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Abstract: Background: The COVID-19 pandemic has accelerated the demand for utilising telehealth
as a major mode of healthcare delivery, with increasing interest in the use of tele-platforms for remote
patient assessment. In this context, the use of smartphone technology to measure squat performance
in people with and without femoroacetabular impingement (FAI) syndrome has not been reported
yet. We developed a novel smartphone application, the TelePhysio app, which allows the clinician to
remotely connect to the patient’s device and measure their squat performance in real time using the
smartphone inertial sensors. The aim of this study was to investigate the association and test–retest
reliability of the TelePhysio app in measuring postural sway performance during a double-leg (DLS)
and single-leg (SLS) squat task. In addition, the study investigated the ability of TelePhysio to detect
differences in DLS and SLS performance between people with FAI and without hip pain. Methods: A
total of 30 healthy (nfemales = 12) young adults and 10 adults (nfemales = 2) with diagnosed FAI
syndrome participated in the study. Healthy participants performed DLS and SLS on force plates
in our laboratory, and remotely in their homes using the TelePhysio smartphone application. Sway
measurements were compared using the centre of pressure (CoP) and smartphone inertial sensor data.
A total of 10 participants with FAI (nfemales = 2) performed the squat assessments remotely. Four
sway measurements in each axis (x, y, and z) were computed from the TelePhysio inertial sensors:
(1) average acceleration magnitude from the mean (aam), (2) root-mean-square acceleration (rms),
(3) range acceleration (r), and (4) approximate entropy (apen), with lower values indicating that
the movement is more regular, repetitive, and predictable. Differences in TelePhysio squat sway
data were compared between DLS and SLS, and between healthy and FAI adults, using analysis of
variance with significance set at 0.05. Results: The TelePhysio aam measurements on the x- and y-axes
had significant large correlations with the CoP measurements (r = 0.56 and r = 0.71, respectively).
The TelePhysio aam measurements demonstrated moderate to substantial between-session reliability
values of 0.73 (95% CI 0.62–0.81), 0.85 (95% CI 0.79–0.91), and 0.73 (95% CI 0.62–0.82) for aamx, aamy,
and aamz, respectively. The DLS of the FAI participants showed significantly lower aam and apen
values in the medio-lateral direction compared to the healthy DLS, healthy SLS, and FAI SLS groups
(aam = 0.13, 0.19, 0.29, and 0.29, respectively; and apen = 0.33, 0.45, 0.52, and 0.48, respectively). In
the anterior–posterior direction, healthy DLS showed significantly greater aam values compared to
the healthy SLS, FAI DLS, and FAI SLS groups (1.26, 0.61, 0.68, and 0.35, respectively). Conclusions:
The TelePhysio app is a valid and reliable method of measuring postural control during DLS and SLS
tasks. The application is capable of distinguishing performance levels between DLS and SLS tasks,
and between healthy and FAI young adults. The DLS task is sufficient to distinguish the level of
performance between healthy and FAI adults. This study validates the use of smartphone technology
as a tele-assessment clinical tool for remote squat assessment.
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1. Introduction

A squat is a functional and dynamic movement that is used in clinical and sport-
specific settings to assess leg extension strength [1], range of motion [1], and movement
quality [2]. The double-leg squat (DLS) is performed when both feet are hip-width and
on the ground while the single-leg squat (SLS) is performed when standing on one foot
pointed straight forward and the other, non-weight-bearing leg raised in the air above
ground. Healthcare professionals use squats in the clinical assessment of common hip
musculoskeletal conditions, as it is estimated that 10% to 20% of athletic or recreational
childhood injuries are hip-related, and 6% of adult sports injuries occur at the hip [3,4].
Furthermore, lower extremity musculoskeletal conditions, including femoroacetabular
impingement (FAI) syndrome and hip arthroscopy, have been shown to affect the quality
of the squat movement [5].

Balance performance during squats is one of the outcome measures used to iden-
tify lower extremity impairment [6–9]. The anterior–posterior (AP) and medio-lateral
(ML) displacement and velocity of the centre of pressure (CoP) measured with a force
plate have been used as outcome measures to identify balance impairment during squats.
For example, greater CoP displacement and velocities in both AP and ML directions
have been reported in hip chondropathy patients compared to healthy controls [8]. Simi-
larly, single-leg squat performance in people with hypertonic-saline-injection-induced hip
pain, showed a significant decrease in ML range of 13% (p = 0.03) and AP range of 21%
(p = 0.01), and a decrease in AP velocity of 13% (p = 0.03) when compared with no pain
measures. Unfortunately, force plates are often unavailable in clinical settings because
they are expensive, cumbersome, and require a specific measurement setup. Moreover,
the exponential increase in digitalised health services during the COVID-19 pandemic [10]
further compounded the difficulties of using a force plate as a tele-assessment tool for
measuring squat performance.

To address the paucity of remote tele-assessment solutions that quantify squat perfor-
mance, we designed the TelePhysio network platform—a web-based repository system
coupled with the motion sensor data captured from an inertial measuring unit (IMU) in
a smartphone. TelePhysio allows the clinician to connect remotely to the patient’s smart-
phone sensors from their personal web browser and collect live patient motion data while
instructing the patient to perform the specific functional task. The TelePhysio platform has
already proven effective in measuring the hip range of motion [11]. The use of a portable
smartphone to measure standing balance is not new [12,13], but the capability to measure
dynamic squat performance remotely through tele-assessment, to our knowledge, has not
been investigated previously.

Including TelePhysio in clinical care programs for patients presents an opportunity
to significantly impact accessibility and equity, reducing the need for clinicians and pa-
tients to seek specialised healthcare by travelling to metropolitan areas for their ongoing
management. COVID-19 has highlighted the need for a workforce with a strong digital
health capability that delivers higher quality care and positive consumer experiences to
engage patients as empowered participants in their own care. Telehealth platforms, such as
TelePhysio, with validated and meaningful measures of outcomes inclusive of the squat
test, may enable care outside of hospital settings, in the community or at home, improve
operational efficiencies, and enhance clinical workflows and the automation of repetitive
tasks, thus improving the ability to monitor, diagnose and manage patients. Research
has shown that patient perspectives on telemedicine during the COVID-19 pandemic are
positive and favourable due to factors such as convenience, lack of travel, scheduling
ease, and time saved [14]. With improvements in communication technology, such as the
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development of 5G, patient rehabilitation and functional performance outside the hospitals
and clinics becomes more viable, enabling people with physical and functional disorders to
access specialists [15]. This system may also improve the flow and sharing of information
throughout the health system. However, care must be taken with personal information
data as network transfer is vulnerable to cyber-attacks [16].

The aims of this study were (1) to evaluate the association of TelePhysio sway measure-
ments with force plate CoP measures of postural sway during the DLS and SLS tasks, (2) to
examine the between-sessions reliability of TelePhysio sway measurements for the evalua-
tion of DLS and SLS performance, and (3) to explore the use of TelePhysio for detecting
differences in DLS and SLS sway between healthy and FAI adults.

2. Materials and Methods
2.1. Participants

A total of 30 healthy adults (nfemales = 12) and 10 FAI participants (nfemales = 2) were
recruited for the study. All participants were English-speaking and aged 19–53 years.
The inclusion criteria for participants were as follows: no history of hip pain/injury or
surgery, no history of lower limb injuries over the last three months, and a negative Flexion-
Adduction-Internal Rotation (FADIR) test. The FAI participants in this study had hip
pain with combined hip flexion, adduction, and internal rotation (FADIR test); a range
of motion restriction and pain with hip internal rotation at 90 degrees of hip flexion;
and had diagnostic imaging (X-ray) that indicated a CAM lesion (alpha angle ≥ 60◦).
Ethical approval was granted by the Swinburne University Human Ethics Committee (ref:
20215539-8106). All participants provided signed written informed consent prior to testing.

2.2. Instrumentation

Double- and single-leg squats were measured using the smartphone TelePhysio app.
TelePhysio is our original tele-assessment platform that uses smartphone motion sensors to
allow clinicians to measure and assess the real-time functional performance of their patients
in a remote and objective way (Figure 1). At the beginning of the assessment, the examiner
remotely connects using their web browser to the participant’s TelePhysio app, installed
on the participant’s smartphone that is inserted in a pouch strapped around their waist,
positioned at their lower back (Figure 1). All participants used their personal smartphones;
thus, the smartphones were not of any specific brand and included both iPhone (n = 25;
models 8, X, SE, 11, 12, and 13) and Android (n = 15; models Samsung Galaxy, Huawei
P10, and Google pixel) models. At the end of the assessment, both the examiner and the
participant were able to log into the web-based application and review the outcomes. A
force plate (600 × 400 × 100 mm, 1000 Hz, Kistler Group, Switzerland) was used as the
validation gold standard instrument to assess the association between the TelePhysio sensor
output and force plate CoP output. A validation trial was performed at our biomechanics
laboratory only for the healthy participants during the first testing session.

2.3. Protocol

Healthy participants were assessed on two occasions, with an average of 6 days (max
12 days) between sessions. The first session was conducted face-to-face in the biomechanics
laboratory and the second session was conducted remotely at the participant’s home. The
duration of the laboratory session was 45 min, and the at-home session was 30 min long. In
both sessions, the participant turned on the TelePhysio app and strapped the smartphone
around their waist positioned at the lower back. The examiner then connected remotely
to the TelePhysio app from their personal web browser and collected motion data whilst
the participant performed the DBL and SLS tasks. Once the specific task was completed,
the examiner uploaded the smartphone sensor’s data to the web-based cloud application
for later processing and analysis. During the assessment, voice communication between
the examiner and participant was maintained via Zoom (Zoom Video Communications,
Inc., San Jose, CA, USA). During the first testing session in the biomechanics laboratory, the
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participant performed the squat standing on the force plate sampled at 1000 Hz to measure
the AP and ML CoP displacement. For FAI participants, the testing session was performed
remotely at the participant’s home.
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Figure 1. The TelePhysio app that is installed on the participant’s smartphone (A1) and the web-based
interface (A2) that is controlled from the clinician’s web browser. Double-leg (B1,B2) and single-leg
(C1,C2) squat tasks. Smartphone inside the black pouch strapped around the waist at the lower back.
Arrows indicate the smartphone accelerometer axes.
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Both DLS and SLS were performed barefoot at self-selected speeds to be more rep-
resentative of movement evaluations in the clinical setting. During the DLS, participants
raised their arms to shoulder height, with their fingertips pointing forward and palms
facing the floor (see Figure 1B1); for the SLS, participants were asked to keep their arms
across their chests (see Figure 1C1). They were then instructed to “squat as low as possible
while keeping your feet/foot firmly in contact with the floor at all times”. Participants
performed 3 squats to maximal depth in each repetition. A successful trial was a squat
where the participant’s feet remained in contact with the ground throughout the movement.
There were 2 min breaks between each squat task.

2.4. Data Analysis

All accelerometer and gyroscope signals from the smartphone were processed using
R-Statistics [17]. Outcome measurements from TelePhysio included: (1) average accelera-
tion magnitude from the mean (aam), (2) root-mean-square acceleration (rms), (3) range
acceleration (r) as the distance between the maximum and minimum accelerometry signal,
and (4) approximate entropy (apen), with lower values indicating that the movement is
more regular, repetitive, and predictable. All measurements were calculated for the x-, y-,
and z-axes (sagittal, transverse, and frontal axes, respectively) as illustrated in Figure 1. The
acceleration signal processing and calculation of the aam, rms, and r measurements were
performed as described previously [18]. Briefly, the gravity component was eliminated by
subtracting the acceleration signal mean, followed by a zero-phase Butterworth high-pass
filter at 0.3 Hz, and then a third-order Savitzky–Golay smoothing filter with frames of
41 points [18]. Approximate entropy was calculated to quantify the amount of regular-
ity and unpredictability of fluctuations, as described earlier for dynamic tasks such as
walking [19].

The x-axis angular velocity from the smartphone gyroscope signal was used to identify
the beginning and end of each squat repetition. Similar to Beyea et al.’s [20] study, the
angular velocity was processed by first filtering with a Butterworth low-pass filter (10 Hz,
4th order, and zero-lag), followed by rectifying the signal and normalizing to its maximum
peak value. Figure 2 shows the identification of a sample 3-repetition double-leg squat
performance. The first angular velocity peak represents descending and the second peak
ascending; thus, two adjunct peaks represent one squat repetition.

The CoP data from the force plate were processed and calculated as described previ-
ously [21]. Signals were low-pass filtered at 20 Hz, using a 4th order Butterworth filter, to
calculate the CoP range (mm), root mean square (mm), and velocity (mm s−1) in the AP
and ML directions.

2.5. Statistical Analysis

The association between CoP measurements derived from the force plate and the
measurements derived from the smartphone TelePhysio app was assessed with Spearman
rank-order correlations for all DLS and SLS conditions. Correlation coefficients of 0.1 were
considered small, 0.3 were considered moderate, and 0.5 were considered large [22]. To
explore between-sessions reliability, the intraclass correlation coefficient (ICC) was used.
The interpretation of each ICC (2,1) adhered to the original definitions by Landis and
Koch [23], as follows: 0.00 to 0.20, slight correlation; 0.21 to 0.40, fair correlation; 0.41 to 0.60,
moderate correlation; 0.61 to 0.80, substantial correlation; and 0.81 to 1.00, almost perfect
correlation. The SEM was calculated for each measurement modality as an additional
measure of absolute reliability. This was calculated as described by Atkinson and Nevill [24],
as SEM = SD

√
1− ICC, where SD is the standard deviation. Lower SEM values indicate

better absolute reliability. In addition, the minimal detectable change (MDC) was calculated
to investigate the measurement error, in order to show the range within which the amount
of change in the two measured values obtained by repeated measurements is due to
measurement error. Changes greater than the MDC are judged to be “true changes”.
The MDC was calculated using the following formula: MDC = 1.96

√
2SEM. For all
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analyses, the means of the measurements were compared using a one-way analysis of
variance (ANOVA) with a Benjamini and Hochberg adjusted correction [25] as a post hoc
analysis, if there was statistical significance at a 0.05 level. The Benjamini and Hochberg
adjustment controls the false discovery rate—the expected proportion of false discoveries
amongst the rejected hypotheses. The false discovery rate is a less stringent condition
than the family-wise error rate, so these methods are more powerful than the others.
All analyses were performed using the free software Statistical Package R version 4.2.1
(https://www.r-project.org/ (accessed on July 2022)) with the significance level set at 0.05.
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Figure 2. (A) Raw acceleration in x, y, and z direction (accx, accy, and accz, respectively, and (B)
identification of squat repetition using angular velocity. Angular velocity was processed by first
filtering with a Butterworth lowpass filter (10 Hz, 4th order, and zerolag), followed by rectifying
the signal and normalizing it to its maximum peak value. The first red vertical line represents the
beginning of the squat by lowering the body. The second red vertical line represents raising the body.
The last vertical line represents the end of the 3 squat repetitions.
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3. Results

The 30 healthy participants’ mean age, weight, and height were 29.00 ± 4.84 years
(22–39 years), 73.39 ± 12.32 kg (45–95 kg), and 1.71 ± 0.09 m (1.49–1.91 m), respectively.
Only one healthy participant reported their left leg as the dominant kicking leg. The 10
FAI participants’ mean age, weight, and height were 37.30 ± 10.82 years (19–53 years),
80.40 ± 11.54 kg (59–98 kg), and 1.77 ± 0.08 m, respectively (1.65–1.88 m). Only one FAI
participant reported their left leg as the dominant leg, and eight FAI participants had their
right hip as the injured side.

3.1. Association of TelePhysio Sway Measurements with Force Plate CoP Measurements

The first aim of the study was to measure the association between the TelePhysio
sway measures and the force plate CoP measurements. Table 1 shows the Spearman
correlation results for the DLS condition. The CoP mean and max velocity measurements
were shown to have the best correlations with TelePhysio. In the ML sway, the TelePhysio
aamx measurement had significant large correlations with the CoP measurements of range,
RMS, mean velocity, and max velocity (0.56, −0.53, 0.48, and 0.41, respectively). In the AP
sway, the CoP mean velocity had large correlations with the TelePhysio measurements on
the y-axis of aamy, rmsy, and ry (0.71, 0.68, and 0.62, respectively), and on the z-axis of
rmsz, rz, and apenz (0.49, 0.53, and 0.44, respectively).

Table 1. Correlations between the smartphone TelePhysio app and force plate CoP measurements of
postural sway during double-leg squats. Large correlations (<0.5) are in bold.

CoP Medio-Lateral Cop Anterior–Posterior

Range RMS Velocity
Mean

Velocity
Max Range RMS Velocity

Mean
Velocity

Max

Sm
ar

tp
ho

ne
Sw

ay
M

ea
su

re
m

en
t

aamx 0.56 ** −0.53 ** 0.48 ** 0.41 ** 0.27 −0.07 0.47 ** 0.33

rmsx 0.37 −0.51 ** 0.16 0.20 0.01 −0.03 0.43 * 0.06

rx 0.31 * −0.12 0.08 0.23 0.26 −0.03 0.20 −0.02

apenx 0.31 −0.24 0.29 0.44 ** 0.00 −0.16 0.42 * 0.19

aamy 0.04 −0.01 0.19 0.28 0.19 −0.04 0.71 ** 0.36

rmsy 0.06 −0.03 0.15 0.31 * 0.15 −0.01 0.68 ** 0.32

ry 0.06 −0.04 0.32 0.35 0.23 −0.01 0.62 ** 0.29

apeny 0.05 0.03 0.27 0.34 * 0.07 −0.09 0.28 0.23

aamz 0.06 −0.17 0.16 0.21 −0.11 −0.27 0.36 0.25

rmsz 0.02 −0.16 0.25 0.21 0.03 −0.14 0.49 ** 0.32

rz 0.02 −0.12 0.31 0.30 0.01 −0.12 0.53 ** 0.36

apenz 0.11 −0.06 0.33 0.47 ** −0.02 −0.06 0.44 * 0.20

* p-values were significant (p < 0.05); ** p-values were significant (p < 0.01).

Table 2 shows the Spearman correlation results for the SLS condition. The CoP mean
and max velocity measurements were shown to have the best correlations (medium to
large) with the TelePhysio measurements. In the ML sway, the CoP mean velocity had
significant correlations with the TelePhysio x-axis measurements of 0.43, 0.46, and 0.37
for aamx, rmsx, and rx, respectively. Similarly, CoP max velocity in ML had significant
correlations with the TelePhysio x-axis measurements of 0.50, 0.53, and 0.42 for aamx, rmsx,
and rx, respectively. In the AP sway, the CoP mean velocity had large correlations with
the TelePhysio y-axis measurements of aamy, rmsy, ry, and apeny (0.66, 0.64, 0.47, and 0.53,
respectively). The AP CoP max velocity showed medium and large correlations with the
smartphone x-axis measurements of 0.50, 0.54, and 0.52 for aamx, rmsx, and rx, respectively,
and on the y-axis, of 0.43, 0.45, and 0.46 for aamy, rmsy, and ry, respectively.
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Table 2. Correlations between the smartphone TelePhysio app and the force plate CoP measurements
of postural sway during the single-leg squat. Large correlations (<0.5) are in bold.

CoP Medio-Lateral Cop Anterior–Posterior

Range RMS Velocity
Mean

Velocity
Max Range RMS Velocity

Mean
Velocity

Max

Sm
ar

tp
ho

ne
Sw

ay
M

ea
su

re
m

en
t

aamx 0.15 −0.03 0.43 ** 0.50 ** 014 0.05 0.40 ** 0.50 **

rmsx 0.23 0.02 0.46 ** 0.53 ** 0.11 0.05 0.45 ** 0.54 **

rx 0.17 0.03 0.37 ** 0.42 ** 0.18 0.16 0.32 ** 0.52 **

apenx 0.14 −0.02 0.23 0.27 0.21 −0.03 0.41 ** 0.45 **

aamy 0.17 −0.11 0.43 ** 0.34 0.34 * −0.10 0.66 ** 0.43 **

rmsy 0.14 −0.13 0.38 ** 0.38 0.36 * −0.14 0.64 ** 0.45 **

ry 0.15 −0.06 0.35 * 0.34 0.36 * −0.11 0.47 ** 0.46 **

apeny 0.15 −0.04 0.10 0.29 0.26 * 0.01 0.53 ** 0.42 **

aamz −0.08 −0.06 0.05 0.08 0.03 0.12 0.17 0.23 *

rmsz −0.09 −0.07 0.03 −0.09 0.04 0.08 0.12 0.33 *

rz −0.11 −0.11 0.11 −0.04 0.07 0.16 0.22 0.31 *

apenz 0.26 −0.05 0.24 0.23 0.22 −0.16 0.35 * 0.37 **

* p-values were significant (p < 0.05); ** p-values were significant (p < 0.01).

3.2. Between-Sessions Reliability of TelePhysio Sway Measurements

Table 3 shows the between-sessions reliability of the TelePhysio sway measurements.
The average acceleration magnitude from the mean showed the highest ICC values of 0.73
(95% CI 0.62–0.81), 0.85 (95% CI 0.79–0.91), and 0.73 (95% CI 0.62–0.82) for aamx, aamy, and
aamz, respectively, which are considered as moderate to substantial correlation. Similarly,
the approximate entropy measurements that indicate movement regularity showed moder-
ate to substantial agreement values of 0.72 (95% CI 0.59–0.81), 0.68 (95% CI 0.51–0.79), and
0.77 (95% CI 0.67–0.84) for apenx, apeny, and apenz, respectively. The SEM for the AAM
values ranged from 0.06 to 0.26 m/s−2 with an average MDC of 1.07 m/s−2 (0.66 m/s−2 to
1.42 m/s−2).

3.3. Differences in DLS and SLS Sway between Healthy and FAI Adults

The third specific aim of this study was to determine the sensitivity of several Tele-
Physio sway measurements to changes in squat stability by hip injury (healthy and FAI) and
under two conditions (DLS and SLS). Figures 3–5 show the comparison of sway measure-
ments between the healthy DLS, healthy SLS, FAI DLS, and FAI-injured leg SLS conditions
on the x-, y-, and z-axes, respectively. Overall people with FAI showed significantly more
regular and less ML sway during the DLS task, while in the AP direction, healthy controls
showed significantly less regular and more sway during the DLS task. Figure 3 shows
the TelePhysio sway measurements on the x-axis for the healthy DLS, healthy SLS, FAI
DLS, and FAI-injured leg SLS conditions. In all the TelePhysio measurements on the x-axis,
the FAI group showed significantly lower values in the DLS condition compared to the
injured SLS, healthy DLS, and healthy SLS groups, indicating less and more regular sway.
The DLS condition in healthy controls showed significantly lower aamx and rmsx values
(0.19 ± 0.05 and 1.00 ± 0.004, respectively) compared to healthy SLS (0.29 ± 0.12 and
1.02 ± 0.09, respectively) and injured SLS (0.29 ± 0.13 and 1.02 ± 0.02, respectively).
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Table 3. Comparison of smartphone (TelePhysio) measurements for healthy participants in the
laboratory and at home: means ± standard deviations, one-way ANOVA p-value, ICC and 95%
confidence intervals, SEM, and MDC. Significant (p < 0.05) are in bold.

Laboratory
Mean ± SD

Home
Mean ± SD p-Values ICC

−95%–+95% CI SEM MDC

Sm
ar

tp
ho

ne
Sw

ay
M

ea
su

re
m

en
t

aamx 0.26 ± 0.11 0.26 ± 0.11 0.76 0.73
0.62–0.81 0.06 0.66

aamy 0.71 ± 0.40 0.77 ± 0.46 0.02 0.85
0.76–0.91 0.17 1.13

aamz 0.83 ± 0.56 0.76 ± 0.45 0.08 0.73
0.62–0.82 0.26 1.42

rmsx 1.02 ± 0.02 1.02 ± 0.01 0.96 0.63
0.48–0.74 0.01 0.26

rmsy 1.19 ± 0.47 1.22 ± 0.57 0.52 0.45
0.27–0.60 0.39 1.72

rmsz 1.17 ± 0.23 1.13 ± 0.14 0.01 0.65
0.50–0.75 0.11 0.93

rx 1.82 ± 0.76 1.92 ± 0.88 0.23 0.48
0.31–0.62 0.59 2.13

ry 4.65 ± 2.62 4.96 ± 3.07 0.10 0.80
0.71–0.87 1.27 3.12

rz 3.88 ± 1.96 3.63 ± 1.81 0.05 0.79
0.70–0.86 0.86 2.57

apenx 0.49 ± 0.13 0.52 ± 0.10 0.002 0.72
0.59–0.81 0.06 0.68

apeny 0.49 ± 0.11 0.53 ± 0.10 0.002 0.68
0.51–0.79 0.06 0.68

apenz 0.52 ± 0.15 0.50 ± 0.13 0.09 0.77
0.67–0.84 0.07 0.72

Figure 4 shows the TelePhysio sway measurements on the y-axis for the healthy DLS,
healthy SLS, FAI DLS, and FAI-injured leg SLS conditions. The DLS condition in healthy
controls showed significantly greater aamy, rmsy, and ry values (0.99 ± 0.39, 1.24 ± 0.24,
and 5.73 ± 2.59, respectively) compared to healthy SLS (0.56 ± 0.31, 1.15 ± 0.55, and
4.10 ± 2.47, respectively), FAI DLS (0.46 ± 0.21, 1.04 ± 0.04, and 2.65 ± 1.08, respectively),
and injured SLS (0.43 ± 0.12, 1.04 ± 0.02, and 3.05 ± 0.88, respectively).

Figure 5 shows the TelePhysio sway measurements on the z-axis for the healthy DLS,
healthy SLS, FAI DLS, and FAI-injured leg SLS conditions. The DLS condition in healthy
controls showed significantly greater aamz, rmsz, and rz values (1.26 ± 0.59, 1.35 ± 0.29,
and 5.75 ± 1.81, respectively) compared to healthy SLS (0.61 ± 0.39, 1.01 ± 0.09, and
2.93 ± 1.23, respectively), FAI DLS (0.68 ± 0.39, 1.12 ± 0.16, and 3.36 ± 1.48, respectively),
and injured SLS (0.35 ± 0.14, 1.02 ± 0.02, and 1.94 ± 0.74, respectively). The FAI-injured
SLS condition showed significantly lower aamz, rmsz, and rz values compared to all
other conditions.
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Figure 3. Smartphone sway measurements on the sagittal axis (x, medio-lateral) for double-leg
squats (DLS) and single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI
participants is with the injured leg. Sway measurements include average acceleration magnitude from
the mean (aamx), root-mean-square acceleration (rmsx), range acceleration (rx), and approximate
entropy (apenx). *, **, ***, and **** denote p-values of p < 0.05, p < 0.01, p < 0.005, and p < 0.001,
respectively.
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Figure 4. Smartphone sway measurements on the transverse axis (y) for double-leg squats (DLS) and
single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI participants is with
the injured leg. Sway measurements include average acceleration magnitude from the mean (aamy),
root-mean-square acceleration (rmsy), range acceleration (ry), and approximate entropy (apeny). **,
***, and **** denote p-values of p < 0.05, p < 0.01, p < 0.005, and p < 0.001, respectively.
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Figure 5. Smartphone sway measurements on the frontal axis (z, anterior–posterior) for double-leg
squats (DLS) and single-leg squats (SLS) in both healthy and FAI adult participants. The SLS for FAI
participants is with the injured leg. Sway measurements include average acceleration magnitude from
the mean (aamz), root-mean-square acceleration (rmsz), range acceleration (rz), and approximate
entropy (apenz). *, **, ***, and **** denote p-values of p < 0.05, p < 0.01, p < 0.005, and p < 0.001,
respectively.

4. Discussion

The main aim of this study was to investigate the validity and between-sessions relia-
bility of a real-time remote tele-assessment application (TelePhysio) that measures postural
sway during double- and single-leg squat tasks as representative of commonly performed
clinical functional tests to identify lower extremity impairment. We also evaluated the
ability of TelePhysio to distinguish changes in sway measurements related to the squat
condition (double- and single-leg) and hip injury (healthy vs. FAI). The results of this study
may help guide healthcare practitioners to collect objective digitised data remotely and
support the transition from face-to-face to telehealth services (i.e., due to the COVID-19
pandemic).

The results from this study support our hypothesis that a smartphone provides valid
measurements of sway during the DLS and SLS conditions. However, the association
was not perfect. The TelePhysio sway measurements were found to have a significantly
large association with the CoP measurements in both the DLS and SLS conditions. In ML
sway during the DLS condition, the TelePhysio average acceleration magnitude (aamx)
and root-mean-square (rmsx) sway measurements showed a significantly large agreement
of 0.53 and 0.51 with the CoP rms values, respectively. Similarly, in AP sway, the CoP
mean velocity measurement showed a significantly large agreement of 0.71 and 0.68 with
the TelePhysio aamy and rmsy, respectively. Similar associations were found for the SLS
condition, having a large agreement in ML sway of 0.5 and 0.53 for ammx and rmsx with
the CoP velocity max measurement, and in AP sway, 0.66 and 0.64 for aamy and rmsy with
the CoP mean velocity measure. These results align with past studies that found that rms
derived from smartphones is most comparable with gold standard devices for measuring
postural stability [26–28]. The average acceleration magnitude was also comparable to
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the CoP measurements, which suggests a high association between the two measuring
devices when using this measurement. The imperfect association between the smartphone
acceleration and CoP measures, however, is not surprising since the measurements are
measuring different aspects of stability [29]. The smartphone measures sway at the approx-
imate centre of mass (COM) while the CoP measurements are derived from the ground
reactive forces that may be more reflective of the corrective actions taken by the individual.
Winter [30] proposed that acceleration measurement at the COM may be better as it is an
approximate measurement of body sway about the COM. Another explanation for the
imperfect association between the two sway measurement methods (smartphone and force
plate) may be that during the squat movement, the individual does not sway strictly as
an inverted pendulum due to the trunk tilt, and thus movement measured by TelePhysio
at the pelvic level may not directly reflect the pressure movement between the feet and
the force plate. If the body was moving like an inverted pendulum, a correlation close to 1
would be expected between trunk acceleration and the COP displacement [30].

The between-sessions reliability of the TelePhysio measurements in this study was
found to be substantial to almost perfect. The average acceleration magnitude was found
to have the greatest ICC values of 0.73, 0.85, and 0.73 for aamx, aamy, and aamz, respec-
tively. The approximate entropy measurement that indicates movement regularity also
showed substantial reliability values of 0.72, 0.68, and 0.77 for apenx, apeny, and apenz,
respectively. To our knowledge, this is the first study reporting the reliability of postural
sway measurements during squats using smartphone technology.

As stated above, one of the aims of this study was to explore the ability of the smart-
phone to identify the level of performance during DLS and SLS tasks and to differentiate
between people with and without hip pain. In this study, people with FAI were chosen
for comparison with the performance of healthy controls. The FAI group were chosen
because the squat task is a task that helps clinicians evaluate movement impairment in
the FAI syndrome [31]. Other groups with hip injuries could be considered in a future
study. The average acceleration magnitude (aam) and the approximate entropy (apen)
measurements that showed substantial between-sessions reliability also showed the ability
to significantly differentiate the level of squat performance between DLS healthy, SLS
healthy, DLS FAI, and injured leg SLS FAI. Other measurements such as the rms and the
range (r) also showed the ability to significantly differentiate between conditions. For
ML sway, the FAI group showed significantly lower aamx and apenx values during the
DLS condition compared to the healthy DLS, healthy SLS, and FAI-injured SLS conditions.
These results show that the DLS task is performed by people with FAI with minimum ML
sway, and the movement is well controlled and highly regular. Both the healthy SLS and
FIA SLS conditions showed significantly greater aamx and apenx values when compared
to the DLS conditions (healthy and FAI), but they were not significantly different from
each other. Our results are different from Malloy et al.’s [31] findings showing that SLS
but not DLS tasks differentiate between movement patterns in people with FAI syndrome
and those without hip pain. Malloy et al. [31] reported that during the SLS task, adults
with FAI syndrome squatted more slowly and with less peak hip adduction and greater hip
movements when compared to healthy controls. The differences in the conclusions between
the studies may relate to differences in the measurement methods. Our study examined the
magnitude and regulation (complexity) of postural sway, while Malloy et al. [31] examined
the kinematics and kinetics of hip joint movement. It is possible that despite differences in
hip kinematics between FAI and healthy control adults during the SLS task, as reported
by Malloy et al. [31], both groups controlled their ML sway with similar consistency and
strategy, as reported by this study; otherwise, small errors with minor fluctuations that are
less regulated will result in balance loss and falls.

Our results showing similar values of ML sway in SLS performance between healthy
and FAI participants may be surprising as we expected that the FAI group will find it
more challenging to perform SLS with the injured leg, and would therefore experience
greater ML sway during SLS compared to healthy controls. Our results, however, did show
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that in the AP direction, the FAI group had significantly lower aamz and apenz values
during SLS compared to healthy controls, which indicates less and more regulated AP sway
with the injured leg. This finding is similar to the findings of other studies that explored
movement patterns in participants with joint pain. For example, in a field study with
butchers [32], neck–shoulder discomfort was associated with less motor variability and
greater movement regularity. Similarly, in studies with unilateral knee injuries, the injured
leg exhibited less motor variability and greater regularity during gait than the non-injured
knee of the same individual [33,34]. These observations lend support to the hypothesis that
decreased movement variability and increased regularity is a result of the pain constraining
the movements within tighter boundaries so that pain can be reduced [35], potentially
similar to the strategy that our FAI used when squatting with their injured hip.

Our study has several limitations. First, participants used a range of personal smart-
phone devices, and this may introduce potential errors due to data sampling from varia-
tions in smartphone devices, operating software platforms, and motion sensors. Grouios
et al. [36] compared acceleration data from three smartphones, including iPhone 12 Pro
Max, Samsung Galaxy S21 Ultra, and Huawei P Smart, and concluded that the mean accel-
eration data were not statistically different between the devices. This result was similar to
other research studies [37,38] that compared accelerometer sensor performance between
commercially available smartphones, suggesting that modern smartphone accelerometers
can be used for measuring human movement and be employed in clinical research. Second,
the study population was limited to healthy and FAI young adults, and future research
needs to widen the range of participants with respect to age and lower extremity injury.
Third, we asked the participants to squat as low as possible and we did not standardise
the depth of the squat, which resulted in different squat depths between participants. This
may affect the outcome measures, although the study showed that the smartphone system
can recognise and distinguish between squat type and level of impairment. The fourth
limitation to the proposed method may be the need for the patient to have a smartphone
and be connected to the internet. According to the Australian Bureau of Statistics, in 2018,
86% of households in Australia had the potential to connect to the Internet and 91% had
smartphones [39]. Nevertheless, the smartphone system and the protocol were found to be
valid, reliable, and discriminating, which should encourage its use in clinical settings.

5. Conclusions

Remote tele-assessment using a smartphone application to measure postural sway
during double-leg and single-leg squats has moderate to substantial between-session
reliability and can significantly differentiate between levels of performance in adults that
are asymptomatic and those presenting with FAI. Specifically for individuals with FAI
syndrome, the DLS task is sufficient to differentiate levels of performance, and thus the
SLS task may not be necessary when experiencing difficulties during SLS with the injured
leg. Therefore, we recommend using the DLS task for assessing people with hip pain. The
use of a smartphone to remotely assess squat performance is an appropriate and effective
alternative to a face-to-face assessment. The use of a smartphone to remotely assess postural
sway during squats has the potential to improve patient outcomes by advancing equitable
access to optimal management. The method and technology used in this study represent
a paradigm shift, allowing clinicians to remotely perform and quantify the much-needed
squat performance assessment of their patients, potentially reaching more patients at a
reduced cost by reducing patient travel. TelePhysio offers a new mode of care that can be
integrated into current telehealth consultation methods for people with FAI. The TelePhysio
squat assessment solution fits within the routine clinical care of people with FAI and
additionally allows assessments to be performed remotely, enabling greater access to more
patients, including those in regional and remote areas.
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