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Abstract: The emerging physical-layer unclonable attribute-aided authentication (PLUA) schemes
are capable of outperforming traditional isolated approaches, with the advantage of having reliable
fingerprints. However, conventional PLUA methods face new challenges in artificial intelligence
of things (AIoT) applications owing to their limited flexibility. These challenges arise from the
distributed nature of AIoT devices and the involved information, as well as the requirement for short
end-to-end latency. To address these challenges, we propose a security authentication scheme that
utilizes intelligent prediction mechanisms to detect spoofing attack. Our approach is based on a
dynamic authentication method using long short term memory (LSTM), where the edge computing
node observes and predicts the time-varying channel information of access devices to detect clone
nodes. Additionally, we introduce a Savitzky–Golay filter-assisted high order cumulant feature
extraction model (SGF-HOCM) for preprocessing channel information. By utilizing future channel
attributes instead of relying solely on previous channel information, our proposed approach enables
authentication decisions. We have conducted extensive experiments in actual industrial environments
to validate our prediction-based security strategy, which has achieved an accuracy of 97%.

Keywords: artificial intelligence of things; edge computing; security authentication; intrusion detection

1. Introduction

The combination of core technologies such as 5G, artificial intelligence (AI), and the
internet of things (IoT) has opened the door to innovation [1,2]. A new type of IoT structure
known as artificial intelligence of things (AIoT) is coming into play. AIoT has become a hot
area for realizing real-time information acquisition through IoT sensors and performing
intelligent data analysis tasks anywhere along the terminal—edge—cloud continuum.
This forms a smart and enabling ecosystem that brings extensive economic benefits [3–5].
Benefiting from these advantages, AIoT solutions have expanded into many emerging areas,
including commercial surveillance, autonomous driving, smart retail, and drone-based
traffic monitoring [6].

AIoT has the potential to offer various new application services [7,8]. AI-based sys-
tems have been developed to provide real-time monitoring, analysis, and protection [9,10].
However, to effectively utilize AIoT, networks capable of processing large amounts of
information quickly are necessary [11]. Furthermore, the complexity of devices and envi-
ronments exposes IoT networks to malicious attacks that exploit security vulnerabilities [12].
Due to the large number of IoT sensor nodes and the openness of wireless networks, at-
tackers can eavesdrop on communications, modify transmitted messages, and even send
false data [13–15]. For instance, in unsupervised industrial IoT networks [16–18], clone
node attacks can occur, where adversaries hijack control devices and deploy cloned nodes,
leading to significant security risks by collecting sensitive information. Industrial control
centers may struggle to differentiate these fraudulent nodes, potentially causing serious
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safety accidents within the AIoT network. In the aforementioned case, the authentica-
tion of devices utilizing AIoT applications can be severely compromised, highlighting the
increasing concern over the security of AIoT in wireless systems [19].

1.1. Existing Methods and Their Challenges

The AIoT network needs to verify the legitimacy of wireless sensors during the initial
joining process of communication nodes. The increasing complexity of standard encryption
methods has motivated the study of physical layer authentication techniques.Several
security technologies have been proposed for IoT networks [13]. For instance, physical
unclonable functions (PUF) and wireless fingerprinting (WF) have shown promise in
improving authentication in challenging scenarios. Li et al. [20] developed a security
framework based on channel virtual representation in millimeter wave (mmWave) massive
multiple-input and multiple-output (MIMO) 5G networks, aiming to address a one-class
classification problem. Qiu et al. [21] proposed a physical layer authentication framework
in IoT networks that utilized a 2D feature measure space for data enhancement. The
model’s performance was evaluated using a Gaussian mixture model and tested on the
USRP dataset. However, these conventional physical layer approaches are not suitable for
future AIoT networks and can be easily compromised by fraudsters, especially in the era of
quantum computing.

To enhance authentication in next-generation wireless networks, such as a decentral-
ized, dynamic, and heterogeneous AIoT network, researchers have explored the concept of
lightweight flexible group authentication mechanisms for fingerprint identification [22–25].
A group authentication scheme was proposed in [23,24] to detect devices’ identities based
on generated tokens for decentralized edge collaboration. Additionally, a game theory
framework was proposed to extract random characteristics of IoT devices, enabling the
cloud to effectively verify signal reliability [26]. A hybrid privacy-preserving mecha-
nism for the IoT is introduced in [27], employing the federated learning (FL) method to
identify malicious participants. Gao et al. [28,29] conducted research on the impact of
PUF-based deep learning in wireless sensor networks, specifically focusing intelligent
spoofing. They compared the results of several adversarial attacks with deep Q networks.
Wang et al. [30,31] developed a novel CSCB fingerprinting framework to detect spoofing
attacks. Their proposed scheme utilizes sector-level sweep (SLS) trace-based fingerprinting
to enhance effectiveness in mmWave 60-GHz IEEE 802.11 ad networks. Furthermore, the
authors in [32] developed a graph neural network (GNN) to effectively detect message in-
jection in control area networks. Other deep learning (DNN)-based security authentication
methods are also mentioned in the literature [33,34]. However, the authentication ap-
proaches of [25,32] remain inflexible and risk-agnostic in future AIoT network deployments
and have low authentication reliability. These solutions also exhibit low authentication
reliability and fail to address robustness improvements in dynamic environments. Addi-
tionally, the PUF algorithms introduced in [13], do not fully account for changes in the
surrounding environment or the time-varying properties of the channel. In a nutshell,
a new learning-based dynamic authentication solution is highly beneficial for the next
generation of IoT networks. Such a technique should encompass a comprehensive physical
layer security scheme that allows IoT devices to authenticate without sharing keys.

1.2. Contributions

This paper proposes a novel dynamic authentication scheme that leverages an in-
telligent learning model capable of predicting future channel features. In future AIoT
networks, the cloud may be unable to identify all transmission signals from access sensor
nodes due to limited computing resources and network heterogeneity. Therefore, in a
real wireless communication system, the control center must perform dynamic intelligent
authentication for a large number of IoT devices. The main objective of this research is to
present an intelligent framework that integrates new ideas from dynamic feature extraction
and prediction to achieve computationally-efficient authentication of smart nodes.
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The key contributions of this paper can be summarized as follows:

• A Savitzky–Golay filter (SGF) is utilized to preprocess wireless channel estimation,
aiming to improve spectrum smoothness and reduce interference. Then, the relation-
ship between time series and dynamic characteristics of wireless channels is exploited
to extract fingerprints of IoT devices using the high order cumulant model (HOCM).
This SGF-HOCM feature extraction enables the edge computing node to effectively
track the channel model during two adjacent communications;

• An intelligent framework is proposed to enable the receiver to verify the reliabil-
ity of received signals and detect the presence of network fraudsters attempting to
compromise security performance. The proposed deep learning scheme employs
long short-term memory (LSTM) blocks to predict dynamic fluctuations in channel
information elements. This allows the security framework to effectively utilize pre-
dicted channel information for authentication instead of relying solely on previously
estimated data;

• Simulations are conducted using open datasets from the National Institute of Stan-
dards and Technology (NIST). The results demonstrate that the proposed learning
algorithms enhance the authentication performance of the system. This improvement
makes the method highly valuable for time-varying channel prediction, dynamic
feature extraction, and security authentication.

The remainder of this article is organized as follows: the system model and anal-
ysis are introduced in Section 2. The proposed authentication scheme is described in
detail in Section 3, followed by simulation and experimental verification for our dynamic
authentication strategy in Section 4. Finally, the paper concludes in Section 5.

2. System Model

We introduce a clone attack scenario, as shown in Figure 1. The legitimate receiver is
the edge computing node, which intends to communicate with other IoT devices, including
N1, N2, . . ., and N5. An attacker imitates the identity of legitimate transmitter N5 and
creates a clone node that injects illegal messages to the edge computing node. The clone
node participates in data communication with industrial edge computing. The edge
computing node needs to authenticate messages to detect whether they are from legitimate
wireless devices.

Figure 1. High-level architecture and system model. N1, N2, . . ., and N5 are all legitimate IoT devices.
The attacker replicated the clone node based on a legitimate node, such as N5.
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The extraction of the physical layer channel response is performed by the legitimate
receiver. According to the wireless channel model [35,36], the expression of the received
signal can be written as

y(t) = h(t) ∗ x(t) + n(t) (1)

where t is the time slot, h denotes the channel impulse response, x is a pilot signal known
to the transmitter and receiver for estimating channel information, and n(t) is the additive
white Gaussian noise with variance σ2. The corresponding frequency-domain representa-
tion obtained through Fourier transform is

Y( fk, t) = H( fk, t)X( fk) + N( fk, t) (2)

where Y, H, X, and N represents y, h, x and n, respectively, in frequency domain. fk is the
frequency of the kth subcarrier. Then, the wireless channel estimation can be given by

Ĥ( fk, t) =
Y( fk, t)
X( fk)

= H( fk, t) + N̂( fk, t) (3)

where

N̂( fk, t) =
N( fk, t)
X( fk)

. (4)

From the wireless channel model in (3), we have the channel estimations of different
receivers as

Ĥa( fk, t) = Ha( fk, t) + N̂a( fk, t) (5)

Ĥc( fk, t) = Hc( fk, t) + N̂c( fk, t). (6)

where N̂a( fk, t) and N̂c( fk, t) in (5) and (6) are the channel estimation errors, and a and c,
respectively, denote legitimate node A and clone node C. Different positions of the wireless
device indicate different channel characteristics. Therefore, the channel estimations of the
legitimate node are supposed to be different from that of the cloned node, that is

Ĥa( fk, t) 6= Ĥc( fk, t). (7)

We first analyze the traditional problem of binary hypothesis testing. The authentica-
tion can be formulated as {

H0 : Ĥi(t + 1)→ Ĥa(t),
H1 : Ĥi(t + 1)→ Ĥc(t),

(8)

whereH0 indicates that the future estimation Ĥi(t + 1) is an authentic packet from legiti-
mate device A, and H1 means that Ĥi(t + 1) comes from different wireless transmission
terminals, such as a cloned node.

Existing methods compare the channel measurements received at adjacent times
within the channel coherence time, and then determine whether the variables are from a
legitimate sender or a malicious attacker, just like the authentication problem in (8). We
have adopted an authentication classification function based on machine learning, without
using the attacker’s channel information, which can be described as{

H0 : f (Ĥa(t), Ĥi(t + 1)) < η,
H1 : f (Ĥa(t), Ĥi(t + 1)) ≥ η,

(9)

where f (·) is a function that quantifies the difference between the previous value Ĥa(t)
and future estimation Ĥi(t + 1), η denotes an attack threshold. In this paper, we directly
use the estimated channel matrices Ĥ, and then consider a physical layer authentication
strategy to detect malicious attacks. There are several algorithms to obtain wireless channel
estimations [37–41].
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3. Intelligent Prediction-Based Authentication Strategy

The proposed authentication strategy based on intelligent prediction consists of four
components, as shown in Figure 2. The security model uses physical layer attributes to
prevent cloning attacks. The wireless characteristics are learned using the SGF-HOCM
method. This derives time-varying features from preprocessed data using Savitzky–Golay
filtering and HOCM feature extraction. Using the extracted features as input, two-layer
LSTM network is trained to predict time-varying channel parameters. Finally, the predicted
values are compared with the actual values to identify different IoT nodes.

Figure 2. The proposed model of security authentication.

3.1. Channel Information Processing Based on SGF-HOCM

The channel measurement value is vulnerable to the interference of channel estimation
error and environmental noise. In view of this analysis, it can be concluded that Gaussian
noise and estimation error in (1) and (3) are the main factors to impair the authentication
model. These urge us to explore an effective authentication scheme based on time-varying
channel prediction to improve the robustness and reliability of the authenticator.

SGF is widely used in data stream smoothing and denoising, and is a filtering method
based on local polynomial least square fitting in the time domain. The biggest advantage
of SGF is that it can ensure that the shape and width of the signal remain unchanged while
filtering out noise. The filtering effect of SGF varies with the selected window width, which
can meet the needs of various occasions. The mathematical expression of SGF is formulated
as follows:

hk,smooth =
1

2w + 1

+w

∑
i=−w

hk+i (10)

where w is the length of the window and k denotes the order of the polynominal. The
smaller the value of w, the closer the curve is to the actual curve. The k value is also
important for smoothing curves. The larger the k value, the closer the curve is to the
real curve, whereas the smaller the k value, the smoother the curve is. In addition, when
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the value of k is large, due to the limitation of the window length, fitting may encounter
problems, such as high-frequency curves becoming straight lines.

Due to the time-varying nature of wireless links and the difficulty of tracking changes,
the existing methods have limited authentication capabilities for intelligent access terminals.
One of the main advantages of HOCM is that it contains both amplitude and phase infor-
mation [42]. Therefore, HOCM is very likely to be a matrix in the authentication scheme,
providing a robust feature extraction method. As previously mentioned, a key technology
for enabling intelligent prediction models for clone node detection in wireless networks is
to extract key features. Assuming that {x′1, x′2, · · · , x′d} is the channel estimations after SGF,
their corresponding dth-order cumulant can be defined as the coefficient of {v1, v2, · · · , vd}
in the Taylor series expansion of the cumulant-generating function

ψ(v) = InE{exp(jvx′)} (11)

where E[·] is a mathematical expectation operator, representing the statistics average. The
dth-order cumulant of x′ is defined as

cum(x′1, x′2, · · · , x′d) = (−j)d[∂/∂v1∂v2 · · · ∂vd]ψ(v)|v=0. (12)

Because the mathematical expressions of the third order and above are very compli-
cated, zero-average processing is used for the channel estimates in the practical application
of the security authentication, to simplify the high-order cumulant. When the random
variable {x′(t)} is a zero mean, the dth-order cumulant is defined as

Ckk = (∆1, ∆2, · · · , ∆d−1)

= cum(x′(t), x′(t + ∆1), · · · , x′(t + ∆d−1))
(13)

where ∆1, ∆2, · · · , ∆d−1 are the time delays.
According to (12) and (13), the mathematical expressions of the corresponding second

moment, third moment and fourth moment of x′(t) are then formulated as follows [42]:

C2x′(∆) = E{x′(t)x′(t + ∆)} (14)

C3x′(∆1, ∆2) = E{x′(t)x′(t + ∆1)x′(t + ∆2)} (15)

C4x′(∆1, ∆2, ∆3) =E{x′(t)x′(t + ∆1)x′(t + ∆2)x′(t + ∆3)}
− C2x′(∆1)C2x′(∆2 − ∆3)− C2x′(∆2)C2x′(∆3 − ∆1)

− C2x′(∆3)C2x′(∆1 − ∆2)

(16)

In this paper, the SGF-HOCM analysis method is introduced for signal processing of
wireless channel information.

3.2. Channel Prediction Based on Two-Layer LSTM

The channel estimations processed by SGF-HOCM method form a sequence, which
serves as the input of the two-layer LSTM network. Let the previously SGF-HOCM
preprocessed finite segment be the training dataset of two-layer LSTM model, shown as
Htrain = [h′′p , h′′p−1, h′′p−1, · · · , h′′1 ], where p is the size of LSTM training data. The original
data of the testing sample is shown as Htest = [h′′p+1, h′′p+2, h′′p+3, · · · , h′′p+q], where q denotes
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the size of LSTM testing data. Specifically, we consider a model with ten inputs to predict
channel vector in the future, as h̃p+1. The prediction procedure can be expressed as

h̃p+1 = L(h′′p , h′′p−1, h′′p−2, · · · , h′′p−9),

h̃p+2 = L(h′′p+1, h′′p , h′′p−1, · · · , h′′p−8),

h̃p+3 = L(h′′p+2, h′′p+1, h′′p , · · · , h′′p−7),

...

h̃p+q = L(h′′p+q−1, h′′p+q−2, h′′p+q−3, · · · , h′′p+q−10)

(17)

where L(·) is the prediction function of LSTM model. In our two-layer LSTM network, the
predictor always uses the original data in the training step. For instance, we predict h̃p+q+1
based on the same function, whereas the inputs are updated to h′′p+q, h′′p+q−1, h′′p+q−2, · · · ,
h′′p+q−9. The timing schedule for training and prediction is shown in Figure 3.

Figure 3. The timing schedule for training and prediction.

One of the attractions of a predictor is that it can use previous channel information
to predict future channel attributes (i.e., H̃a(t + 1) = [h̃1, h̃2, · · · , h̃L]) of legitimate node.
Mathematically, the parameters of two-layer LSTM can be formulated as [43,44]

f t = σ(W f · [ht−1, xt] + b f ) (18)

ft = σ(W f x f + R f ht−1 + b f ) (19)

it = σ(Wixt + Riht−1 + bi) (20)

ot = σ(Woxt + Roht−1 + bo) (21)

c̃t = tanh(Wcxt + Rcht−1 + bc) (22)

ct = ft ∗ ct−1 + it ∗ c̃t (23)
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ht = ot ∗ tanh ct (24)

where f t = 0 represents complete blocking of information, f t = 1 denotes passing informa-
tion, and the notations are defined in Table 1.

Table 1. Parameters of two-layer LSTM predictor.

Parameters Representations

σ Sigmoid function
tanh Hyperbolic tangent function
it Input gate
ft Forgot gate
ot Output gate
ct State of current memory cell at time t
c̃t Candidate value for state at time t
ht Output value
xt Input value
Wi, w f , wo, wc Weights
Ri, R f , Ro, Rc Weights
bi, b f , bo, bc Bias vectors of three gates
∗ Element-wise multiplication

In this paper, the mean squared error (MSE) is the loss function in the predictor
network. MSE is popular as a measure because it is sensitive to outliers and provides
greater penalties [43]. MSE can be formulated as

MSE =
1
L

L

∑
i=1

ei (25)

ei =
1

Q1Q2
∑

Q1,Q2

(H′′Q1,Q2
− H̃Q1,Q2)

2 (26)

where L represents the number of channel samples, ei is the Q1 ×Q2 element-wise mean
squared error, and H′′ and H̃ denote the real measurement after SGF-HOCM processing
and the predicted value of LSTM network, respectively. Wireless channel prediction is
achieved by first SGF-HOCM processing an estimation sequence Ĥa, and then forecasting
the future channel value H̃a(t + 1).

Through the above two-layer LSTM predictor, we aim to track time-variant channel
values. The parameters of the prediction network model are summarized in Table 2. In
other words, we can directly use the observed channel estimation and the prediction values
to perform the authentication in Section 3.3.

Table 2. Model parameters.

Parameters Value

LSTM 2
Epoch 25
Batch size 32
Time step 10
Unit 50
Activation function Relu
Optimizer adam
Loss function mean_squared_error
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3.3. Prediction-Based Authentication Model

Once we obtain the predicted value H̃a(t + 1) at time t + 1, we will perform physical
layer authentication. The proposed scheme constructs the authentication process based on
the predicted channel information of legitimate nodes. The authentication problem in (9) is
reconstructed as {

H0 : MSE(H̃a(t + 1), H′′i (t + 1)) < η,
H1 : MSE(H̃a(t + 1), H′′i (t + 1)) ≥ η,

(27)

where H̃a(t + 1) represents the predicted future characteristics of legitimate node A, and
H′′i (t + 1) is the real observation. Since the wireless channel attributes are dynamic, we
compare the predicted channel features with the real observations of time t + 1, instead of
comparing the values (i.e., H′′a (t) and H′′i (t + 1)) of two adjacent times to make authenti-
cation decisions. The MSE between the predicted value and the actual value is used as a
metric. According to the information in (27), we obtain the acceptance region of legitimate
node A. If the MSE between the predicted channel characteristics and the observed samples
is greater than the threshold η, the transmission should be denied.

To evaluate the prediction and authentication results, two performance metrics (i.e., R2

and Loss value) are used to measure the accuracy of the dynamic authentication model.
For a prediction-based authenticator, higher R2 means better authentication capability. For
instance, R2 = 1 indicates that the predicted data exactly matches the actual data. The
predictor we trained perfectly predicts all the real time-varying information. If R2 = 0,
that is, each predicted value of the sample is equal to the mean value, then the trained
authentication model has poor accuracy. The formula of R2 can be expressed as

R2 = 1− MSE
Var

(28)

where Var is the variance and MSE is the mean squared error in (25). To sum up, we intro-
duce the SGF-HOCM processing method and the authenticator based on LSTM prediction.
In the dynamic learning model, we test a variety of combinations of processing steps to find
the best-performing authenticator with LSTM prediction method. The results of dynamic
authentication scheme are reported in the next section.

4. Results and Discussions
4.1. Measurement Setup

In this section, we use the channel information dataset provided by NIST in the
automotive factory to simulate malicious attack scenarios. As shown in Figure 4, a typical
multi-acre transmission assembly factory of the automotive industry is selected for radio
frequency propagation measurement [45]. The floor size of the automotive factory is more
than 400 m × 400 m. The ceiling is about 12 m high. In this scenario, a channel sounder
system is used to take the measurements at a continuum of points throughout the facility
by fixing the transmitter and moving the receiver at a constant rate. The analysis is based
on channel impulse response data collected using equipment developed by NIST. The NIST
channel sounder measurement system is a positive-negative sequence correlation system,
which consists of a single sender with a power amplifier and a receiver [45]. The transmitter
continuously transmits a sequence of positive–negative digital symbols modulated by
a binary phased-shift keying signal, and is up-converted to a radio frequency carrier
frequency. After passing through the power amplifier, the signal traverses the automotive
factory and is detected by the channel sounder receiver. The statistics of channel estimates
include frequency, expected value of the path loss exponent, delay, delay spread, and
K-factor. The frequency is 5.4 GHz, the expected path loss exponent is 3.6, the delay is
644.4 ns, the delay spread is 177.4 ns, and the K-factor is 4.7 dB. The dataset splits into two
sets: training (60,000 packets) and testing (2000 packets). From the training set, 10% of
randomly selected samples are put aside and used for validation.
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Figure 4. Simulation experiment under automotive assembly using NIST datasets. Fix the transmitter
while moving the receiver at a constant rate to measure at continuous points throughout the entire facility.

4.2. Performance of Feature Extraction

In order to achieve denoising and feature extraction, we propose the SGF-HOCM
method to process the channel estimates. This section first determines the optimal order
cumulant to obtain the SGF-HOCM processing process. In the following section, we
evaluate the effectiveness of using the proposed HOC3-based approach. The previously
estimated channel data is divided into training and testing, in which 58,000 training samples
are used for training the predictor, while 2000 testing samples are used for verification.
The features extracted from different order domains are demonstrated in Figures 5–7.
The simulation results certify the effectiveness of our HOC3 strategy. Because the third-
order cumulant of channel estimation is superior to the second-order and fourth-order
cumulants, the third-order cumulant is selected. The HOC3 preprocessing signal matches
the measurement very well. The advantage of the HOC3 method in denoising is that it
shows more promising performance, while the improvement in HOC2 and HOC4 methods
is limited. We can observe that the SGF-HOCM step can extract useful features and
minimize the impact of noise. According to the above description, we can reasonably select
an optimal order cumulant for subsequent prediction during feature extraction process
of time-varying channels. We utilize SGF-HOCM to preprocess the estimated values and
provide training sample for the prediction model.

4.3. Comparison of Prediction Performance

As shown in Figures 8 and 9, to achieve accurate prediction of wireless channel
information, two different preprocessing methods are compared. From Figures 8 and 9, we
can see that, the predicted future values based on our proposed SGF-HOCM-assisted LSTM
scheme match the real channel estimates very well. As described above, the denoising
and dynamic feature extraction of channel sequences are important factors affecting the
accuracy of the predictor. The performance of the prediction-based authenticator depends
on the features of channel estimation, and the LSTM learning model could perform better
with high complexity and strong time-varying series. Therefore, we introduced the SGF-
HOCM processing method in dynamic authentication strategies to ensure the superiority
of denoising.
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Figure 5. Extracted channel features using the different HOC2 methods.

Figure 6. Extracted channel features using the different HOC3 methods.
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Figure 7. Extracted channel features using the different HOC4 methods.

Figure 8. No preprocessing method is used for channel information prediction based on two-layer
LSTM scheme.
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Figure 9. SGF-HOCM method is used for channel information prediction based on two-layer
LSTM scheme.

4.4. Comparison of R2 Performance

We compared the security performance of the predictor where R2 has been applied
for the authentication function. Figure 10 shows the R2 curve of dynamic forecasting
model. R2 > 0.8 shows the forecasting performance, which is desirable for malicious node
identification in wireless networks. We further discussed the potential reasons for using
forth order polynominal in SGF-HOCM-assisted LSTM scheme.

Figure 10. Performance of R2 under different SGF parameters.
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4.5. Training Performance

To capture the training performance of our proposed SGF-HOCM combined with
LSTM approach, we provide the loss value of the network, as shown in Figure 11. We
considered a two-layer LSTM network on the cloud, which is very useful in channel
information prediction. From Figure 10, we know that k = 4 results in higher authentication
performance. We can see from Figure 11 that the loss values of LSTM is approximately
zero after the number of iterations is greater than 15. Note that when the proposed scheme
can accurately predict future channel information, the verifier can compare the predicted
values with the next actual observation results to achieve malicious attacker detection.

Figure 11. Training performance of the proposed SGF-HOCM-assisted LSTM scheme.

4.6. Authentication Performance

In addition, Figure 12 shows the impact of two important parameters in SGF on R2,
namely, the length of the window w and a kth order polynominal. From the table, we
observe that when k = 4, R2 achieves the best performance, which is R2 = 0.97. The
results represented by the green line have achieved high predictive performance. The SGF-
HOCM-assisted LSTM scheme does not require key transmission, which avoids problems
with possible key leakage. In addition, we note that increasing the number of layer and
window length increases both accuracy and computational time overhead. Therefore,
as shown in Figure 12, the proposed method uses a two-layer LSTM network with a
window length of 25 to balance computation time and authentication performance. More
importantly, physical layer security authentication does not depend on computational
complexity and can accurately quantify security. By contrast, the key-based cryptography
approach requires more time and complexity, which is problematic for sensor devices.
Thus, given the potential of LSTM for PLUA in AIoT, dynamic authentication mechanisms
have considerable interest in future IoT systems.
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Figure 12. R2 authentication performance of the proposed scheme.

We demonstrate the superiority of our proposed SFG-HOCM-assisted LSTM scheme
by comparing with the traditional RNN scheme, which only exploited HOC to model the
time-varying channel. Figure 13 shows a clear comparison of accuracy between LSTM
method and RNN approach under different signal-to-noise ratios. Our SGF-HOCM-assisted
LSTM scheme shows a more promising performance due to the superiority of LSTM in pre-
dicting future channel characteristics, and it has a significant improvement when exploiting
SGF-HOCM preprocessing, while the traditional method only shows limited promotion.

Figure 13. Authentication accuracy comparison between proposed LSTM scheme and the traditional
RNN scheme.

5. Conclusions

In this work, we have developed a dynamic authentication mechanism to address the
security challenges in next-generation AIoT networks. We adopted SGF-HOCM processing
method to extract time-varying characteristics based on physical layer attributes. We
used a two-layer LSTM algorithm to predict future channel vectors based on existing
channel information, and compared them with observed channel variations extracted from
the transmitter to perform security detection. We proposed an intelligent authentication
scheme, which only needs the channel information of legitimate nodes, and avoids using
the channel model of spoofing devices. Finally, we conducted a simulation using the dataset
from the National Institute of Standards and Technology, demonstrating the advantages of
the proposed dynamic authentication scheme.
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This channel prediction-based security authentication scheme was shown to achieve a
very high accuracy compared to other methods. Although the maximum accuracy is high,
R2 = 0.97, there is room for future work. One is in the area of preprocessing engineering
and feature selection with the goal of creating better prediction-based models. Although
the SGF-HOCM feature vector that is based on Savitzky–Golay filter and HOCM method
have been used successfully, other attribute characteristics are possible, and the use of
more than two filters could be considered. The training efficiency of LSTM is much lower
than that of traditional RNN under the same computational power. LSTM alleviates the
long-term dependency problem of RNN, but for longer sequence data, it requires higher
computational complexity and longer training time. Another important study would be to
implement this security algorithm in a real AIoT system in order to evaluate its performance
under real conditions and in different scenarios.
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