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Abstract: Embedding various sensors with powerful computing and storage capabilities in a small
communication device, smartphones have become a prominent platform for navigation. With the
increasing popularity of Apple CarPlay and Android Auto, smartphones are quickly replacing
built-in automotive navigation solutions. On the other hand, smartphones are equipped with
low-performance Micro Electro Mechanical Systems (MEMS) sensors to enhance their navigation
performance in Global Navigation Satellite System (GNSS)-degraded or -denied environments.
Compared with higher-grade inertial navigation systems (INS), MEMS-based INS have a poor
navigation performance due to large measurement errors. In this paper, we present laboratory test
results on the stochastic and deterministic errors observed in MEMS inertial sensor measurements of
five different smartphones from different manufacturers. Then, we describe and discuss the short-
term effects of these errors on the pure inertial navigation performance and also on the navigation
performance based on the tight coupling of INS with GNSS measurements using a smartphone.

Keywords: MEMS; INS; navigation; positioning; smartphones

1. Introduction

Smartphones are equipped with a variety of sensors that can measure their position
and orientation. With powerful computing and storage capabilities, smartphones have
become a popular platform for pedestrian and automotive navigation. For pedestrian
navigation, a smartphone is usually an obvious option. For automotive navigation, with
the increasing popularity of Apple CarPlay and Android Auto, smartphones are quickly
replacing built-in navigation solutions. Navigation capabilities mainly rely on processing
GNSS signals for outdoor positioning. However, in environments where GNSS signals are
degraded or denied, such as urban canyons, tunnels, and parking garages, smartphones
estimate their position and orientation using inertial sensors. This allows them to navigate
regardless of any surrounding obstacles that may obstruct the GNSS signals. By using an
INS composed of a three-axis accelerometer and a gyroscope, it is possible to determine
the position and orientation of a smartphone and the vehicle hosting it. The achievable
positioning performance strongly depends on the accuracy, stability, and quality of the
inertial sensors.

The accelerometers, gyroscopes, and magnetometers used in a smartphone are typ-
ically very small and lightweight MEMS (Micro Electro Mechanical System) sensors [1],
very inexpensive, but generally characterized by a poor performance [2,3]. An example of
MEMS specifications is provided in [4,5].

While there are a number of literature sources on the testing and validation of inertial
sensors, such as [6–11], to the best of the authors’ knowledge, there are not many works that
specifically focus on evaluating the navigation performances achievable with the MEMS
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inertial sensors of a smartphone. The only work is [12], in which inertial measurements
were collected with a Sony Xperia M2 Aqua and Samsung Galaxy Note 3 in three different
driving scenarios and processed offline to determine position.

In the first part of this paper, we present the main stochastic and deterministic error
characteristics of the MEMS sensors embedded in five smartphone devices, a Google Pixel 7
Pro, a Samsung SM-A536V, a Vivo X60 Pro, an iPhone XR, and One Plus 7 Pro, determined
by the means of laboratory tests. Identifying the characteristics of these errors is crucial
for designing a navigation filter. It helps to define the state and measurement components,
formulate system and measurement models, and tune the filter parameters, such as the
system and measurement covariance. In the second part, we analyze the effects of these
errors on the positioning accuracy when using a smartphone. For such a goal, we discuss
the short-term accuracy achievable in: (1) a straight-line motion with pure MEMS inertial
mechanization, by converting the MEMS accelerometer and gyro measurements into posi-
tion, velocity, and attitude; and (2) a real drive trajectory around our campus in San Jose,
CA, with an INS-GNSS tight fusion.

The paper is organized as follows. Section 2 summarizes the error sources that
characterize an inertial measurement. In Section 3, we describe the three main tests carried
out in our laboratory for each of the five considered smartphones and present their results:
the Single-Position Static Test to determine the stochastic error of the accelerometers and
gyro; the Six-Position Static Test to estimate the deterministic error of the accelerometers;
and the Gyro Rate Test to determine the deterministic errors of the gyros. In Section 4, for
the five considered devices, we estimate the short-term achievable positioning accuracy
when using INS measurements affected by the MEMS errors determined in Section 3. In
Section 5, we discuss the obtained results. The conclusions are drawn in Section 6.

2. Error Characteristics of MEMS Inertial Sensors

The works [13–18] provide a comprehensive overview of the various sources of errors
affecting inertial measurements. The typical value of each of these errors can widely vary
depending on the class or grade of the inertial sensor. There is no universally agreed
definition of low-, medium, and high-grade inertial sensors. A common classification,
provided in [13], includes five main broad categories from the highest grade to the lowest:
the Marine, Aviation, Intermediate, Tactical, and Consumer grades. The lowest categories
exhibit much larger errors than the highest categories, but, at the same time, they are
characterized by a smaller mass, volume, power consumption, and are usually drastically
cheaper (less than $10 for consumer-grade versus more than $1M for marine-grade). The
current research on the development of inertial sensors is primarily focused on MEMS
technology that enables the low-cost mass production of very small, light quartz and silicon
sensors. MEMS are generally the smallest and cheapest inertial sensors, however, the
lowest consumer-grade MEMS sensors, usually adopted in a smartphone, offer a poor
performance. The final performance of a MEMS inertial sensor is strongly influenced by
whether or not the sensor has been calibrated; often, MEMS sensors are sold without any
lab calibration as consumer-grade, and with calibration as tactical-grade.

Multiple accelerometers and gyros are integrated into an inertial navigation unit (IMU)
and their measurements are processed together in an INS to produce a navigation solution.

In general, all grades of accelerometers and gyros manifest biases, scale factor, cross-
coupling errors, and random noise. Depending on the type of sensor, they can also exhibit
higher-order errors and angular rate specific force cross-sensitivity [13]. They are also
affected by vibration-induced errors [19].

We can distinguish deterministic errors and stochastic errors for MEMS sensors. De-
terministic errors include constant and proportional errors to the measuring values of
the sensor. Specifically for an inertial sensor, there are four individual components of a
deterministic error: (1) a fixed contribution which can be corrected by sensor calibration;
(2) a temperature-dependent variation while the sensor is working out of the range of its
normal operating temperature; (3) a run-to-run variation which changes from different
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runs but stays constant during one run; and (4) last but not least, in-run variation which
slowly changes within the course of a run.

We generally refer to accelerometer and gyro bias as a constant error, independent of
the specific force and angular rate, respectively. These usually are the main contribution
to the overall position error. It is possible to differentiate static bias from dynamic bias.
Static bias corresponds to the fixed and run-to-run contribution of a deterministic error.
Depending on the type of sensor, dynamic bias is generally about 10% of the static one [13]
and it includes the in-run, also known as bias instability, and the temperature-dependent
error contribution. According to [20], this bias instability varies over time with a period of
one or two minutes for low-cost INSs.

The scale factor is a departure of the input–output gradient of the instrument from unity
following unit conversion by the IMU [13]. Therefore, a scale factor error is proportional to
the true measured value. Misalignments of the sensitive axes of the INS with respect to
the orthogonal axes of the body frame that result from a non-perfect packaging process
are usually known as cross-coupling errors. Uncalibrated, consumer-grade MEMS can have
scale factors and cross-coupling as large as 0.1 and 0.02, respectively [13].

Stochastic errors or random noise affect all inertial sensors due a number of sources [17].
These can be well described by a random probability distribution. It is possible to describe
accelerometer and gyro random noise through their integral over time, known as random
walks. The standard deviation of a random walk will indeed be proportional to the square
root of the integration time.

In addition, further error sources are the quantization of the sensor data, g-dependent
bias (depending on the sensor type), scale factor non linearity, cross-coupling error variations
(anisoinertia errors) [21] as a function of the specific force and angular rate, errors due to the
exceeding of the operating ranges and bandwidth, and higher-order systematic errors that
depend on the type of sensor.

Finally, smartphone operating systems can introduce additional errors, such as in-
creased noise and quantization, inconsistent update rates, data lags, and repeated measure-
ments. For this reason, when designing an INS-based navigation filter for smartphones, it
is important to characterize the error of the IMU sensors through laboratory tests, rather
than relying solely on the manufacturer’s specifications.

3. Laboratory Tests and Results

For this study, we conducted laboratory tests to determine the main error sources and
particularly the standard deviation, bias instability, random walk and rate random walk,
bias, and scale factor affecting the measurements of the accelerometers and gyroscopes
integrated in five different smartphones. Table 1 shows the smartphones we tested and the
models of their accelerometer and gyroscope sensors. Each smartphone has a three-axis
accelerometer and a three-axis gyro. We used the Single-Position Static Test to determine the
stochastic errors of the accelerometers and gyros. We also used the Six-Position Static Test
and Gyro Rate Test to estimate their deterministic errors. This section provides an overview
of our testing methods and results.

Table 1. Tested smartphones and corresponding inertial sensors they integrate.

Smartphone Model Manufacturer Accelerometers Gyroscopes

Samsung SM-A536V SamsungElectronics Co Ltd. (Suwon, Republic
of Korea) LSM6DSOTR LSM6DSOTR

Google Pixel 7 Pro Google LLC (Mountain View, CA, USA) LSM6DSV LSM6DSV

Vivo X60 Pro Vivo Communication Technology Co., Ltd.
(Dongguan, China) LSM6DSO LSM6DSO

iPhone XR Apple Inc. (Cupertino, CA, USA) N.A. N.A.

One Plus 7 Pro OnePlus Technology Co., Ltd. (Shenzhen, China) BMI160 BMI160
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3.1. Single-Position Static Test

In this test, data from the stationary accelerometers and gyros were collected for four
hours to observe the standard deviation of the noisy outputs. An Allan Variance analysis
was carried out to quantify the bias instability, random walk, and rate random walk.

The Allan Variance (AVAR) is a time domain analysis technique conceived to char-
acterize the noise and stability in clock systems [22,23]. It can also be applied to analyze
the measurement error characteristics of any instrument. AVAR represents the root mean
square (RMS) random drift error as a function of the average time τ. By performing specific
operations on the data, AVAR can be used to characterize different types of noise in inertial
sensor data [24]. The AVAR can be computed as follows, as presented in [11,25,26].

From the slopes of the Allan deviation (σ =
√

σ2) log–log plot versus τ, it is possible
to extract several noise parameters. Table 2 reports the ones we determined in our analysis
for each of the axes (x,y,z) of both the accelerometers and gyroscopes, and in particular: the
standard deviation (SD), bias instability (B), angular random walk (N), and rate random
walk (K). Figures 1 and 2 show an example of an Allan variance plot for one accelerometer
and one gyro, respectively, of the iPhone XR.

Table 2. Formula, curve slope, and coefficient value for each noise parameter [10].

Error Type log(σ) vs. log(τ) Curve Slope Coefficient Value

Random Walk log(σ) = − 1
2 log(τ) + log(N) − 1

2 N = σ(1)

Bias Instability log[σ( f0)] = log
(√

2ln2
π ·B

)
0 B =

σ( f0)
0.664

Rate Random Walk log(σ) = 1
2 log(τ) + log

(
K√

3

)
+ 1

2 K = σ(3)
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Table 3 reports the standard deviation (SD) values determined for all five considered
devices. The maximum and minimum values across all five smartphones are bolded. We
can see that the iPhone XR MEMS measurements had the largest gyro noise SD, with a
three-axis average of 0.0027 rad/s, while the Samsung SM-A536V ones had the largest
accelerometer SD with a value of of 0.0106 m/s2. The One Plus 7 Pro MEMS gyro and
accelerometer measurements had the lowest SD instead, with a three-axis average of
0.0042 m/s2 and 2.7073 × 10−4 rad/s. Compared with the specifications from the manu-
facturers, the Samsung and Pixel phones were very close to the numbers reported in the
data sheet. However, the Vivo and One Plus phones had less noise than the values in the
specification sheets.

Tables 4 and 5 report the bias instability, random walk, and rate random walk for the
accelerometer and gyro, respectively, of the five considered devices. The largest accelerom-
eter bias instability and random walks were found for the Samsung SM-A536V. The Google
Pixel 7 Pro, Vivo X60 Pro, and iPhone XR showed the lowest accelerometer bias, velocity
random walk, and acceleration random walk, respectively. The Google Pixel 7 Pro also
appeared to have the lowest gyro bias instability and random walks. The Vivo X60 Pro
showed the largest gyro bias instability, while the iPhone XR had the largest velocity and
acceleration random walks.

3.2. Six-Position Static Test

Usually, the calibration of an IMU is performed using a mechanical platform, which
rotates the sensors into different precisely controlled orientations and at known rotational
velocities [7,8]. At each orientation and during the rotation, the outputs of the accelerom-
eters and gyros are observed and compared with the pre-calculated gravity force and
rotational velocity, respectively.

The Six-Position Static is a widely used calibration method [9]. It involves mounting
the IMU on a level surface and aligning each sensitivity axis of each sensor illustrated in
Figure 3, with the direction of gravity, and its opposite, as shown in Figure 4. Gravity and
Earth rotation rate can be the references for the estimation of the bias and scale factor of the
accelerometers and gyros, respectively. Note that more than six positions can be considered
(multi-position static test); in this case, for the additional positions (orientations), the
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reference value will be a fraction of the gravity force for the accelerometers and a fraction
of the Earth rotation rate for the gyros.

Table 3. Standard deviation.

SD Accelerometer [m/s2] SD Gyro [rad/s]

Samsung SM-A536V

X 0.010049068 0.001242583
Y 0.010441081 0.001253576
Z 0.011421130 0.001586549
mean 0.010637093 0.001360903

Google Pixel 7 Pro

X 0.007663586 0.000889025
Y 0.007970449 0.000907514
Z 0.010705712 0.000712619
mean 0.008779916 0.000836386

Vivo X60 Pro

X 0.005928450 0.000467233
Y 0.005631080 0.000652637
Z 0.004041136 0.000402250
mean 0.005200222 0.000507373

iPhone XR

X 0.009588520 0.001465648
Y 0.007880521 0.002250331
Z 0.010838779 0.004264051
mean 0.009435940 0.002660010

One Plus 7 Pro

X 0.004113892 0.000273676
Y 0.002455876 0.000302612
Z 0.005909729 0.000235906
mean 0.004159832 0.000270731

Table 4. Accelerometer bias instability and random walks.

Bias Instability B [m/s2]
Velocity Random Walk
N [(m/s2)/sqrt(Hz)]

Acceleration Random
Walk K [(m/s2) ×
sqrt(Hz)]

Samsung SM-A536V

X 0.000474035 0.002232118 0.001288714
Y 0.000516343 0.002174748 0.001255592
Z 0.003006905 0.018887106 0.010904476
mean 0.001332428 0.007764657 0.004482927

Google Pixel 7 Pro

X 0.000208068 0.001712572 0.000988754
Y 0.000175490 0.001835399 0.001059668
Z 0.000268215 0.002325118 0.001342408
mean 0.000217258 0.001957696 0.001130277

Vivo X60 Pro

X 0.000418808 0.001049093 0.000605583
Y 0.000356650 0.001127931 0.000651211
Z 0.000256732 0.000890106 0.000513903
mean 0.000344063 0.001022377 0.000590232

iPhone XR

X 0.000910670 0.001179936 0.000313525
Y 0.000571580 0.001133789 0.000124237
Z 0.001166650 0.001751674 0.000050204
mean 0.000882967 0.001355133 0.000162655

One Plus 7 Pro

X 0.000285625 0.000534956 0.000308857
Y 0.000416224 0.000645493 0.000372675
Z 0.000381871 0.003891451 0.002246731
mean 0.000361240 0.001690633 0.000976088
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Table 5. Gyro bias instability and random walks.

Bias Instability B [rad/s] Angular Random Walk
N [(rad/s)/sqrt(Hz)]

Rate Random Walk K
[(rad/s) × sqrt(Hz)]

Samsung SM-A536V

X 0.000016138 0.000272514 0.000157336
Y 0.000009182 0.000370377 0.000213837
Z 0.000006144 0.000419685 0.000242305
mean 0.000010488 0.000354192 0.000204493

Google Pixel 7 Pro

X 0.000011138 0.000204410 0.000118016
Y 0.000008738 0.000207131 0.000119587
Z 0.000008855 0.000159000 0.000091799
mean 0.000009567 0.000190180 0.000109801

Vivo X60 pro

X 0.000170295 0.001684784 0.000972710
Y 0.000107853 0.001583311 0.000914125
Z 0.000124753 0.000791048 0.000456712
mean 0.000134300 0.001353048 0.000781182

iPhone XR

X 0.000030634 0.000296360 0.000001209
Y 0.000077489 0.000403337 0.000003604
Z 0.000162134 0.003658483 0.000004697
mean 0.000090033 0.001452726 0.000003170

One Plus 7 Pro

X 0.000026131 0.000064993 0.000037523
Y 0.000013615 0.000324383 0.000187282
Z 0.000025621 0.000301456 0.000174046
mean 0.000021789 0.000230277 0.000132950
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The bias and scale factor of both the accelerometers and gyros can be calculated using
the following equations [9]:

b =
yup + ydown

2
(1)

K =
yup − ydown − 2× F

2× F
(2)

where yup is the average measured specific force or angular rate when the sensitive axis
is pointed upwards, ydown is the average measured specific force or angular rate when
the sensitive axis is pointed downwards, and F is the known reference signal. F is the
magnitude of the local gravity g for the accelerometers, while for the gyroscopes, F is the
magnitude of the Earth rotation rate projection to the vertical axis at a given latitude ωe.

However, unlike high-grade gyroscopes, low-grade ones such consumer-grade MEMS
suffer from bias instability and noise levels that can completely mask the Earth’s reference
signal. Therefore, the Earth rotation can typically only be used for high-grade gyroscopes.
In our case, the Six-Position Static test was performed only for the accelerometers. The
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accuracy of this method depends on how well the axes are aligned with the vertical axes of
the local level frame. This standard calibration method can only be used to determine the
bias and scale factors of sensors, but cannot estimate axes misalignments, for which a more
complex method is required.
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Table 6 reports the bias and scale factor (SF) determined for the five smartphones by
carrying out the Six-Position Static test.

Table 6. Accelerometer bias and scale factor.

Bias [m/s2] Scale Factor

Samsung SM-A536V

X 0.090409789 0.013743845
Y 0.084114571 −0.000975747
Z −0.056371548 −0.005114418
mean 0.076965303 0.006611337

Google Pixel 7 Pro

X −0.023521688 −0.005581130
Y 0.047652858 −0.002604630
Z 0.087067622 −0.005120735
mean 0.052747389 0.004435498

Vivo X60 Pro

X −0.009156655 0.001514275
Y 0.005098368 0.005985413
Z −0.041585923 −0.006538473
mean 0.018613649 0.004679387

iPhone XR

X 0.026573000 0.000379000
Y 0.086776000 0.001399000
Z −0.001050000 −0.001690000
mean 0.038133000 0.001156000

One Plus 7 Pro

X −0.224982900 −0.000486660
Y 0.174106304 0.011129523
Z 0.219099173 0.002375162
mean 0.206062792 0.004663782
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In this case, the One Plus 7 Pro resulted in being the one with the largest accelerometer
bias, while the Vivo X60 pro was the one with smallest. The Samsung SM-A536V had the
smallest scale factor and the iPhone XR had the largest.

3.3. Gyro Rate Test

In this test, as shown in Figures 5–7, we used the robotic arm Dorna 2 [27] and a phone
holder we designed and printed, to stimulate each gyro axis with a given reference angular
velocity ωre f and with the same, but in the opposite direction ωre f−.

The output of the gyros was recorded for a few minutes. Therefore, the bias and scale
factor were calculated as follows:

b =
yωre f + yωre f−

2
(3)

K =
yωre f − yωre f− − 2×ωre f

2×ωre f
(4)
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Figure 7. Phone holder that connects the smartphones to the robot head.

In general, the test can be repeated with different reference values ωre f in order to
characterize the scale factor and bias as a function of the angular rate. For this paper,
we collected data for two representative angular rate values of 10 deg/s and 40 deg/s.
Note that the test can also be repeated for different g values for the characterization of the
g-dependent errors. In our tests, each gyro axis was aligned with the local vertical axis.

Tables 7 and 8 report the bias and SF values at 10 deg/s and 40 deg/s, respectively, for
all five smartphones.
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Table 7. Gyro bias and scale factor at 10 deg/s.

Bias [rad/s] Scale Factor

Samsung SM-A536V

X 0.000140756 −0.000124110
Y −0.002706500 0.029467986
Z 0.001828869 0.000059642
mean 0.001558708 0.009883899

Google Pixel 7 Pro

X −0.000000864 −0.000187850
Y 0.001881322 −0.001169500
Z 0.000029721 −0.000121930
mean 0.000637295 0.000493093

Vivo X60 pro

X −0.000132100 −0.000157070
Y −0.004326800 −0.000910130
Z 0.003383160 0.000328004
mean 0.002614020 0.000465068

iPhone XR

X 0.002700000 0.004300000
Y 0.005600000 0.006200000
Z 0.000686741 0.004902211
mean 0.002995580 0.005134070

One Plus 7 Pro

X 0.003954450 −0.025509810
Y 0.003646413 −0.025461340
Z −0.012241020 −0.028221540
mean 0.006613961 0.026397563

Table 8. Gyro bias and scale factor at 40 deg/s.

Bias [rad/s] Scale Factor

Samsung SM-A536V

X 0.000298200 −0.001807200
Y 0.009179700 −0.042710310
Z −0.002227920 0.000059642
mean 0.003901940 0.014859037

Google Pixel 7 Pro

X −0.002267500 −0.002382100
Y −0.017213000 −0.020348950
Z −0.000061247 −0.001558800
mean 0.006513900 0.008096617

Vivo X60 pro

X −0.000131400 −0.000153200
Y −0.001904000 −0.002162770
Z −0.000011560 −0.003430900
mean 0.000682333 0.001915623

iPhone XR

X 0.000340000 0.006000000
Y 0.000830000 0.007300000
Z −0.000633130 0.004619750
mean 0.000601043 0.005973250

One Plus 7 Pro

X 0.000037859 −0.123923290
Y 0.000031763 −0.119939640
Z −0.000102620 −0.124866720
mean 0.000057440 0.122909883

For the gyros at 10 deg/s, the One Plus 7 Pro exhibited the largest bias and SF values,
while the Pixel 7 Pro showed the lowest bias and second-lowest scale factor. The same
cannot be said for the gyro bias and SF at 40 deg/s, for which the One Plus 7 Pro showed
the highest scale factor but the lowest bias, while the Pixel 7 Pro and Vivo X60 Pro had the
highest bias and lowest scale factor, respectively.
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4. Effect of MEMS Errors on Positioning

The inertial navigation state solution, including position, velocity, and attitude, is af-
fected by errors from three sources: errors in accelerometer and gyro sensor measurements,
errors in the initialized state, and processing errors. As discussed in Section 2, measure-
ment errors consist of a stochastic, random component and a deterministic, systematic one.
Random noise from accelerometers and gyros has a cumulative effect on navigation errors.
Accelerometer and gyro biases are integrated into the navigation equations, producing
position, velocity, and attitude errors that increase over time. Attitude errors also affect
velocity and position errors. Velocity initialization errors produce a growing position error
when integrated.

Processing errors arise due to several factors, including the discretization of the
navigation equation, the effects of finite iteration rates, approximations in the gravity
model, computational rounding errors, and timing errors [13,15].

Inertial error propagation is also influenced by the host vehicle trajectory; indeed,
for example, the coupling of heading errors into position and velocity, as well as the
effect of the scale factor and cross-coupling errors, all strongly depend on the host vehicle
dynamics [28].

Very simple models of gravity, function of latitude and height only, can be a significant
source of error (up to 0.1 mg), particularly if high-precision inertial sensors are used. Timing
errors (due to a non-perfect clock within the inertial navigation processor) are generally
negligible compared to the other sources.

4.1. Short-Term Straight-Line Pure Inertial Propagation

In order to analyze the effect of inertial error propagation, we can evaluate the short-
term error propagation given the noise SD and bias values determined in Section 3 and
some errors in the initial position, velocity, and attitude states.

Let us consider the simplest case of a host vehicle traveling in a straight and level line
at a constant velocity and constant temperature, and derive each error contribution as done
in [13]. The effects of the curvature and rotation of the Earth and gravity approximations
can be neglected. The error of the position of the INS body frame b, with the respect to the
origin of a frame β resolved about the axes of a frame γ error, can be formulated as the
integral of the velocity error with a constant velocity error,

δrγ
βb = δvγ

βbt. (5)

where t is the integration time, while the velocity error is the integral of the acceleration
error with a constant accelerometer bias ba,

δvγ
βb = Cγ

b bat. (6)

where Cγ
b is a rotation matric from frame b to frame γ.

Therefore, the position error will be:

δrγ
βb =

1
2

Cγ
b bat2 (7)

Note that there is no error propagation between the axes, since we assume that the
attitude remains constant.

With a small-angle approximation, the attitude error can be expressed as a vector
resolved about a certain set of axes. We can denote with f̃ b

ib the specific force measured by
the accelerometer, and with δΨγ

γb, the error in the INS-indicated attitude of frame b with
respect to a frame γ, resolved about the frame γ axes.

An acceleration error due to the constant attitude error δΨγ
γb under a small-angle

assumption is:
δaγ

βb ≈ δΨγ
γb ×

(
Cγ

b f̃ b
ib

)
= Cγ

b

(
δΨγ

γb × f̃ b
ib

)
(8)
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Velocity and position errors due to an attitude error are:

δvγ
βb ≈ δΨγ

γb ×

Cγ
b

 0
0
−g

t

= Cγ
b

δΨγ
γb ×

 0
0
−g

t

δrγ
βb ≈

1
2 δΨγ

γb ×

Cγ
b

 0
0
−g

t2

= 1
2 Cγ

b

δΨγ
γb ×

 0
0
−g

t2

(9)

An attitude error due to a gyro bias is simply:

δΨb
ib ≈ bgt (10)

Therefore, velocity and position errors due to a gyro bias are:

δvγ
βb ≈

1
2 Cγ

b

bg ×

 0
0
−g

t2

δrγ
βb ≈

1
6 Cγ

b

bg ×

 0
0
−g

t3

(11)

Assuming white noise and denoting the single-sided accelerometer and gyroscope
noise PSDs as Sa and Sg, the SDs of position and velocity errors due to accelerometer noise
for each axis i ∈ x, y, z are [13]:

σ
(

δvγ
βb,i

)
=
√

Sat

σ
(

δrγ
βb,i

)
=
√

1
3 Sat3

(12)

While the SDs of attitude, horizontal position, and horizontal velocity errors due to
gyroscope noise are [13]:

σ
(

δΨγ
βb,i

)
=
√

Sgt

σ
(

δvn
βb,j

)
= g

√
1
3 Sgt3

σ
(

δrγ
βb,j

)
= g

√
1
5 Sgt5

(13)

where i ∈ x, y, z and j ∈ North, East.
In a nutshell, according to [13], short-term position error growth due to different

sources can be summarized as in Table 9.
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Table 9. Short-term velocity and position error growth.

Error Source Velocity Error Position Error Attitude Error

Initial velocity error, δvγ
βb δvγ

βb δvγ
βbt 0

Initial attitude error, δΨγ
γb Cγ

b

δΨγ
γb ×

 0
0
−g

t 1
2 Cγ

b

δΨγ
γb ×

 0
0
−g

t2 δΨγ
γb

Accelerometer bias, Cγ
b ba Cγ

b bat 1
2 Cγ

b bat2 0

Gyro bias, bg 1
2 Cγ

b

bg ×

 0
0
−g

t2 1
6 Cγ

b

bg ×

 0
0
−g

t3 bgt

Accelerometer noise, Sa
√

Sat
√

1
3 Sat3 0

Gyro noise, Sg g
√

1
3 Sgt3 g

√
1
5 Sgt5

√
Sgt

For the five smartphones considered, the following figures show the short-term
straight-line position error SD growth per axis due to the noise and bias values deter-
mined in Section 3, with an initial position error of 10 m, initial velocity error of 0.1 m/s,
and initial attitude error of 0.01 rad. The figure on the left displays the horizontal error,
while the one on the right illustrates the vertical error. In particular, Figure 8 shows the
total error accounting for bias, noise, and errors in the initial condition, while Figure 9
shows the error due to the noise contribution only. We can see that the largest horizontal
position error in Figure 8 is accumulated with the MEMS errors of the One Plus 7 Pro,
while the smallest is with the ones of the Pixel 7 Pro. This is expected, since the MEMS
measurements of the One Plus 7 Pro had the highest accelerometer and gyro bias values,
while the ones of the Pixel 7 Pro had the lowest gyro bias. It is interesting to see in Figure 9
that, if noise was the only source of error, the One Plus would outperform, since it showed
the lowest noise SD values, but as shown in Figure 8, because of the strongest impact of its
large accelerometer and gyro biases, it accumulated the largest position error.

As expected, the gyro biases had the strongest impact on positioning over time. Indeed,
this grows with t3. Accelerometer biases produce an error in position that grows with t2.
Approximately, for 2D navigation, uncompensated gyro and accelerometer biases result
in position errors of 1

6 bggt3 and 1
2 bagt2, respectively [29]. In less than 100 s, a pure inertial

propagation using the inertial measurements with the errors found in Section 3 for all the
considered smartphones would result in an error of larger than 1 km.
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Figure 9. Short-term straight-line position error SD growth per axis for One Plus, iPhone XR, Vivo
X60 Pro, Pixel 7 Pro, and Samsung SM-A536V with perfect initial conditions, zero biases, and only
noise effect.

These results only show the position, velocity, and attitude errors when purely prop-
agating the MEMS measurements (pure inertial propagation). In addition to the quality
of the MEMS measurements, the final navigation performance of each smartphone also
depends on the GNSS measurements; indeed MEMS inertial measurements are usually
corrected with GNSS measurements (these may be may be more accurate for one of the
considered devices and less for another one). The next section investigates the impact of
different MEMS INS measurements with different errors on an INS-GNSS position solution.

4.2. INS-GNSS Positioning

In most cases, the MEMS measurements of a smartphones are fused with GNSS
observations. If at least four GNSS satellites are available, processing their signals and
observations can provide a position solution that can prevent the error drift showed in
Figures 8 and 9 of a pure inertial solution. We evaluated the impact of different MEMS
measurement errors on an INS-GNSS tightly coupled navigation solution for a short drive
of 5 min around our campus in San Jose, California.

We modelled the accelerometer and gyro measurements as follows, according to [13,30],
taking into account the mean value across the x,y,z axes of the error components estimated
in our lab tests and reported in Section 3, for each of the five considered smartphones.

f̃ b
ib = ba + sa f b

ib + wa (14)

ω̃b
ib = bg + sgωb

ib + wg (15)

where f̃ b
ib and ω̃b

ib are the IMU-output specific force and angular rate measurements, f b
ib

and ωb
ib are the true counterparts, ba and bg are their biases, sa and sg are their scale factors,

and wa and wg are their noise, respectively.
GNSS pseudorange ρ and pseudorange rate

.
ρ observations were modelled as in

Equations (16) and (17), respectively, according to [31,32], by assuming a GPS constellation
of 30 satellites and accounting for a signal in space error SD of 1 m, an atmosphere residual
error (after applied correction) SD of 2 m for the ionosphere and 0.2 m for the troposphere, a
code tracking error SD of 1 m, a range rate tracking error SD of 0.02 m/s, an initial receiver
clock offset of 10,000 m, and initial clock drift of 100 m/s.

ρi =

√
(xsati − xu)

2 + (ysati − yu)
2 + (zsati − zu)

2 + b + errorsρ i (16)

.
ρi = (vsati − vu)·ai +

.
b + errors .

ρi
(17)
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In Equation (16),
[
xsati ysati zsati

]T denotes the position vector of the ith GPS satellite

that is transmitting the signal,
[
xu yu zu

]T is the user’s position vector, and b is the
receiver’s clock offset in meters. In Equation (17), vsati and vu are, respectively, the velocity

vector of the ith transmitting GPS satellite and of the user,
.
b represents the clock’s drift

expressed as range-rate bias (in m/s), and ai is the line-of-sight (LOS) vector from the user
to the ith GPS satellite.

We filtered the inertial measurements with the simulated GNSS measurements utiliz-
ing an INS-GNSS tight integration EKF based on [13]. Figure 10 illustrates the functional
architecture of the adopted INS-GNSS integration.
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Table 10 reports the EKF formulation described in [32].

Table 10. Adopted EKF formulation [32].

Quantity Formulation

Predicted state vector x̂−k = x̂+k−1 +
∫ k

k−1 f(x, t) dt
Predicted system noise covariance matrix P−k = Φk−1P+

k−1ΦT
k−1 + Qk−1

Kalman Gain matrix Kk = P−k HT
k
(
HkP−k HT

k + Rk
)−1

Corrected state estimate
x̂+k = x̂−k + Kk

(
zk − h

(
x̂−k
))

= x̂−k + Kkδz−k
Corrected system noise covariance matrix
(Joseph form)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T

+KkRkKT
k

The state vector of the EKF is the following:

x =
[
δϕ δv δr ba bg δρGNSS

c δ
.
ρ

GNSS
c

]T
(18)

where,
δϕ is the attitude error,
δv is the velocity error,
δr is the position error,
ba are the accelerometer biases,
bg are the gyro biases,
δρGNSS

c is the receiver clock offset,
δ

.
ρ

GNSS
c is the receiver clock drift.



Sensors 2023, 23, 7609 17 of 25

The measurement vector is:

z =

[
ρGNSS.
ρGNSS

]
(19)

where ρGNSS and
.
ρGNSS are the pseudoranges and pseudorange rates of the available GPS

satellites, respectively.
The measurement innovation vector includes the differences between the GNSS-

measured pseudorange and pseudorange rates and the corresponding values predicted
by the corrected inertial navigation solution at the same time of validity, by using the
estimated receiver clock offset and drift, and navigation-data-indicated satellite positions
and velocities.

The matrices Φk−1, Qk−1, Rk, Hk were implemented according to Chapter 14 of [13].
We estimated five different trajectories using the same INS-GNSS tight integration

filter, identical GNSS observations, and identical initial conditions. However, we modeled
different sets of inertial measurements based on the MEMS error estimates from the lab
tests in Section 3 for each of the five smartphones. We used a precise navigation system that
fused a carrier-phase GNSS and higher-grade inertial measurements to provide a reference
trajectory (ground truth) for the drive. We then calculated the error of the INS-GNSS-
estimated trajectories using this reference.

Figure 11 shows the motion profile as the North, East, Down (NED) displacements
and velocity, bank, elevation, and heading of the reference trajectory. The motion profile
includes five turns of approximately 90 deg, with a maximum speed of approximately
10 m/s.
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Figure 11. Reference trajectory estimated by the high-precision INS-GNSS navigation system. Figure 11. Reference trajectory estimated by the high-precision INS-GNSS navigation system.

We analyzed two cases: one with a mask angle of 10 deg, corresponding to seven GNSS
satellites available for the whole drive, and one with a mask angle of 45 deg, corresponding
to a reduced GNSS availability for most of the drive.

Figure 12 shows the kml tracks of the five estimated position solutions obtained
with the MEMS measurements of the five considered smartphones, as well as the track
of the reference solution, with a mask angle of 10 deg. In general, from Figure 12, there
are no evident performance differences. For all the considered smartphones, the GNSS
observations from the available seven satellites successfully corrected the inertial solution
and prevented any error drift. Small positioning differences can be recognized when
zooming into Figure 12, as shown in Figure 13. Some more evident differences in the
velocity and especially the attitude estimation errors can be observed by directly comparing
the velocity and attitude error components. Figures 14 and 15 show the lowest velocity
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and attitude estimation errors (obtained with the MEMS errors of the Pixel 7 Pro) and the
largest ones (obtained with the MEMS errors of the One Plus 7 Pro), respectively.
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Figure 12. Kml trajectories of reference IMU in black, iPhone XR in green, One Plus 7 Pro in light
blue, Vivo X60 Pro in purple, Google Pixel 7 Pro in yellow, and Samsung SM-A536V in red, when
assuming a mask angle of 10 deg.
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Figure 14. Position, velocity, and attitude estimation errors for Samsung SM-A536V, with a mask
angle of 10 deg (corresponding to 7 GNSS satellites available for the whole drive).
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Figure 15. Position, velocity, and attitude estimation errors for One Plus 7 Pro, with a mask angle of
10 deg (corresponding to 7 GNSS satellites available for the whole drive).

When increasing the mask angle to 45 deg after initialization, the number of available
GNSS satellites dropped to three for the first 268 s, as illustrated in Figure 16.

Figures 17 and 18 show the same tracks of Figure 12, but obtained with a mask angle of
45 deg. Unlike in Figure 12, where the solutions were obtained with seven available GNSS
satellites, for only three GNSS satellites available we can see a substantial degradation
of the positioning accuracy with an error drift. In this case, the differences between the
performances of the five different smartphones were more evident and relevant. The
position solution estimated for the One Plus 7 Pro was the one that diverged first. The
one based on the MEMS measurement errors of the Pixel 7 Pro appeared to accumulate
the smallest error by the end of the time interval with only three satellites available.
Figures 19 and 20 show the position, velocity, and attitude estimation error components



Sensors 2023, 23, 7609 20 of 25

obtained for these two smartphones. We can see that the INS-GNSS positioning accuracy
in poor GNSS conditions (number of available GNSS satellites less than four) can be
substantially different across the five considered smartphones can change substantially. By
comparing the North, East, and Down position estimation error components of the Pixel
7 Pro (Figure 19) with those of One Plus 7 Pro (Figure 20), we can observe a difference of
about one order of magnitude (e.g., for the Down component, we have errors up to about
320 m for the Pixel 7 Pro and up to about 3200 m for the One Plus 7 Pro).
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Figure 17. Kml trajectories of reference IMU in black, iPhone XR in green, One Plus 7 Pro in light
blue, Vivo X60 Pro in purple, Google Pixel 7 Pro in yellow, and Samsung SM-A536V in red, with a
mask angle of 45 deg.
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Figure 19. Position, velocity, and attitude estimation errors for Pixel 7 Pro. Figure 19. Position, velocity, and attitude estimation errors for Pixel 7 Pro.
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5. Discussion

Sections 4.1 and 4.2 present an analysis of the short-term effects of the main error
sources introduced in Section 2 and determined in Section 3 on the navigation accuracy
in two different scenarios and conditions, with corresponding results. While Section 4.1
examined straight-line motion at a constant speed using INS only, Section 4.2 examined
motion with five turns of approximately 90 degrees and a maximum speed of approximately
10 m/s using both INS and GNSS. From Section 4.1, we can see that pure inertial navigation
using MEMS measurements with a smartphone can be accurate for a very short time (a few
seconds) and quickly becomes highly inaccurate. For all five smartphones, the accumulated
horizontal error on a short-term straight-line propagation was larger than 1 km in just
100 s. We can also see that phones with larger uncompensated biases had a much faster
error growth, leading to significant differences in their performance when navigating in
GNSS-denied environments such as tunnels and parking garages. From Section 4.2, we can
see that, as long as more than four GNSS satellites are available, MEMS measurements from
a phone with larger biases and higher noise did not lead to significantly larger navigation
errors than those with lower biases and lower noise, unlike in the case of the pure inertial
propagation in Section 4.1. However, there was a non-negligible difference in performance
when only three GNSS satellites were available. In this case, the error drifts by more than
3 km within a span of approximately 250 s during a drive that includes three turns, each of
approximately 90 deg.

An important aspect to consider is that the accuracy of the final position solution
provided by a smartphone, in reality, will also strongly depend on the availability and
quality of the GNSS measurements, which here in this paper, were simulated to be identical
for each smartphone, in order to isolate and uniquely evaluate the MEMS impacts on
positioning performance. Indeed, one smartphone may embed MEMS of a higher quality,
but a GNSS receiver with a poorer signal processing performance. In addition, some
smartphones may utilize measurements from additional sensors, such as a magnetometer,
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barometer, motion constraints modelled as virtual measurements, and different estimation
algorithms, which can all affect the achievable navigation performance. Therefore, the
reader should not solely rely on the results presented in this paper to determine the
positioning capabilities of the considered smartphones. How accurate the position solution
of one smartphone was with respect to that of another smartphone presented here may not
reflect the overall performances, which are based on the individual navigation architecture
and on the individual availability and quality of the measurements provided by additional
sensors. Nevertheless, the goal of this work was to quantify the main error components
affecting MEMS INS measurements in a smartphone and analyze their effect on positioning,
rather than determining what smartphone showed the overall best navigation capabilities.

Numerous literature studies have proposed different methods for enhancing the
achievable navigation accuracy when using an INS and or the fusion of an INS with a
GNSS. Zero updates and motion constraints are techniques that can help to improve the ac-
curacy of position tracking when using IMUs in smartphones and other devices [13,33,34].
These techniques can be combined with machine learning methods and with the process-
ing of the measurements of other sensors to further improve the achievable positioning
accuracy [35–37]. In particular, Zero velocity updates (ZVUs) are used to maintain the
alignment and calibration of an INS when the host vehicle or user is stationary during
navigation. This technique is particularly useful in poor GNSS signal environments, such
as urban areas, and can be used for land vehicle navigation. Zero angular rate updates
(ZARUs) are another technique that can be used to improve the accuracy of position
tracking. ZARUs and ZVUs are often performed together, but may also be implemented
independently.

Motion constraints are used to correct and calibrate the errors in an INS by taking
advantage of the limitations in the movement of a vehicle or pedestrian. These constraints
provide additional information to the navigation solution based on the operating context.
They are also known as nonholonomic constraints, which introduce a dependency of the
state estimates on their previous values [13].

Machine learning methods can be used to improve position tracking, e.g., by identify-
ing periods when IMUs are stopped (zero-velocity detection) and estimating the displace-
ment of the sensors during periods of movement. For example, classifiers such as Random
Forest, Support Vector Machines (SVM), and neural networks based on Long Short-Term
Memory (LSTM) layers can be used to identify zero-velocity periods [36,37].

In addition, a higher accuracy and robustness can be achieved by combining data
from additional available embedded sensors, such as magnetometers, barometers, Wi-Fi
systems, and cameras [38,39]. The fusion of data from these sensors can overcome their
individual limitations and provide a more precise and reliable navigation solution.

6. Conclusions

In this paper, we analyzed the main sources of the stochastic and deterministic errors
affecting MEMS sensor measurements in five commercial smartphones. We carried out
specific laboratory tests to determine the standard deviations, bias instabilities, random
walks, rate random walks, biases, and scale factors of both the accelerometers and gyros in
these devices.

Our results in Section 3 showed that the MEMS measurement errors of one smartphone
could be significantly larger than those of another. These differences were large enough to
result in substantially different INS and INS-GNSS navigation performances.

Some of the MEMS sensors may not have been calibrated before being embedded into
their respective smartphones, considering the large biases and scale factors we determined.

In general, the measurements of the MEMS sensors embedded in the smartphones
we considered are not accurate enough for meaningful, long-term pure inertial navigation.
Fusing MEMS measurements with a GNSS prevents drift, as long as at least four GNSS
satellites are available. However, when fusing three GNSS observations only, as expected,
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the solution will be affected by a drifting error, whose severity will mainly depend on the
bias of the inertial measurements.

In our future work, we plan to conduct more specific tests to determine higher-order
errors and evaluate their effect on positioning accuracy, also modelling motion constraints
and additional measurements from other sensors.
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