence
at x = 4 · T1/2. For each axis, joint, and processing mode, the mean was calculated. The overall
cut-off point was calculated using the 85%-quantile over these means.

3.1.2. Results

We observed an undocumented converging initialization behavior of joint positions
estimated by the Azure Kinect Body Tracking SDK in the first seconds. Figure 3 shows
this behavior for two exemplary joints in the first 90 frames: (a) the PELVIS and (b) the
WRIST_LEFT. The PELVIS (Figure 3a) showed similar converging behavior to a steady state
for all processing modes and all axes. For other joints, such as the WRIST_LEFT (Figure 3b),
this converging behavior took only a few frames (e.g., CPU/DirectML x-axis in Figure 3b)
or was not that distinctive (e.g., CUDA/TensorRT y-axis in Figure 3b). The duration of
the converging behavior varied by joint and processing mode and ranged from 2 frames
(SPINE_CHEST; DirectML) to 360 frames (FOOT_RIGHT; TensorRT). It is also noticeable
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that while most of the joints stabilized from left to right (x-axis), top to bottom (y-axis), and
front to back (z-axis), some stabilized the other way around, e.g., the x-axis of the PELVIS
stabilized from right to left. The range of stabilization differed between the various joints,
axes, and processing modes. The range of stabilization for the y-axis of the WRIST_LEFT
for processing mode CPU, for example, was less than 5 mm, while the z-axis of the same
joint using CUDA showed a converging range of about 60 mm.

(a)

(b)
Figure 3. X-, y-, z-axes of the first 90 body tracking frames using 100 body tracking runs for all
four processing modes for joint positions of PELVIS and WRIST_LEFT. Note: the runs for CPU and
DirectML yielded the same results for each run and, therefore, appear as a single line. (a) X-, y-,
z-axes of the first 90 body tracking frames for the joint position of PELVIS. (b) X-, y-, z-axes of the first
90 body tracking frames for the joint position of WRIST_LEFT.

The converging initialization behavior at the start of the body tracking can have a
large influence on the accuracy of the results. The overall 85%-quantile of four times the
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half-life time was frame 55. For ease of understanding, Figure 4 shows an example of the
x-positions of the ELBOW_RIGHT, the fitted exponential curve, the half-life time, and the
fourfold half-life time.

Figure 4. X-position data (red) of ELBOW_RIGHT, fitted exponential curve (blue), as well as one
(purple) and four (green) times the half-life time of the fitted exponential curve.

3.2. Comparison of Processing Modes
3.2.1. Methods

In Section 3.1.2, we observed a previously undocumented converging initialization
behavior in the first seconds of the body tracking. Since these partially large variations can
have a substantial influence on the quantification of the differences between the processing
modes, we decided to discard the data in which the converging behavior was observed.
Since the duration of the converging behavior highly varied by joint, axis, and processing
mode, we decided to take the 85%-quantile (55 frames; Section 3.1.2) and round it up to the
next full second of the video (frame 60, i.e., 2 s @30 FPS). Therefore, the first 60 frames were
discarded in all analyses from this point on, i.e., only frames 61 until 900 were included in
the analyses.

Differences in body tracking caused by the processing mode were quantified using
three different metrics:

(1) Volume of ellipsoids containing positions of one joint each: As the joint positions
scatter in all three dimensions, they form a volume. The first observations showed that
the scattering was not equally distributed over all axes. Since there was often a dominant
direction, an ellipsoid was chosen over a sphere. These ellipsoids were calculated per
processing mode and joint (Table 1) using MATLAB and the data of each of the 100 body
tracking runs per processing mode. The function PLOT_GAUSSIAN_ELLIPSOID written
by Gautam Vallabha from the MATLAB central file exchange [19], was used for these
calculations. As parameters for this function, we used SD = 2 and NPTS = 20 to create an
ellipsoid with 20 faces that encapsulates approximately 86.5% of all data points [20]. The
volume of the resulting ellipsoid was then calculated using MATLAB’s convhull function by
feeding it the data points of the ellipsoid.

(2) Euclidean distance between positions of a joint between the 100 runs: The Euclidean
distances dt(p, q) were calculated using the following formula:

dt,joint(pt,i, qt,j) =
√
(pt,xi − qt,xj)

2 + (pt,yi − qt,yj)
2 + (pt,zi − qt,zj)

2, (3)
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where t = time in frame number 61 . . . 900, joint ∈ included joints (Table 1), p{x/y/z}i
=

joint position for joint in i for x/y/z axes, respectively, q{x/y/z}j
= joint position for joint in

j for x/y/z axes, respectively, i = body tracking run 1 . . . 100, j = body tracking run i . . . 100.
The Euclidean distances were calculated for each frame and joint position from one

body tracking run to all other runs within the same processing mode, i.e., when p was the
position of the PELVIS in frame 61 for processing mode CPU in run 1, q was the position of
the PELVIS in frame 61 for processing mode CPU in run 2 until 100.

(3) Bone length of the extremities: The bone lengths of the extremities were calculated
with s as the start joint and e as the end joint from Table A1 using the following formula:

bt,bone(st, et) =
√
(st,x − et,x)2 + (st,y − et,y)2 + (st,z − et,z)2, (4)

where t = time in frame number 61 . . . 900, bone ∈ bones (Table A1). s{x/y/z} = position
of the start joint (Table A1) for bone for x/y/z axes, respectively, e{x/y/z} = position of the
end joint (Table A1) for bone for x/y/z axes, respectively.

The bone lengths were calculated for each frame and processing mode within the
same body tracking run.

We calculated and reported the minimum, maximum, mean, median, and standard
deviation for each metric, processing mode, and joint or bone length, respectively.

3.2.2. Results

After discarding the first 60 frames of the body tracking results, the x-, y-, and z-axes of
the positions for all four processing modes looked like the exemplary plots for PELVIS and
FOOT_LEFT in Figure 5. Note that the converging stabilization phase disappeared. The
positions were stable in a distinct value range, i.e., steady state, for example, the z-axis of
PELVIS for CUDA or DirectML in Figure 5a, or they switched between two (or more) steady
value ranges (e.g., z-axis of FOOT_LEFT for CPU or CUDA in Figure 5b). Furthermore,
it can be seen that while DirectML and CPU showed the same progression of position in
the 100 runs, represented by the single line, CUDA and TensorRT showed differences in
position during the 100 runs.

(a) (b)

Figure 5. X-, y-, and z-axes of the joint positions of PELVIS and FOOT_LEFT for all four pro-
cessing modes—extract of relevant plots (Figures for all processing modes and axis are shown in
Figure A1). (a) Examples of a stable, steady value range. (b) Examples of a switch between two
steady value ranges.

Distribution of Joint Positions over Time across the Three Axes

The ellipsoids and their volumes visualize the distribution of the joint positions over
time. The volumes of the ellipsoids are shown as box plots in Figure 6 and in Table A2 in
the appendix.
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Figure 6. Box plots of the ellipsoid volumes for all processing modes for the 100 body tracking runs.
As the standard deviation for processing modes CPU and DirectML is zero, only the mean is shown
for these modes. Note: the y-axis has a logarithmic scale.

It can be observed that the volume of the ellipsoids for processing modes CPU and
DirectML did not differ between the 100 body tracking runs and, therefore, had a standard
deviation of 0.0 mm3 for all joints. The minimal ellipsoid volume for the processing mode
CPU was 2.2 mm3 (SPINE_NAVEL), and the maximal ellipsoid volume was 1797.0 mm3

(FOOT_LEFT). The ellipsoid volume for the processing mode DirectML was between 1.4
(SPINE_NAVEL) and 392.6 mm3 (FOOT_LEFT).

For processing mode CUDA, the minimal ellipsoid volumes were between 1.3 (PELVIS)
and 75.7 mm3 (FOOT_RIGHT) and the maximum volumes were between 9.2 (SPINE_NAVEL)
and 2546.2 mm3 (FOOT_LEFT). The means of the volumes were between 3.4 (PELVIS)
and 513.1 mm3 (FOOT_LEFT), the medians were between 1.8 (PELVIS) and 232.1 mm3

(FOOT_RIGHT), and the standard deviations between 1.5 (SPINE_NAVEL) and 777.9 mm3

(FOOT_LEFT).
For processing mode TensorRT, the minimal ellipsoid volumes were between 1.4

(PELVIS) and 118.0 mm3 (FOOT_RIGHT) and the maximum volumes between 9.8 (SPINE_
NAVEL) and 2325.7 mm3 (FOOT_LEFT). The means of the ellipsoid volumes were be-
tween 6.2 (SPINE_NAVEL) and 1117.0 mm3 (FOOT_LEFT), and the medians between 6.1
(SPINE_NAVEL) and 291.2 mm3 (FOOT_LEFT). The standard deviations of the different
volumes are between 2.4 (SPINE_NAVEL) and 1028.5 mm3 (FOOT_LEFT).

In general, the ellipsoid volume, i.e., the variations over time and different runs, were
the largest for the processing modes CUDA and TensorRT. The variations in the outer
extremities (elbows, wrists, knees, ankles, feet) were significantly higher than the variations
in the upper body (PELVIS, spines, hips, shoulders) (Figure 6; Table A2).
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The ellipsoids of the joints did not only differ in volume; their direction differed as well.
The PELVIS showed very little variation over time, i.e., had a small ellipsoid volume. Its
variations were mainly in the x-y-plane (see Figure 1a for reference), as shown for processing
mode CUDA in Figure 7. The KNEE_LEFT mainly showed variations over time in the
y-z-plane (Figure 8a, shown for processing mode CUDA), except for DirectML (Figure 8b),
which showed little variation in all directions. FOOT_LEFT showed very large variations
in the z-direction and much smaller variations in the x- and y-directions for all processing
modes (Figure 9a, as shown for CUDA), except for DirectML (Figure 9b), which showed
relatively little variation in the z-direction. We visually analyzed the directions of the
ellipsoid’s semi-axes; however, from this analysis, no clear pattern emerged. The ellipsoids
were neither clearly rotated in the direction of the camera’s laser rays nor distorted closer
to the edge of the depth camera’s field of view.

Figure 7. Ellipsoids of the joint position of the PELVIS for processing mode CUDA (Figures for all
processing modes are shown in Figure A3). The different colors represent different body tracking runs.

(a) CUDA (b) DirectML
Figure 8. Ellipsoids of the joint position of KNEE_LEFT for relevant processing modes (Figures for all
processing modes are shown in Figure A4). The different colors represent different body tracking runs.
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(a) CUDA (b) DirectML
Figure 9. Ellipsoids for the joint position of FOOT_LEFT for relevant processing modes (Figures
for all processing modes are shown in Figure A5). The different colors represent different body
tracking runs.

The spatiotemporal distribution for each of the joints is visualized for each processing
mode in Figure 10. It becomes clear that FOOT_LEFT had the biggest distribution in the
z-direction. Furthermore, this visualization confirms that points of the outer extremities
had a larger spatiotemporal distribution than the points of the upper body. Considering
all joints, the processing mode DirectML overall had the smallest distributions, followed
by CPU. CUDA had the biggest distributions of all processing modes, closely followed
by TensorRT. Visual analysis of the closest point toward the camera for all joints showed
that all points are behind the body surface. The only exception is WRIST_LEFT, where the
foremost points lie slightly in front of or inside the body surface.

(a) CPU (b) CUDA
Figure 10. Cont.
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(c) DirectML (d) TensorRT
Figure 10. X-, y-, and z-y-plots of the joint positions seen from the frontal and left side perspective for
all four processing modes.

Euclidean Distances of Joint Positions between the Processing Modes

The Euclidean distance between frames in different body tracking runs within the
same processing mode was calculated as a metric to quantify the differences in the joint
position between each body tracking run. The processing modes CPU and DirectML
produced the same result in each run, i.e., their Euclidean distance was 0.0 mm (Table A3).

For the processing mode CUDA (Figure 11a), the minimal Euclidean distance was
0.0 mm for all joints, and the maximum Euclidean distances were between 6.2 (PELVIS)
and 87.2 mm (FOOT_LEFT). The means were between 0.9 (SPINE_NAVEL) and 17.9 mm
(FOOT_LEFT), and the medians were between 0.7 (PELVIS) and 4.4 mm (FOOT_LEFT).
The standard deviations were between 0.7 (SPINE_NAVEL) and 26.7 mm (FOOT_LEFT).

For processing mode TensorRT (Figure 11b), the minimal Euclidean distance was
0.0 mm for all joints as well. The maximum distances were between 5.3 (PELVIS) and
84.3 mm (FOOT_LEFT). The means were between 0.9 (SPINE_NAVEL) and 25.3 mm
(FOOT_LEFT), and the medians between 0.7 (SPINE_NAVEL) and 5.7 mm (FOOT_LEFT).
The standard deviations were between 0.9 (SHOULDER_RIGHT) and 30.7 mm (FOOT_LEFT).

Compared to CUDA (Figure 11a), TensorRT had wider confidence intervals (Figure 11b)
with fewer outliers. Similar to the ellipsoid volume from Figure 6, it becomes clear that the
Euclidean distance was higher for the outer extremities than for the upper body.

(a) (b)

Figure 11. Euclidean distance with 100 body tracking runs using CUDA and TensorRT. (a) Euclidean
distances with 100 body tracking runs using CUDA. (b) Euclidean distances with 100 body tracking
runs using TensorRT.
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Variations in Bone Length between Body Tracking Runs

The bone length was calculated as a metric for the differences in the size of the skeleton
caused by the variations in body tracking between the various runs. As shown in Figure 12
and Table A4, the bone lengths varied much less over time and between the runs compared
to the ellipsoid volume and Euclidean distance described above. In general, the mean
bone lengths for processing modes CUDA, DirectML, and TensorRT were quite similar;
the mean bone lengths for processing mode CPU were a few millimeters longer. DirectML
showed the smallest standard deviation, followed by CPU and CUDA. TensorRT showed
the largest standard deviations for the bone lengths but had no outlier.

Figure 12. Box plots of bone length using 100 body tracking runs for all four processing modes.

3.3. Comparison of Different Computers
3.3.1. Methods

Up to this point, we only considered the differences between body tracking runs on
a single computer (computer A). Since we found substantial differences in the ellipsoid
volumes, Euclidean distances, and bone lengths described above, we repeated the analyses
on a second computer; computer B, described in Section 2.2.

To find similarities and differences between the results of computers A and B, the joint
positions over time at the sensor’s x-, y-, and z-axes, as well as the calculated bone lengths
from both computers, were compared.

3.3.2. Results

When looking at Figure 13a, one can see in these exemplary plots that for processing
modes CUDA and TensorRT, the behaviors of computers A and B looked similar. Similar
behavior was observed for both processing modes for the remaining axes and joints (Table 1).
The behavior of the processing modes CPU and DirectML, on the other hand, were only
partially similar between the two computers. For example, the z-axis of FOOT_LEFT in
processing mode CPU showed a switch to another steady value range around frame 280
on computer B (Figure 13c). However, a similar switch on computer A was first observed
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around frame 800. DirectML switched between steady value ranges about 2 mm apart on
the x-axis of the PELVIS and about 65 mm on the z-axis of the FOOT_LEFT on computer
B, but both remained stable on computer A (Figure 13d). On the y-axis of FOOT_LEFT
on processing mode CPU, the values on computer B were only slightly larger compared
to computer A. Similar behavior was seen for DirectML (computer A slightly larger than
computer B), although not entirely similar (Figure 13b). Here, the steady value ranges
for both computers were not exactly the same but did not show clear, distinct differences
compared to the steady value ranges in Figure 13c,d.

(a) (b)

(c) (d)
Figure 13. X-, y-, and z-axes of the joint positions of PELVIS and FOOT_LEFT for all four processing
modes for two different computers—extract of relevant graphs (Figures for all processing modes and
axis are shown in Figure A2). The blue lines represent computer A, and the orange ones computer
B. (a) Examples of similar behavior between computers A and B. (b) Examples of very close steady
value ranges for computers A and B. (c) Examples of a switch between two steady value ranges at
different frames. (d) Examples of a switch between two steady value ranges just for one computer.

In general, the joint positions of the two computers differed for the processing modes
DirectML and CPU, where the following distinct behaviors were observed: (1) one computer
was continuously in the same steady value range, while the other computer switched to
another steady value range (Figure 13d), (2) both computers switched, but at different
points in time (Figure 13c), (3) the steady value ranges of both computers were very close
to each other (Figure 13b).

The bone lengths showed similar properties for processing mode CUDA on both
computers, as shown in Figure 14. For processing mode TensorRT, the bone lengths had
a similar median. However, computer A had a bigger interquartile range as well as no
outlier; computer B had a much smaller interquartile range and a lot of outliers. Thereby,
TensorRT on computer B produced similar results compared to CUDA on computers A
and B.

The processing modes CPU and DirectML, on the other hand, had a difference in the
median. CPU on computer B and DirectML on computer A had a similar median to CUDA
and TensorRT, and CPU on computer A and DirectML on computer B had an, on average,
2.7 mm higher median.

It is striking that the box plots of one computer and processing mode show the same
pattern for all bone lengths (distance of the quartiles to the median, distance of the whiskers,
and positioning of the outliers).
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Figure 14. Box plots of bone length using 100 body tracking runs for all four processing modes on
computers A and B.

4. Discussion

The aim of this paper was to analyze and quantify the effects of the chosen processing
mode on the results when using the Azure Kinect Body Tracking SDK. For this purpose,
spatiotemporal changes in the joint positions, the differences within and among processing
modes, as well as differences between two different computers were analyzed. We have
shown that there were considerable differences between the processing modes, different
runs of the body tracking and between different computers.

4.1. Consideration of Change over Time

In Section 3.1.2, we described a converging behavior of body tracking in the first
seconds. To the best of our knowledge, this behavior of stabilization has not been described
before. It seems to originate from some kind of initialization phase of body tracking. Similar
behavior was observed when body tracking was started after the first 100 frames of the
video instead of from the beginning, although the pattern seen was ambiguous. However,
since the converging behavior seemed to be more pronounced when starting body tracking
from the first frame, it could be that the depth sensor itself needs a few seconds to initialize
or to focus. Furthermore, there might be some kind of pre- or post-processing in the
body tracking that needs a few frames to stabilize. Unfortunately, the Azure Kinect Body
Tracking SDK is closed-source and, therefore, a black box, so we can only speculate on
the causes of the observed behavior. This phase of stabilization could be the subject of
future work, whereby various possible camera settings, as well as external influences on
the recording and body tracking, consequently make it difficult to analyze and isolate the
reason for this stabilization phase.

Since the Azure Kinect Body Tracking SDK needs some time (around 60 frames @30
FPS) to stabilize in a position, we recommend starting body tracking from the first frame
but waiting approximately two seconds (@30 FPS) before starting the subsequent analysis
of the joint positions.
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4.2. Comparison of Processing Modes

Our analyses in Section 3.2.2 showed that the spatiotemporal distribution of joint
positions over all body tracking runs was the smallest using processing mode DirectML,
followed closely by CPU, and larger for CUDA and TensorRT. One reason is that DirectML
and CPU showed the same results for all 100 runs, while CUDA and TensorRT produced
different joint positions in each run. Thus, DirectML and CPU, unlike CUDA and TensorRT,
seem to yield reproducible data and thereby achieve results that are compatible with quality
assurance and good scientific practice.

The Euclidean distances between the joint positions in all runs, as well as the volume
of the ellipsoids, represent the spatiotemporal distribution of the joint positions over all
body tracking runs and frames. We found that both were considerably higher for the outer
extremities (especially feet, but also wrists) than for the upper body (PELVIS, spine, hips,
shoulders). Our results are consistent with the results of Albert et al., who calculated the
Euclidean distances between Azure Kinect DK body tracking and a Vicon system [10]. The
increasing difference might be related to the fact that the skeleton of the Azure Kinect Body
Tracking SDK is built up like a tree, with the PELVIS as its root and the feet, thumbs, hand
tips, as well as the points in the face, as its leaves [18]. Consistently, the average errors of
the outer extremities (feet, ankles, wrists, hands) were higher than those of the upper body
(PELVIS, hips, spines, shoulders, clavicles). The speed of convergence in the first frames,
on the other hand, seemed to be independent of the tree structure of the skeleton.

Furthermore, the body tracking seemed to stabilize in different steady value ranges;
either it stayed in one steady range or it switched between different steady ranges. For
CUDA and DirectML, less than half of the plots showed switches in the x-, y-, and z-axes.
In contrast, these switches occurred in more than half of all plots for the processing modes
CPU and TensorRT. Furthermore, the distribution of the switches over the frames varied
for all processing modes. Therefore, it can be assumed that the switches were not caused
by noise in the recorded video, but depended on the selected processing mode.

Moreover, it is noticeable that the distribution of the calculated bone lengths over the
runs and frames showed a similar pattern for all bones. This suggests that the recognized
skeleton probably has only minor changes in the size ratio of the individual bones and
is merely scaled differently from frame to frame (and run to run). It is reasonable to
assume that body tracking keeps some kind of (historical) skeletal model when detecting
joint positions. Colombel et al. also suggest that the Azure Kinect Body Tracking SDK
tracks individuals in an anatomically consistent manner as additional anthropomorphic
constraints had only little effect on body tracking results [21]. It is also interesting that the
maximum Euclidean distance between two runs was 87.2 mm (CUDA, FOOT_LEFT); the
maximum difference in bone length, however, was only 11.5 mm (CUDA, Torso) and thus
had significantly smaller variations.

All in all, when deciding which processing mode to use, one has to consider that
CPU and DirectML had no differences in multiple body tracking runs on the same com-
puter, whereas CUDA and TensorRT had differences of up to 87 mm. This means CPU
and DirectML yielded seemingly consistent and repeatable results (important for quality
assurance); in contrast, CUDA and TensorRT yielded inconsistent results. Besides that, one
should be aware that the outer extremities have a higher spatiotemporal distribution than
the upper body. For further analyses, such as body posture analyses or research involving
humans, it must, therefore, be noted that the results become less accurate when focusing
on the outer extremities compared to the upper body.

4.3. Comparison of Different Computers

Our results in Section 3.3.2 showed that CUDA and TensorRT produced similar results
on both computers for both the spatiotemporal joint positions as well as the bone lengths.
The processing modes CPU and DirectML, on the other hand, showed clear differences
in the joint positions and bone lengths. We did not find any studies that compared body
tracking between multiple computers.
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One of the reasons that CUDA and TensorRT were similar on both computers could
be based on the fact that they yielded different results between the runs, while DirectML
and CPU yielded the same results in every run. As already described above, we observed
different steady value ranges of joint positions. Multiple runs of CUDA and TensorRT
covered several steady ranges. Conversely, CPU and DirectML covered only one of the
steady ranges or switched from one steady range to another. As a result of this, the
differences in CUDA and TensorRT between the two computers more or less averaged out,
i.e., showed a regression to the mean. On the other hand, when the processing modes CPU
or DirectML cover one steady range on one computer and another on the other computer
(e.g., Figure 13c or Figure 13d), large differences in the joint position between the computers
can occur. Consequently, this can result in larger differences in bone lengths. One should
be aware of this phenomenon, therefore, we recommend performing all body tracking on a
single computer.

4.4. Implications of the Results

Our results have shown that running body tracking repeatedly yielded clinically
relevant differences in joint positions with Euclidean distances of up to 87 mm, depending
on the processing mode used for the body tracking. Furthermore, we have shown that
the computational hardware used can have an impact on the joint positions. Therefore,
the results of previous studies using the Azure Kinect Body Tracking SDK might originate
from differences in the body tracking algorithm instead of actual physiological effects being
measured. Their results probably originate from a single body tracking run and might not
be reproducible. It is difficult to assess the accuracy of their results since the processing
mode used is usually not specified. As a consequence, the results from previous studies
should be reevaluated, and until then, their findings should be interpreted with caution.

Not only the interpretation of previous studies is affected, also future studies need
to take our results into account. The fact that body tracking might yield different results
on multiple runs and with different processing modes implies that one should consider
which data should be stored from a study. Several aspects should be taken into account: (i)
data volume, (ii) privacy, and (iii) measurement error. Possible sets of data to store are: (a)
raw data of the recorded video (RGB and depth); (b) raw data of the recorded video (depth
only); (c) body tracking data of one run; or (d) body tracking data of multiple runs. Each of
these sets has its specific (dis)advantages.

(a) The raw data requires a lot of storage space (i); the 30-s video used in this paper
was 1.6 GB. At the same time, privacy (ii) is not assured since the subject can be
identified from the video data. However, no erroneous data (iii) are stored, and
body tracking can be executed again using future improved body tracking methods.

(b) When storing only the raw depth data, the data volume (i) is still high. However,
the privacy (ii) of the subject is ensured a little better since it is more difficult to
identify a person from depth data. Additionally, body tracking can be repeated at a
later time (iii), as in (a).

(c) Storing only the body tracking data of one run requires the least amount of storage
space (i) of all options. Privacy (ii) is ensured since no identifiable data is stored.
However, differences between various body tracking runs, processing modes, and
computers might strongly influence the result (iii).

(d) Body tracking data of multiple runs, on the other hand, require little storage space
(i) and ensure privacy (ii). In addition, the measurement error could be reduced by
aggregating or filtering the results from multiple body tracking runs (iii) to achieve
reasonable accuracy. Although, it should be noted that aggregation and the filtering
of body tracking runs are not trivial.

Saving a single body tracking run should normally suffice when the body tracking
SDK yields reproducible results. While we have shown that this is not the case for the Azure
Kinect Body Tracking SDK, we recommend saving the raw data or, when not possible, at
least store multiple body tracking runs to ensure good scientific practice.
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4.5. Limitations and Recommendations for Future Work

Our results showed that the processing modes of the Azure Kinect Body Tracking
SDK introduce a number of anomalies. However, it should be noted that our study has
several limitations. First, to exclude the influence of movements, we used a mannequin
instead of a human. Although the mannequin was very well recognized by body tracking, it
cannot be ruled out that body tracking of a real human differs. Second, for the same reason
we analyzed a static scene; dynamic human movement might aggravate or reduce the
differences found. Third, we analyzed a single pose; other poses (e.g., with self-occlusion)
might produce different results. Fourth, we analyzed a single recording with a single frame
rate and a single field of view setting to isolate the effects of the body tracking settings as
much as possible. In future work, the findings presented in this paper should be confirmed
for the other possible settings provided by the Azure Kinect (e.g., 15 FPS, 5 FPS, WFOV,
binned versus unbinned). Fifth, we used the latest version (1.1.2) of the Azure Kinect Body
Tracking SDK; other versions might exhibit different behavior. Sixth, we analyzed the
differences in joint positions between the processing modes. However, it remains unknown
which processing mode is the closest to the real joint positions. We recommend comparing
the joint positions against the ground truth, e.g., obtained using the Vicon system similar to
the experiments by Albert et al. [10] in future work. Although, one should be aware of the
interference between the Azure Kinect and Vicon system when used simultaneously [14].
Seventh, we recorded the video used as an input for the body tracking in a windowless
dark room to exclude influences of external light. That environment is not suitable for
studies with human subjects. As already shown by Romeo et al. [13], ambient light can
have an influence on body tracking. We recommend investigating the presented findings
for different light conditions, preferably using illumination levels workable in studies with
human subjects, and without infrared light.

5. Conclusions

This is, to the best of our knowledge, the first article that analyzed the differences in
the Azure Kinect Body Tracking SDK between multiple runs, the four possible processing
modes, and on different computers. We found substantial differences in body tracking
results depending on the processing mode and computer used. The cause of these dif-
ferences remains unclear because of the closed-source nature of the SDK. However, our
results might have major consequences for all research performed using the Azure Kinect
DK camera together with the Azure Kinect Body Tracking SDK since differences found in
analyses of the body tracking might be caused by the processing mode instead of an actual
physical effect on the measured subject.

To partially counteract these consequences or at least create awareness of the effects of
the processing mode, we recommend the following for future studies that want to use the
Azure Kinect DK (at least to evaluate static human poses):

• Be aware that running body tracking multiple times on the same recording might
produce different results;

• Choose your processing mode wisely: CPU and DirectML seem to yield reproducible
data (on the same computer), while CUDA and TensorRT do not;

• Report the processing mode in your publication;
• Do not start your analysis from the beginning of the body tracking, but skip a few

frames (e.g., 60 frames) to let the joint positions converge to a steady state;
• Generate all body tracking results for your analyses on the same computer, since

different computers result in different joint positions; and
• In case it is not possible to save the raw data of the recording (due to data volume

constraints and/or privacy concerns), store multiple runs of body tracking data to
reduce possible error effects.
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Abbreviations
The following abbreviations are used in this manuscript:

CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DirectML Direct Machine Learning
DK Developer Kit
FPS Frames per Second
JSON JavaScript Object Notation
MJPG Motion JPEG
NFOV Narrow Field of View
NPTS Number of Faces of the Ellipsoid
RGB Red Green Blue
RGB-D Red Green Blue-Depth
RMSE Root Mean Squared Error
SD Standard Deviation
SDK Software Development Kit
ToF Time-of-Flight
WFOV Wide Field of View

Appendix A. Mapping between Bone Names and Joints

Table A1. Mapping between bone names and Azure Kinect joints.

Bone Start Joint End Joint

Torso PELVIS NECK
Upper Arm Left SHOULDER_LEFT ELBOW_LEFT
Lower Arm Left ELBOW_LEFT WRIST_LEFT
Upper Arm Right SHOULDER_RIGHT ELBOW_RIGHT
Lower Arm Right ELBOW_RIGHT WRIST_RIGHT
Upper Leg Left HIP_LEFT KNEE_LEFT
Lower Leg Left KNEE_LEFT ANKLE_LEFT
Upper Leg Right HIP_RIGHT KNEE_RIGHT
Lower Leg Right KNEE_RIGHT ANKLE_RIGHT
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Appendix B. X-, Y-, and Z-Axes

(a)

(b)
Figure A1. X-, y-, and z-axes of the joint positions of PELVIS and FOOT_LEFT for all four processing
modes on computer A. (a) X-, y-, z-axes for the joint position of PELVIS. (b) X-, y-, z-axes for the joint
position of FOOT_LEFT.
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(a)

(b)
Figure A2. X-, y-, and z-axes of the joint positions of PELVIS and FOOT_LEFT for all four processing
modes for two different computers. The blue lines are from computer A and the orange from
computer B. (a) X-, y-, z-axes for the joint position of PELVIS. (b) X-, y-, z-axes for the joint position of
FOOT_LEFT.
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Appendix C. Ellipsoid Volumes, Euclidean Distances and Bone Lengths

Table A2. Volume of the Ellipsoid containing 86.5% of all points for each combination of joint and
processing mode. All values are in mm3.

Joint Proc. Mode Min Max Mean Median SD

ANKLE_LEFT CPU 58.57 58.57 58.57 58.57 0.00
CUDA 3.73 437.42 60.74 20.60 96.28
DirectML 6.39 6.39 6.39 6.39 0.00
TensorRT 5.04 208.39 50.11 46.42 41.67

ANKLE_RIGHT CPU 40.06 40.06 40.06 40.06 0.00
CUDA 22.26 248.33 63.50 45.65 41.66
DirectML 36.97 36.97 36.97 36.97 0.00
TensorRT 24.45 141.19 61.46 63.88 19.33

ELBOW_LEFT CPU 61.79 61.79 61.79 61.79 0.00
CUDA 36.92 233.58 79.59 74.01 27.61
DirectML 60.07 60.07 60.07 60.07 0.00
TensorRT 60.80 114.97 84.43 95.43 16.90

ELBOW_RIGHT CPU 19.60 19.60 19.60 19.60 0.00
CUDA 7.01 36.73 13.83 9.52 8.13
DirectML 8.35 8.35 8.35 8.35 0.00
TensorRT 8.35 31.60 20.46 24.31 10.77

FOOT_LEFT CPU 1797.07 1797.07 1797.07 1797.07 0.00
CUDA 39.75 2546.20 513.06 112.56 777.91
DirectML 59.46 59.46 59.46 59.46 0.00
TensorRT 53.61 2325.67 1116.96 291.18 1028.45

FOOT_RIGHT CPU 203.74 203.74 203.74 203.74 0.00
CUDA 75.69 1438.20 418.62 232.07 346.39
DirectML 392.61 392.61 392.61 392.61 0.00
TensorRT 117.98 1162.23 319.07 276.23 201.39

HIP_LEFT CPU 6.69 6.69 6.69 6.69 0.00
CUDA 1.77 20.44 5.25 2.61 5.04
DirectML 2.12 2.12 2.12 2.12 0.00
TensorRT 2.28 21.82 10.39 11.34 5.18

HIP_RIGHT CPU 9.06 9.06 9.06 9.06 0.00
CUDA 1.98 20.93 5.51 2.89 5.10
DirectML 2.11 2.11 2.11 2.11 0.00
TensorRT 2.32 17.36 10.80 12.86 5.13

KNEE_LEFT CPU 42.63 42.63 42.63 42.63 0.00
CUDA 2.57 149.86 29.96 12.99 38.40
DirectML 5.35 5.35 5.35 5.35 0.00
TensorRT 5.43 112.08 35.89 16.86 26.06

KNEE_RIGHT CPU 18.72 18.72 18.72 18.72 0.00
CUDA 7.11 38.21 15.20 12.24 7.22
DirectML 9.43 9.43 9.43 9.43 0.00
TensorRT 7.89 31.13 19.97 19.78 5.79

NECK CPU 14.12 14.12 14.12 14.12 0.00
CUDA 7.54 36.96 17.66 15.89 5.79
DirectML 13.43 13.43 13.43 13.43 0.00
TensorRT 10.55 30.31 19.99 17.90 4.80

PELVIS CPU 5.54 5.54 5.54 5.54 0.00
CUDA 1.30 12.34 3.41 1.75 3.07
DirectML 1.40 1.40 1.40 1.40 0.00
TensorRT 1.42 11.20 6.74 8.16 3.22
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Table A2. Cont.

Joint Proc. Mode Min Max Mean Median SD

SHOULDER_LEFT CPU 27.21 27.21 27.21 27.21 0.00
CUDA 9.14 84.51 29.56 25.61 12.37
DirectML 22.59 22.59 22.59 22.59 0.00
TensorRT 10.57 61.84 36.01 40.26 9.94

SHOULDER_RIGHT CPU 5.39 5.39 5.39 5.39 0.00
CUDA 3.34 22.68 9.39 8.61 3.20
DirectML 7.80 7.80 7.80 7.80 0.00
TensorRT 3.87 23.19 9.14 8.29 3.36

SPINE_CHEST CPU 12.48 12.48 12.48 12.48 0.00
CUDA 5.08 39.37 11.10 8.12 6.84
DirectML 6.60 6.60 6.60 6.60 0.00
TensorRT 6.97 29.36 15.26 12.49 6.35

SPINE_NAVEL CPU 2.18 2.18 2.18 2.18 0.00
CUDA 1.61 9.24 3.71 3.21 1.54
DirectML 2.03 2.03 2.03 2.03 0.00
TensorRT 2.45 9.83 6.20 6.06 2.35

WRIST_LEFT CPU 111.31 111.31 111.31 111.31 0.00
CUDA 70.04 991.23 194.15 170.33 125.52
DirectML 186.09 186.09 186.09 186.09 0.00
TensorRT 110.31 305.99 218.65 194.07 80.32

WRIST_RIGHT CPU 101.37 101.37 101.37 101.37 0.00
CUDA 28.93 166.39 61.85 41.62 43.38
DirectML 35.26 35.26 35.26 35.26 0.00
TensorRT 33.69 165.84 99.81 81.74 59.64

(a) CPU (b) CUDA

(c) DirectML (d) TensorRT
Figure A3. Ellipsoids of the joint position of PELVIS for all four processing modes. The different
colors represent different body tracking runs.



Sensors 2023, 23, 878 24 of 28

(a) CPU (b) CUDA

(c) DirectML (d) TensorRT
Figure A4. Ellipsoids of the joint position of KNEE_LEFT for all four processing modes. The different
colors represent different body tracking runs.

(a) CPU (b) CUDA (c) DirectML (d) TensorRT

Figure A5. Ellipsoids for the joint position of FOOT_LEFT for all four processing modes. The different
colors represent different body tracking runs.



Sensors 2023, 23, 878 25 of 28

Table A3. Euclidean distances for each joint and processing mode. All values are in mm.

Joint Proc. Mode Min Max Mean Median SD

ANKLE_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 21.19 4.81 2.71 5.54
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 19.97 6.23 3.43 6.58

ANKLE_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 18.04 3.52 2.20 3.29
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 16.00 4.07 2.36 4.10

ELBOW_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 21.05 3.04 2.76 2.00
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 11.33 2.45 2.45 2.02

ELBOW_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 10.58 1.61 1.17 1.28
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 7.42 1.71 1.15 1.62

FOOT_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 87.18 17.85 4.43 26.73
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 84.33 25.28 5.69 30.66

FOOT_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 76.08 8.43 3.75 11.78
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 71.89 8.79 3.97 11.34

HIP_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 6.96 1.38 0.82 1.29
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 6.11 1.65 0.89 1.62

HIP_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 9.64 1.48 0.85 1.43
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 6.51 1.72 0.90 1.70

KNEE_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 18.18 4.18 2.51 4.61
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 16.67 5.00 1.98 5.57

KNEE_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDAB 0.0 10.59 1.95 1.45 1.60
DirectMLB 0.0 0.00 0.00 0.00 0.00
TensorRTB 0.0 9.16 2.21 1.55 2.11

NECK CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 12.18 1.83 1.33 1.47
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 11.91 1.89 1.31 1.84

PELVIS CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 6.18 1.18 0.67 1.15
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 5.34 1.42 0.71 1.42

SHOULDER_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 15.07 2.19 1.96 1.59
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 10.81 1.86 1.74 1.66
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Table A3. Cont.

Joint Proc. Mode Min Max Mean Median SD

SHOULDER_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 7.20 1.16 1.06 0.79
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 8.02 0.94 0.84 0.87

SPINE_CHEST CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 9.52 1.79 1.25 1.46
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 8.87 1.95 1.32 1.85

SPINE_NAVEL CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 12.73 0.85 0.74 0.65
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 10.54 0.88 0.68 0.92

WRIST_LEFT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 23.08 3.96 3.63 2.45
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 14.49 3.08 2.96 2.62

WRIST_RIGHT CPU 0.0 0.00 0.00 0.00 0.00
CUDA 0.0 15.47 2.85 2.02 2.33
DirectML 0.0 0.00 0.00 0.00 0.00
TensorRT 0.0 12.39 3.05 1.88 2.98

Table A4. Bone lengths for each joint and processing mode. All values are in mm.

Bone Proc. Mode Min Max Mean Median SD

Lower Arm Left CPU 228.21 231.33 230.40 230.57 0.61
CUDA 227.30 232.64 228.95 228.73 0.72
DirectML 227.95 229.58 228.70 228.69 0.24
TensorRT 227.72 231.73 229.33 228.81 0.97

Lower Arm Right CPU 231.10 234.26 233.31 233.49 0.62
CUDA 230.18 235.58 231.85 231.62 0.73
DirectML 230.84 232.49 231.59 231.58 0.24
TensorRT 230.60 234.66 232.23 231.71 0.98

Lower Leg Left CPU 376.46 381.59 380.06 380.34 1.01
CUDA 374.96 383.76 377.67 377.30 1.19
DirectML 376.02 378.71 377.25 377.24 0.39
TensorRT 375.64 382.25 378.29 377.45 1.60

Lower Leg Right CPU 380.42 385.61 384.06 384.34 1.02
CUDA 378.90 387.79 381.65 381.27 1.21
DirectML 379.98 382.70 381.22 381.20 0.39
TensorRT 379.59 386.27 382.27 381.42 1.62

Torso CPU 529.29 535.96 534.00 534.39 1.29
CUDA 527.25 538.71 530.95 530.49 1.54
DirectML 528.68 532.45 530.41 530.38 0.55
TensorRT 528.18 536.91 531.73 530.69 2.06

Upper Arm Left CPU 271.91 275.62 274.51 274.71 0.73
CUDA 270.82 277.18 272.79 272.52 0.86
DirectML 271.59 273.54 272.48 272.47 0.28
TensorRT 271.32 276.09 273.23 272.62 1.16

Upper Arm Right CPU 277.05 280.83 279.70 279.91 0.74
CUDA 275.95 282.42 277.95 277.67 0.88
DirectML 276.73 278.71 277.64 277.62 0.29
TensorRT 276.45 281.32 278.40 277.78 1.18



Sensors 2023, 23, 878 27 of 28

Table A4. Cont.

Bone Proc. Mode Min Max Mean Median SD

Upper Leg Left CPU 393.91 399.28 397.68 397.98 1.05
CUDA 392.34 401.55 395.18 394.79 1.25
DirectML 393.45 396.27 394.75 394.72 0.41
TensorRT 393.06 399.98 395.83 394.95 1.68

Upper Leg Right CPU 393.49 398.85 397.25 397.55 1.05
CUDA 391.92 401.12 394.76 394.37 1.25
DirectML 393.03 395.85 394.32 394.30 0.41
TensorRT 392.63 399.54 395.41 394.52 1.68
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