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Abstract: The Automated six Degrees of Freedom (DoF) definition of industrial components has
become an added value in production processes as long as the required accuracy is guaranteed.
This is where multi-camera systems are finding their niche in the market. These systems provide,
among other things, the ease of automating tracking processes without human intervention and
knowledge about vision and/or metrology. In addition, the cost of integrating a new sensor into the
complete system is negligible compared to other multi-tracker systems. The increase in information
from different points of view in multi-camera systems raises the accuracy, based on the premise that
the more points of view, the lower the level of uncertainty. This work is devoted to the calibration
procedures of multi-camera systems, which is decisive to achieve high performance, with a particular
focus on the uncertainty budget. Moreover, an evaluation methodology has been carried out, which
is key to determining the level of accuracy of the measurement system.
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1. Introduction

Vision systems where six Degrees of Freedom (DoF) positioning is performed by
image processing, have experienced a significant growth in recent years in the industrial
sector. Although high-precision systems such as laser trackers are already integrated—
through norms and standards—in production lines for large-scale measurements, the high
economic cost of these devices clearly stand out, among others. A lower cost alternative to
laser trackers are the optical CMMs (Coordinate Measuring Machines), also called vision
trackers, optical measurement sensors, or even portable CMMs. These portable measuring
devices, which have revolutionized the field of vision metrology. They have been included
in the initial processes of production lines, in different industrial environments to support
the tasks of high precision inspection, tracking and positioning applications, allowing
measurements to be taken more quickly and easily. These systems are composed of two or
three pre-calibrated cameras, which provide the position of multiple markers.

Moreover, this technology is also increasingly integrating dynamic tracking function-
ality to better tackle vibrating or non-static environments [1]. Vibrations in the production
factories result from a variety of sources such as production machinery, forklifts or crane
bridges and they are a common problem for this type of portable device. The degradation
in measurement results is given due to the lack of precise positioning of the mechanical
structure. Through a self-referencing alternative, which is not dependent on their mounting
structure, it is possible to determine the six degrees of freedom of the sensor. This way,
it is becoming the alternative especially in automation tasks with robotic arms [2,3]. The
Canadian firm Creaform demonstrates the capabilities of its C-Track device in vibration en-
vironments, compared to a poly-articulated arm [1]. The result obtained in a non-vibration
scenario was 0.011 mm mean square error and a maximum error of 0.031 mm. In a vibration
scenario as a square error of 0.013 mm and a maximum error of 0.037 mm was obtained.

Regarding working volumes, most vision trackers are designed for measuring ranges
between 1 and 8 m, and in the case of a laser tracker this is even larger. However, as
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these systems have a single point of view, their working scenarios are limited by the
possibility of having parts of the scene unevaluable due to the lack of visibility. Although
manufacturers offer the multi-tracking solution, this alternative drives up production costs,
not only in the acquisition of more devices but also adapting facilities. Additionally, it
considerably lowers the reliability of the solution, considering, for example, the need to
reference (calibrate) the devices between them. In addition, even in small work volumes,
both have limitations, resulting in a rather difficult task to adapt these systems. It is worse
still to use ‘a sledgehammer to crack a nut’.

The human factor dependency as well as the level of complexity in automation is
another challenge. The use of a laser tracker implies the need of highly qualified personnel.
Vision trackers in turn, require certain knowledge since in most cases are accompanied by a
tracking probe, called optical probe systems. The human intervention—based on experience
and knowledge—is linked to results, that is, decision-making through subjective criteria by
highly trained personnel is one of the key factors in the final accuracy of these systems.

From this perspective, and in view of the difficulty of adapting the measurement
scenarios, this is when multi-camera systems are currently gaining ground. These systems
consist of a set of cameras strategically located around the working volume. They stand out
mainly for their high flexibility and customization provided by having an indefinite number
of cameras located in the way that best suits each application. One of the main advantages
of multi-camera systems is the capability to achieve higher levels of accuracy through ad
hoc system designs for each. The design of these systems is based on determining the
number of cameras and the optimal position of each one to maximize overall precision.
This adaptability allows one to achieve high levels of precision for 6DoF measurement
and/or tracking. The main purpose is to avoid general solutions such as the commercial
solutions cited above where the idea is to try to cover as many applications as possible.
In addition, the price of including a new camera is negligible compared to adding any of
the previous tracker devices. A multi-camera system is an automated solution where the
human factor is minimized. It does not require specialized personnel with machine vision
or even metrology knowledge. Furthermore, it is a pre-calibrated solution. In the same way
that it is not necessary to have knowledge for its use, it is not necessary to have knowledge
of calibration procedures. Automated processes also allow reduced times in the tasks of
calibration and/or measurement. CMM programs are always executed following the same
instructions and report the same results regardless of the user, avoiding measurement
uncertainties due to the user.

Commercial companies such as Zeiss or Hexagon also have their niche here (Zeiss
AICell and Aicon 3D Arena, respectively). Quality Gate from the Finnish company MapVi-
sion or TubeInspect from Aicon, present multi-camera photogrammetric systems with
highly linked inspection processes in the automotive sector and in static scenes. OptiTrack,
Qualisys or Vicon, among others, are consolidates Motion Capture systems in the market.
The company Tecnatom developed the WiiPA system [4] with this technology.

However, existing multi-camera commercial solutions have a scalability limitation,
which results in loss of precision, mainly due to calibration processes. As the work area
increases, it involves having to design large and high-precision calibration artefacts. This
implies non-cost-effective implementation techniques. The most common calibration proce-
dure consists of using known geometric information (e.g., scale bars or patterns) to estimate
the transformation—in terms of position and orientation (extrinsic parameters)—between
the cameras. These algorithms are well-known as photogrammetric adjustment or bundle
adjustment [5–7]. The self-calibration process in [8] is supported by a pattern of 13 markers
moved to 200 positions and a scale bar of two markers moved to 27 positions. Photogram-
metric adjustment is performed in [9]. By positioning a laser pointer in different positions,
the projection of these points forms a virtual object (3D point cloud). However, the 3D eval-
uation is not reliable as it does not have a ground truth to verify. Perez-Cortes et al. [10] also
follows a similar strategy, but instead of using a pointer, a sphere is used in 16 positions, and
it is solved through a set of camera projections of the epipolar lines. Robson et al. [11,12]
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carried out a photogrammetric calibration procedure (bundle adjustment) through the
Manhattan Vision Metrology System (VMS) pattern to solve intrinsic parameters, extrinsic
parameters, and 3D coordinates in one go. As future lines of this work stand out, the
evaluation of the multi-camera system using one or more calibrated scale bars in various
orientations within the common intersection volume for all the cameras and the evalu-
ation of the performance specifications through the VDI/VDE 2634 [13] are performed.
Usamentiaga et al. [14] present a calibration method for a multi-camera system using a
3D object and laser planes, being detected by the multi-camera system. Perez et al. [15]
calibrate it using two spheres and Zhang et al. [16] follow planar pattern methodologies
to calibrate both intrinsic and extrinsic parameters. Planar pattern calibration techniques
where chess boards [17–23] or other types of 3D patterns [10] are used have limitations
in terms of high-range scenarios as very large patterns would be requested and all cam-
eras can see the same work areas. In this sense, contributions such as Xing et al’s. [24]
presents multicamera system calibrations with a reduced shared field of view. The intrinsic
parameters of these cameras follow the lens model proposed by Luhmann et al. [25].

The widespread acceptance standard ISO 10360-10: 2016 in advanced manufactur-
ing processes makes a laser tracker the measurement tool for high volume industrial
metrology applications. The verification of most vision trackers, in turn, is given by the
ASME B89.4.22-2004 or DIN EN ISO 10360-2: 2009 standards. These standards are closely
linked to robotic and CMM calibrations, always with probing operations, not reporting the
accuracy of the measuring device itself. The optical tracking probes entail introducing a new
variable—totally dependent on its geometry—into the measurement chain causing greater
uncertainty. For example: the Norwegian company Metronor designed long probes to
measure interior areas to allow the tracker to continue tracking it [26]. This solution results
in designing new external elements to adapt to different circumstances, making it inefficient
and imprecise. In multi-camera systems the cameras can measure everything that is visible
without the need to design artefacts for it. Few studies have, however, reported precision
data or even a vision-system evaluation or verification procedure, according to guidelines
like VDI/VDE 2634-part 1 for optical 3D measurement systems. Geodetic Systems, Inc.
(GSI) reports precision results for V-STARS/D offering an accuracy of 14 µm + 14 µm/m
for V-STARS/D5, 10 µm + 10 µm/m for V-STARS/D12 or 9 µm + 9 µm/m for INCA4.
Möller et al. [27] proposed a stereo system consisting of two AICON MoveInspect HR
cameras to increase the precision of the absolute position of an industrial machining robot.
The location of the robot’s spindle is measured through a specific adapter mounted on the
robot’s tool with retro-reflective markers. They report absolute precision up to 50 µm per
m3 in a range between 1 and 2 m3 (conditioned by the markers). It is also concluded that the
stereo system can reduce the robot’s absolute positioning error by approximately 0.1 mm
compared to a laser-tracker measurement. Since it is a photogrammetry-based system,
it depends on several factors, such as camera calibration, marker-detection quality, the
image-processing techniques, and resolution. In [8], a study of the uncertainty variables of
the tracking of an object in a robotic system is carried out. The number of cameras, positions,
angles, size of the object and the type of camera (in terms of sensors) are evaluated in a 4 m3

working area. This is compared against a tracker object with a precision of 0.1 mm (2σ) and
0.2 mrad in angular position. In addition, a comparison of the photogrammetric system
is carried out with respect to a laser tracker. A multi-camera system of four cameras in a
volume of 2 m× 2 m× 1 m. Thus, using a cross-shaped object, a standard deviation error of
0.07 mm is calculated with a maximum error of 0.14 mm. However, a follow-up to the VDI
standard is not considered here either. De Cecco et al. [28] present an uncertainty analysis
for the reconstruction of a 3D object. Three stages are defined, multi-stereo, multi-camera,
and individual stereo. In [19], a theoretical evaluation of the uncertainty analysis is also
carried out during a stereo system calibration.

Our study proposes a quantitative evaluation of a multi-camera system based on its
calibration procedure through the identification of potential error sources that influence the
measurement chain. In this sense, the calibration process is one of the determining factors
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to achieve high levels of accuracy. Specifically, this work is focused on the influence of
intrinsic and extrinsic parameters and the corresponding propagation in the measurement.
It follows the idea of applying different calibration strategies in the two-step calibration
procedure. Likewise, a measurement system that follows the VDI 2634-part 1 standard to
verify the measurement uncertainty.

The presented approach is divided into two main phases. The first section will identify
and diagnose the calibration processes involved in the multi-camera system. Whereas
the second handles the error budgeting, indicating the factors that are relatively more
important. The paper is organized into six sections. In Section 2 the material and methods
used in this work are presented. Section 3 handles the calibration experimentation of the
multi-camera system. It provides an overview of all the steps carried out for the calibration,
as well as the results obtained in this case study together with the identified variables
in each phase. Then, Section 4 illustrates the performance of the measurement system
through the verification procedure. This analysis is discussed in Sections 5 and 6 draws the
relevant conclusions.

2. Materials and Methods

The novelty of this paper lies on the error budgeting to establish the relative weight of
each determining source in the different calibration processes. A set of verification experi-
ments are carried out according to the VDI 2634-part 1 standard. This guide guarantees a
correct evaluation of photogrammetric systems today.

This work presents the measurement evaluation of a set of calibration methodologies.
The process is divided into two main scenarios: calibration and measurement. The calibra-
tion scenario provides both the camera calibration itself (Figure 1 (left))—considering the
camera as an individual measuring instrument—and the definition of a common reference
system (Figure 1 (middle)) that represents the multi-camera system, which is basically the
determination of the extrinsic camera parameters ([R|t]). In the measurement scenario in
turn (Figure 1 (right)), the 3D positioning of a set of markers that follows the geometry
suggested by the VDI standard guideline is solved.
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Figure 1. The calibration process of the muti-camera system is divided into two scenarios (camera
calibration and measurement). The first scenario (1) is concerned with the camera calibration while
the second one focuses on referring the layout frame (2). Finally, LME evaluation is carried out (3).

This approach analyses two methodologies per each intrinsic and extrinsic calibration
process (Figure 2). The intrinsic calibration follows on the one hand, the methodology
implemented in [29], where a virtual geometry pattern is optimized to achieve the highest
accuracy (Section 3.1.1). On the other hand, a flat pattern composed by retro-reflective
targets is photographed in a set of unknown fixed positions (Section 3.1.2). The extrinsic
camera calibration, in turn, also follows the virtual grid pattern methodology, but with a
different geometry -cube- from the previous one (Section 3.2.1). Moreover, the extrinsic
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calibration tests are completed with a second strategy of using a 3D pattern set out in the
working volume, which is previously measured by a portable photogrammetry system
(Section 3.2.2). The output of this system is given by the verification process, where a set of
spatial coordinates are measured, again as a virtual grid. The estimation of these results
is calculated through the length measuring errors according to LME evaluation guideline
by VDI 2634-part 1 [13]. This includes a comparison in terms of length error, between the
lengths measured by the photogrammetric system and pre-calibrated scale bars.
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Figure 2. The calibration methodologies studied in this work for the camera calibration (intrinsic
camera parameters) are a CMM virtual grid (pyramid/cube) and test-field calibrations, while for
the layout calibration a CMM virtual grid (cube) and photogrammetry except for the flat intrinsic
calibration pattern and the photogrammetry extrinsic calibration pattern, the rest of the experimental
tests are executed in a CMM (ZEISS Prismo 0.9 + L/350 µm). The main goal is to obtain an accurate
ground truth in the final verification to determine the error budgeting of the system. More specifically,
they have been verified in two measurement scenarios to evaluate the different factors of each
calibration process.

The vision system under study in this paper is a multi-camera system. Specifically, it
is a stereo-photogrammetric solution (Figure 3 (down)). The layout is composed by two
industrial cameras (Teledyne DALSA Genie Nano 4020, 12.4MP, Schneider Optics APO
Xenoplan 2.8 16 mm) individually calibrated in the camera calibration scenario. Afterwards,
the results need to be carried into the measurement scenario. In both scenarios, images
are taken of reflective non-coded targets. The material property of these elements allows
the image detection quality to be the same in both laboratory and industrial scenarios.
This is also enabled by the active LED illumination (DCM ALB0810A) integrated by each
measuring camera system (Figure 3 (up)). In addition, the camera is encapsulated in a
housing manufactured for industrial scenario cases, and thus more efficiently mitigates
the effects on the device caused by temperature, humidity, or vibrations. Even so, the tests
carried out in this work have been conducted in a controlled laboratory where the above
noise factors are mitigated as much as possible.
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Figure 3. The multi-camera system under study is a stereo-photogrammetric device. Each camera
is composed by an industrial camera, lens, and LED illumination. All of this is encapsulated in a
housing to avoid noisy environments.

3. Calibration Process
3.1. Camera Calibration: Intrinsic Parameters

The first calibration stage primarily focuses on calibrating the internal camera pa-
rameters. Through the optimization of the calibration patterns design, this methodology
also allows the camera to be manipulated as an individual measuring instrument. Thus,
it can be easily replaced in the measuring system. Through this, it is possible to achieve
the maximum level of precision and avoid scalability limitation. The camera calibration
consists of calculating the camera focal length and lens distortion parameters (so called
intrinsic parameters in machine vision). The 3D coordinates of the pattern, the geometric
distribution (position of each marker), and the optical target 2D coordinates are decisive for
the calculation of these parameters. As mentioned before, the correct setting for these input
variables makes the output intrinsic parameters well determined (Figure 4). A minimum
error in this parameter can strongly affect the measurement results.
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The widely adopted Brown’s model [30] is used for correcting lens distortions (see
Equation (1)).

x̂ = x + (x− c0x)
(
k1r2 + k2r4)+ p1

(
r2 + 2 (x− c0x)

2
)
+ 2p2(x− c0x)

(
y− c0y

)
ŷ = y +

(
y− c0y

)(
k1r2 + k2r4)+ p2

(
r2 + 2

(
y− c0y

)2
)
+ 2p1(x− c0x)

(
y− c0y

) (1)

where:

- (x̂, ŷ) are the corrected point coordinates at the image plane,
- (x, y) are the detected (distorted) point coordinates,
-

(
c0x, c0y

)
is the distortion centre,

- (k1, k2) are radial distortion coefficients,
- (p1, p2) are tangential distortion coefficients.

- being r =
√
(x− c0x)

2 +
(
y− c0y

)2
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A pre-calibrated 3D pattern and Mendikute et al’s. [29] approach are the chosen
strategies among the different alternatives to calibrate the camera parameters. The first
consists of a flat pattern that is easy-to-use and allows the instrument to be calibrated in situ.
In the second, a virtual grid is adapted to achieve, among other things, a well-conditioned
extrinsic parameter and hence less uncertainty. The main drawback of the pattern strategy
is the amount of solved extrinsic parameters, which propagates errors. The CMM virtual
grid method, in turn, is a high-cost procedure that does not allow one to perform calibration
in the measurement scenario itself.

3.1.1. CMM Virtual Grid: Pyramid

As previously mentioned, the idea is to define a virtual grid structure following the
process explained in [29], where a single target is captured in different images from different
3D positions (Figure 5). For this work to be self-contained, below is a brief description of
this technique.
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Figure 5. A retroreflective target is placed on a tip, which is previously pre-calibrated to know its
3D position.

A retroreflective target (10 mm diameter) is placed on a previously calibrated probe
(in CMM Zeiss O-Inspect). The uncertainty of the movement process is 0.8 µm (1-sigma).
The offset obtained here makes it possible to know the 3D position of the target in the
CMM coordinate system (Figure 6). This target is placed in certain predefined 3D positions
{Xi}CMM generating a virtual calibration pyramid, where the corresponding image is
taken. This pyramid is defined by 10 planes and 10 marker positions in each, a total of
1000 positions.
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Figure 6. The camera calibration process consists of defining a geometry of 3D coordinates {Xi}CMM
defined in OCMM reference system to compute the intrinsic (K) and extrinsic parameters {[R|t]C}CMM
of each C camera also defined in the OCMM.

With all this it is possible to determine the position and orientation {[R|t]C}CMM of
the C camera according to OCMM, as well as the internal parameters of the camera (KCMM).

The resolution is defined as the non-linear optimization problem solved by the Gauss–

Newton method [31] which minimizes the residual vector ||→r ||
2

norm. The defined
calibration geometry is key to have well-conditioned output variables. Hence the need
to generate virtual geometries with full freedom. An example of this, is the focal length
variable and the extrinsic parameters. The latter is a significant factor due to its propagation
in the following calibration stages.
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3.1.2. Test-Field Calibration

To go through this calibration process, a 64 marker (8× 8 dots, 140× 140 mm) ceramic
pattern is used (see Figure 7). It is necessary to underline that detection problems were
observed in first pilot tests. Some tilt effects were observed in both detection and projection
errors using the distortion pattern from Edmund Optics [Optics, E. (s.f.). Test targets]. To
avoid this problem, the same type of marker as in Section 3.1.1 was selected due to the
illumination conditions and to have the same detection uncertainty error in both processes.
These circular markers were pre-calibrated in an optical CMM (Zeiss O Inspect), with grid
uncertainty below 1 micron.
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Figure 7. The pre-calibrated pattern (left) is located in different positions. In each p position the
extrinsic camera parameters are defined and finally, the intrinsic ones are deduced (right).

A calibration test-bench is used for calibrating each camera. A set of images is taken on
the calibration grid from different points of view. The imaging configuration is principally
designed as [32,33] following the calibration configuration for plane test-fields. However, in
this work, although eight positions are proposed by Wester–Ebbinghaus, up to 21 positions
are included to cover more areas of the image. Extrinsic parameters are calculated in each
of the N images {[R|t]i}, i = 1 . . . N . Subsequently, along with the processed images, the
intrinsic camera parameters (KT) are estimated and the extrinsic parameters of each image
are refined.

3.1.3. Experimental Evaluation

A repeatability analysis has been performed for each camera. The objective is to
evaluate the quality of the calibration and, correspondingly, to assess the accuracy of the
integrated predictive models enabling calibration process control.

The experimentation procedure mainly consists of calibrating the two cameras that
compose the stereo system. Specifically, the calibration of each of camera is repeated
10 times for both calibration strategies. Table 1 depicts the repeatability of each calibration
procedure in terms of intrinsic parameters.

Table 1. The precision results (1-sigma) of the intrinsic parameters of each C camera for pyramid
virtual grid and test-field calibration.

Camera Strategy
f

(mm)
cl0

(Pixel)
rw0

(Pixel)
k1

(Pixel−2)
k2

(Pixel−4)
p1

(Pixel−1)
p2

(Pixel−1)
RMS

x y

C1

CMM
(Kc1

CMM) 0.0013 0.2445 0.2053 1.53 × 10−12 1.95 × 10−19 1.45 × 10−9 4.89 × 10−10 0.066 0.058

Test-field
(Kc1

T ) 0.001 0.2434 0.1324 4.79 × 10−12 6.32 × 10−19 1.68 × 10−9 1.89 × 10−9 0.067 0.09

C2

CMM
(Kc2

CMM) 0.0015 0.2899 0.157 1.15 × 10−12 1.48 × 10−19 8.11 × 10−10 1.41 × 10−9 0.076 0.09

Test-field
(Kc2

T ) 0.0011 0.1244 0.1488 4.7 × 10−12 4.79 × 10−19 1.8 × 10−9 1.311 × 10−9 0.06 0.089
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These results not only indicate that a high degree of repeatability is achieved in both
processes, but also, the results are definitely similar in all strategies. Attention should be
paid to the focal length (f) and distortion centre (cl0, rw0) variables, with 1 µm and 0.2 pixels
of standard deviation (1-sigma), respectively. With these variables it is usually difficult to
achieve high levels of repeatability but in this case high precision is achieved regardless
of the methodology. The intrinsic calibration performance can also be observed in the
resulting reprojection error vector after convergence: 0.06 pixels at x-axis and 0.09 pixels at
y-axis of standard deviation.

3.2. Layout Calibration: Extrinsic Parameters

Once the cameras are located on the measurement scenario OL, the layout calibration
phase is carried out, that is, the extrinsic parameters are solved. As intrinsic phase, here also
two types of extrinsic resolution strategies are performed. The first one through a known
3D pattern previously measured with a portable photogrammetric system, and the second
one, follows the same procedure as the previous section, but with a cube-based geometry.

It should be noted that, as in the intrinsic calibration scenario, the measurement
geometry for the extrinsic calculation is different for each strategy and, moreover, the
typology of markers is somewhat different between both of them.

In addition to the uncertainty resolution of the intrinsic parameters of each camera in
the previous phase, it is worth including the 3D position uncertainty of each marker, the
3D geometry that composes the pattern and the 2D uncertainty detection of each marker as
input factors. The output of this computation will be the extrinsic parameters represented
by alpha, beta, gamma for orientation and x,y,z for translation for each camera that composed
the layout (Figure 8).
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Figure 8. The factors that affect the correct determination of the intrinsic parameters are the 3D
position, 3D geometry, 2D image and the K intrinsic parameters.

3.2.1. CMM Virtual Grid: Cube

This methodology follows the same steps as Section 3.1.1 with the only difference that
instead of using a pyramid, a virtual cube is created that covers the entire working area
(see Figure 9 left). In such a way that certain markers will be seen by one or two cameras. It
is a 1000-point grid divided into 10 planes, where one of the cameras observes 775 and the
other 774 with similar spatial distribution. This difference corresponds to the mechanical
assembly error.
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Figure 9. Virtual cube grid (left). A single retroreflective target is captured in different images from
different points of view. Portable photogrammetry system (right). A 3D geometry pattern is resolved
by a portable photogrammetry system.

The output defines the extrinsic parameters {[R|t]C}CMM of each camera in the CMM
reference system, that is, the same reference as measurement scenario.

In addition, since the same information is obtained, a calibration of the intrinsic
parameters (KCMM) is also carried out. This leads to the study of the correlation between
both calibration processes since the extrinsic parameters are discarded with previous
methods. Therefore, since two types of intrinsic virtual grid calibrations are available in the
CMM, from now on both pyramid and cube calibrations will be distinguished as KP

CMM
and KC

CMM, respectively. In addition, repeatability values that complement A repeatability
analysis has been performed for each camera. The objective is to evaluate the quality of the
calibration and, correspondingly, to assess the accuracy of the integrated predictive models
enabling calibration process control.

The experimentation procedure mainly consists of calibrating the two cameras that
compose the stereo system. Specifically, the calibration of each of camera is repeated
10 times for both calibration strategies. Table 2 depicts the repeatability of each calibration
procedure in terms of intrinsic parameters are shown below.

Table 2. The precision results (1-sigma) of the intrinsic parameters of each C camera for cube virtual
grid calibration.

Camera Strategy f
(mm)

cl0
(Pixel)

rw0
(Pixel)

k1
(Pixel−2)

k2
(Pixel−4)

p1
(Pixel−1)

p2
(Pixel−1)

RMS

x y

C1 CMM
(Kc1

CMM) 0.0024 0.2267 0.1241 2.79 × 10−12 3.28 × 10−19 1.45 × 10−9 8.17 × 10−10 0.048 0.062

C2 CMM
(Kc2

CMM) 0.0012 0.2216 0.1093 2.22 × 10−12 3.03 × 10−19 9.62 × 10−10 5.35 × 10−10 0.073 0.095

It can be concluded that the repeatability results for this KC
CMM are at the same level of

those calculated for the KP
CMM case.

3.2.2. Photogrammetry

The calibration procedure of this methodology mainly consists of defining a pat-
tern and resolving its 3D geometry by a photogrammetric measurement (Figure 9 right).
Therefore, the extrinsic resolution is performed by taking an image for each camera to
the resulting 3D scene. The grid is composed of 400 markers, of which 37 and 43 are
observed, respectively.

Since an external device is used to solve the scene, the multi-camera system refers to
the zero of the corresponding photogrammetry system {[R|t]C}P.
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3.2.3. Experimental Evaluation

As in the intrinsic scenario, here the precision of the process is also studied (Table 3).
The experimentation consists of the calibration of the extrinsic parameters of both cameras
using the virtual grid and the 3D pattern obtained by an external photogrammetry system.
In particular, the experiment is repeated 10 times to evaluate the repeatability. The input of
both methodologies also experimented with each of the two calibrations resulting from the
intrinsic process. In addition, for the photogrammetric extrinsic resolution, the cube-shaped
intrinsic resolution is also included.

Table 3. The precision results for the extrinsic calibration procedure, considering the combination of
different strategies from intrinsic and extrinsic parameters for both cameras.

Strategy K
(Input) Camera α

(Rad)
β

(Rad)
γ

(Rad)
dX

(mm)
dY

(mm)
dZ

(mm)

{[R|t]}CMM

KP
CMM

C1 4.12 × 10−5 4.37 × 10−5 2.08 × 10−5 0.042 0.034 0.055

C2 2.83 × 10−5 4.03 × 10−5 1.36 × 10−5 0.056 0.035 0.044

KT
C1 3.18 × 10−5 4.51 × 10−5 1.75 × 10−5 0.043 0.023 0.07

C2 3.26 × 10−5 2.34 × 10−5 1.42 × 10−5 0.029 0.036 0.058

{[R|t]}P

KP
CMM

C1 2.97 × 10−4 2.58 × 10−4 2.97 × 10−4 0.078 0.022 0.071

C2 2.49 × 10−4 9.34 × 10−5 2.68 × 10−4 0.039 0.02 0.075

KC
CMM

C1 3.16 × 10−4 2.26 × 10−4 3.03 × 10−4 0.071 0.013 0.103

C2 2.47 × 10−4 9.75 × 10−5 2.59 × 10−4 0.045 0.025 0.091

KT
C1 6.58 × 10−4 3.13 × 10−4 2.98 × 10−4 0.083 0.068 0.105

C2 5.6 × 10−4 2.87 × 10−4 3.01 × 10−4 0.091 0.079 0.113

The obtained results served to confirm that the repeatability (1-sigma) of the process does
not differ significantly depending on the input. The repeatability of rotation angles is 1 × 10−5

and the translation precision in turn, is 1 × 10−2 mm for both cases. The error projection
ranges between 0.1 and 6 pixels for grid and photogrammetry techniques, respectively.

It should be noted that with photogrammetry strategy there is a slight difference in
rotation results—being 1 × 10−4 radians—for one of the cameras. This is mainly due to
their orientation (less markers are observed), and to the fact that the error is stressed since
the 3D geometry is not homogeneous compared to the virtual grid.

4. Verification Process

This section explains the metrological assessment as well as the results of the outlined
verification procedures. As previously described, this task is carried out in the Zeiss©
Prismo CMM which can achieve up to 1 microns of accuracy. Moreover, since it is a small
measurement vision system, it is possible to validate an intermediate verification to know
the level of accuracy of the multi-camera system.

In this sense, the verification methodology developed in this work for the vision
system consists of resolving the quality parameter Length Measuring Error (LME). It is,
therefore, the measurement of a point in the three-dimensional space, by knowing the
projection of the calibrated cameras with known extrinsic parameters. This problem is
called triangulation. The detection of the target in both images is required to geometrically
determine the target coordinate. In this case, there are three parameters to solve,

θx = X = [x y z]T (2)

where X is the 3D coordinates of the target defined in the same measuring frame at which
the camera extrinsic parameters are known Rk and tk k = 1 . . . K cameras. Each target 3D
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coordinate can be expressed as Uk = [uk vk wk]
T in each camera frame depending on its

extrinsic parameters Rk and tk as:

Uk = RkX + tk (3)

For each camera, the 3D coordinate Uk can be projected into the corresponding camera
2D image plane as pk and qk coordinates, following the widely assumed pin-hole conic
projection model in machine vision [34]. This solution can be solved through a non-linear
approximation as previously cited. Thus, the partial derivative of an optical target projected
on the image with respect to its spatial coordinates is formulated as follows as:

Jxk = (Xk)2×3 = DPDUX (4)

where DP is defined as

DP =

 1
wk

0 − uk
w2

k
0 1

wk
− vk

w2
k

 (5)

and DUX expresses the partial derivatives of Uk target coordinate at the kth camera frame
with respect to its X coordinates at the common measuring frame as

DUX = Rj (6)

where Rk is the rotation matrix corresponding to the kth camera frame.
The following is a more detailed explanation of both verification evaluations based on

the results through the described mathematical assumptions.
After inquiring about the standards for the accuracy of metrological vision systems

using multiple cameras, it can be said that the VDI-VDE 2634 guideline is the most relevant.
This standard consists of three parts from which the first, named Optical 3D measuring
systems Imaging systems with point-by-point probing, was selected as it describes how
multi-camera systems work. The description of this standard defines how to put the
validation bars and the description of the bars themselves (Figure 10).
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Figure 10. Positions of the bar to verify the accuracy of Optical 3D measuring systems following
VDI-VDE 2634.

The positions of the bar are limited by a cube, which is defined by the range of the
system. This cube, in turn, defines the length for the bars. The standard is modified to
virtually generate the bar using a CMM (Figure 10). It is composed of 32 points for a
working area of 215, 320 and 292 mm in x, y, and z of the CMM axis, respectively.
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Experimental Evaluation

Following the above experimentation, the measurement is repeated 10 times for all the
combinations of both intrinsic—KP

CMM (pyramid), KC
CMM (cube) and KT (test-field)—and

extrinsic—{[R|t]}CMM (cube) and {[R|t]}P (photogrammetry)—calibrations.
The virtual cube coordinates are compared against the measurements of a multi-

camera system with the results shown in Table 4. These results are the maximum, average
and standard deviation of the error distance between the ground truth (CMM) and the
multi-camera system in Cartesian coordinates.

Table 4. LME maximum, average and standard deviation (k = 1) through VDI guideline for each
calibration combination.

K [R|t] LME Max
(mm)

LME µ
(mm)

LME σ
(mm)

KP
CMM

{[R|t]}CMM

0.039 0.018 0.018

KC
CMM 0.03 0.013 0.008

KT 0.051 0.019 0.012

KP
CMM

{[R|t]}P

0.108 0.0328 0.022

KC
CMM 0.103 0.046 0.034

KT 0.16 0.036 0.0244

In view of the results achieved, we can conclude that if higher levels of accuracy are
to be obtained, it is necessary to follow a CMM strategy in terms of extrinsic calibration.
Similarly, the test-field strategy has a lower performance. In CMM in turn, there is no clear
evidence that any factor (K, RT) has a significant determination in the final measurement.
All maximum LME are around 30 µm. These results also indicate that there is no clear
correlation between the two calibration procedures, although the combination of both
calibrations with virtual cube grid offers a slightly better performance, since they are better
coupled along with the propagation of the covariance in the calibration chain.

However, it is necessary to pay attention to the KT and {[R|t]}P. Specifically, the
measurement data are analysed in detail considering the combination of all the calibrations
of this strategy. As Table 5 depicts, it can be concluded that there is a considerable influence
of the extrinsic parameters on the final measure. This is largely due to the calibration
procedure of the photogrammetric system. More precisely, the chosen geometry causes
occlusions which results in a different number of detected markers in each photogrammetric
calibration. This effect does not occur, for example, in the case of the CMM, where all the
markers are always detected (it is a virtual grid).

Table 5. VDI results for strategy KT and {[R|t]}P in a 10-repetition trial.

K [R|t] Repeat LME Max
(mm)

LME µ
(mm)

LME σ
(mm)

KT {[R|t]}P

1 0.16 0.001 0.046

2 0.171 0.0008 0.057

3 0.315 0.037 0.139

4 0.172 0.006 0.067

5 0.249 0.027 0.112

6 0.143 0.001 0.061

7 0.199 0.013 0.084

8 0.196 0.01 0.082

9 0.141 0.0003 0.049

10 0.069 0.003 0.024
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Thus, to evaluate the effect of the extrinsic and intrinsic parameters on the results, a
swap of calibration is performed, considering the best and worst results. In this case, the 3rd
and the 10th measures are selected. It is confirmed (see Table 6) that the extrinsic variability
has the higher effect, making it possible to reach CMM precision level or, conversely,
definitely negative results.

Table 6. The combination of different repeats of intrinsic and extrinsic calibrations.

K [R|t] LME Max
(mm)

LME µ
(mm)

LME σ
(mm)

KT
3 {[R|t]}P

3 0.315 0.037 0.139

KT
10 {[R|t]}P

10 0.069 0.003 0.024

KT
10 {[R|t]}P

3 0.311 0.037 0.142

KT
3 {[R|t]}P

10 0.065 0.001 0.024

KT
1 {[R|t]}P

3 0.313 0.037 0.139

KT
1 {[R|t]}P

10 0.073 0.003 0.025

5. Discussion

In view of the results obtained in the previous section, we can conclude that, according
to the obtained accuracy, the extrinsic parameters are key in the final measurement result.
However, beyond that, it is necessary to emphasize that in order to affirm the above, the
calibration geometry of both extrinsic calibration strategies must be identical. Otherwise,
differences may arise between the extrinsic calibration between the CMM and portable
photogrammetry strategies, which is indeed the current situation. In short, geometry
is another key factor to take into account in the extrinsic calibration process. Thus, to
be impartial for both cases, a common geometry is defined. For this purpose, a set of
Spherically Mounted Retroreflectors (SMRs), commonly known as Nests (see Figure 11a),
are distributed along the scene to establish a common centre using tools that can be
subsequently measured by CMM and photogrammetry.
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Figure 11. SMR (a) as an element in order to have a common reference geometry for calibration with
the CMM through a sphere (b) or the photogrammetry through a split bearing with a retro reflective
marker (c).

The measurement process consists of probing a 1.5′′ (38.1 mm) stainless-steel sphere
on the CMM, defining its centre (see Figure 11b), and then swapping it with a 1.5′′

(38.1 mm) Split Bearing Retro-reflective (SBR), detectable by the photogrammetry sys-
tem (see Figure 11c). This way, it would be possible to define a common and comparable
nominal centre between both metrological tools.

From Table 7 it is possible to conclude that regardless of the results obtained in
terms of repeatability, there are no meaningful differences between the two methodologies.
Moreover, if a second photogrammetric calibration is included, it is essential to perform an
accurate calibration to achieve the same level as the CMM.
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Table 7. LME for the experimental test where the extrinsic calibration geometry is the same for
different calibration processes. In addition, a second extrinsic calibration process using portable
photogrammetry is included as a repeatability test.

K [R|t] LME Max
(mm)

LME µ

(mm)
LME σ

(mm)

KP
CMM

{[R|t]}CMM

0.132 0.013 0.049

KC
CMM 0.079 0.007 0.032

KT 0.231 0.028 0.065

KP
CMM

{[R|t]}P

0.114 0.010 0.043

KC
CMM 0.080 0.007 0.030

KT 0.237 0.033 0.077

KP
CMM

{[R|t]}P

0.13 0.014 0.048

KC
CMM 0.082 0.006 0.032

KT 0.239 0.029 0.064

Following the analysis, and once it has been confirmed that geometry is a determining
factor, it is necessary to focus research on the intrinsic calibration process. It is clear that the
first results obtained together with the latter, the KT calibration, is the one that returns the
worst result in the final measurement. This is mainly since the chosen intrinsic calibration
methodology has limitations in large scale scenarios. The number of images to be taken
increases as the scenario becomes bigger. In addition, to cover the entire scenario, it is
necessary to manage the different depths with patterns of different sizes in the same process.
All this involved incurring more errors.

Similarly, the CMM methodology also has a drawback in large scenarios. Mainly as
it is unfeasible to calibrate the sensors in CMM as the scenarios become larger. CMMs
of such a size are not commonly available and the procedure is inefficient. Therefore,
a new alternative is proposed to calibrate the intrinsic camera parameters focused on
large scenarios through portable photogrammetry. Through this technique, in addition
to resolving the 3D coordinates, the intrinsic parameters are also found, as it is a self-
calibrating system. These parameters will therefore be subsequently applied as inputs to
the multi-camera system.

It can be observed through Table 8 that the combination of both intrinsic and extrinsic
parameters with photogrammetry achieve the best results. The conclusion is that both
parameters are coupled in the same calibration process.

Table 8. The photogrammetry intrinsic calibration is included within the different calibration techniques.

K [R|t] LME Max
(mm)

LME µ

(mm)
LME σ

(mm)

KP
CMM

{[R|t]}CMM

0.132 0.013 0.049

KC
CMM 0.079 0.007 0.032

KT 0.231 0.028 0.065

KPH 0.114 0.014 0.05

KP
CMM

{[R|t]}P

0.114 0.010 0.043

KC
CMM 0.080 0.007 0.030

KT 0.237 0.033 0.077

KPH 0.063 0.006 0.031
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6. Conclusions/Future Work

Vision systems where 6DoF positioning is performed by image processing have be-
come a real alternative to laser trackers in the industrial sector. Like Coordinate Measuring
Machines, if the position and orientation of an object with respect to a reference through
a laser tracker needed to be found, e.g., to calibrate the TCP of an industrial robot, it is
necessary to carry out three consecutive measurements of a stable object and a single
tracker, or by including a multi-tracker methodology which implies high costs. This has en-
abled the design, manufacture, and development of ad-hoc multi-camera systems for each
application. At present, it is possible to implement plug&play systems avoiding the above
issues. In addition, automatic calibration processes have been obtained, reducing manual
intervention to a minimum, thus reducing working times and errors in the processes.

However, to date, most applications that have integrated machine vision measurement
systems such as multi-camera systems have always had the main goal of ensuring that
errors that accumulated along the entire measurement chain did not affect the final mea-
surement. For instance, an application where a multi-camera system was able to correct the
6DoF positioning of a robotic arm, without going beyond what is necessary for that purpose.
If the positioning was guaranteed to be sufficient and correct, the application was validated.
For this reason, although the advantages of multi-camera systems have long been proved,
their real potential has always been overlooked. This means that multi-camera systems
have been constrained by the fears of not meeting the requirements, not being used to their
full accuracy potential.

Therefore, a characterisation of the error sources involved in vision systems, and
particularly those related to multi-camera systems, has been presented in this work. The
main goal has been to evaluate the factors that affect the final measurement, to enable
performing what is known as error-budgeting of a measurement system. By means of
experimental repeatability tests, it has been possible to carry out the corresponding analysis.
Among the different points discussed, it is worth highlighting the identification of the
highest number of error sources that influence the measurement chain, to determine the
accuracy level that can be achieved, and, on the other hand, the degree of influence of
each factor. Specifically, this work focuses on the calibration processes and the different
techniques used to evaluate the accuracy of the system. In this work, the VDI2634-part 1
guideline is followed as part of the final verification. In this sense, most of competitors use
probing or scanning probes to offer the verification results, without evaluating the system
as an individual measuring device.

From the presented data it can be concluded that extrinsic parameters calibration is
critical if the geometry and its measurement are correctly determined. Geometry is key
in determining extrinsic parameters and this incurs fatal errors and high repeatability. If
these conditions are fulfilled and, through the different technologies the scene is correctly
measured, no significant changes are observed. So, the next step is to correctly define the
intrinsic parameters. Moreover, in this case, it can be confirmed that if both the strategies to
calculate the intrinsic and extrinsic parameters are the same, the accuracy is higher, mainly
due to the fact of the coupling between both variables of the calibration methodologies.

The performed evaluation, thanks to the knowledge of the contribution of each cali-
bration process in the measurement chain, can be enhanced in the future to estimate and
model each of the identified factors. This information could be used to develop simula-
tion processes for the preliminary design of calibration and measurement processes. It
could also be used to predict the behaviour of the multi-camera system through designing
simulations in the calibration and measurement processes.

It would also be possible to assess in more detail each calibration process focusing
on the intrinsic ones. An intermediate characterisation of the intrinsic parameters, i.e., to
perform intermediate verifications, by means of dimensional verification rules.

Finally, the motivation to implement dynamic reference, as reported in other studies
in the state of the art, should be emphasised.
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