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Abstract: Predicting the trajectories of surrounding vehicles is an essential task in autonomous
driving, especially in a highway setting, where minor deviations in motion can cause serious road
accidents. The future trajectory prediction is often not only based on historical trajectories but
also on a representation of the interaction between neighbouring vehicles. Current state-of-the-art
methods have extensively utilized RNNs, CNNs and GNNs to model this interaction and predict
future trajectories, relying on a very popular dataset known as NGSIM, which, however, has been
criticized for being noisy and prone to overfitting issues. Moreover, transformers, which gained
popularity from their benchmark performance in various NLP tasks, have hardly been explored in
this problem, presumably due to the accumulative errors in their autoregressive decoding nature
of time-series forecasting. Therefore, we propose MALS-Net, a Multi-Head Attention-based LSTM
Sequence-to-Sequence model that makes use of the transformer’s mechanism without suffering
from accumulative errors by utilizing an attention-based LSTM encoder-decoder architecture. The
proposed model was then evaluated in BLVD, a more practical dataset without the overfitting issue
of NGSIM. Compared to other relevant approaches, our model exhibits state-of-the-art performance
for both short and long-term prediction.

Keywords: vehicle trajectory prediction; autonomous driving; LSTM; transformer; multi-head
attention

1. Introduction

Autonomous driving has been gaining an increasing interest due to its guarantee
of safer driving on the road. Recently, one of the core functions of autonomous driving
that has been of particular interest in the literature is the future trajectory prediction of
neighboring vehicles. In a congested highway driving scenario, where all cars are often
driving at very high speeds, even a mildly reckless maneuver can consequentially result
in a ripple effect causing a serious accident, which is why an autonomous car needs to
forecast the future trajectories of its surrounding vehicles to assess the risk of its own
future maneuvers.

However, predicting the future trajectories of surrounding vehicles has been extremely
challenging in practice since the prediction is not only dependent on the historical trajec-
tories of the vehicles but also the dynamic and complicated socio-temporal interdepen-
dence [1] of the dense web of vehicular traffic around the car, including other cars, buses,
trucks, etc. For instance, in a dense highway setting, if one driver tries to change the lane,
the neighboring lane driver might slow down to give way and the current lane driver will
speed up to take the driver’s place. Hence, to make an accurate prediction of the future
trajectory, a proper model of the interaction between the participants needs to be utilized
as one of the parameters for the prediction besides only raw historical trajectories of the
surrounding vehicles.
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To tackle this problem of complexity in modeling interaction, recent few years have
seen the emergence of a plethora of deep learning-based data-driven models. To address
the challenge of modeling the influence of neighboring vehicles on the target or ego
vehicle, i.e. the social interaction, typical deep-learning-based operations that have been
explored include various pooling techniques [2] with convolution [3] or graphs or both [4].
These have often been coupled with an RNN such as LSTM [5] or GRU [6] to exploit its
inherent memory capability and extract temporal correlation. However, these models
often struggle to model complex long-term temporal correlations. Transformers have been
introduced to the literature with the promise of tackling the issue of long-term temporal
correlation as well as parallelizing the decoding process. Inspired by its distinct attention
mechanism, various attention-based techniques have been adopted in [1,7]. However, the
multi-headed attention mechanism, originally proposed in the traditional transformer [8],
has not extensively been explored in the highway trajectory prediction problem, mainly
due to the problem of accumulative errors resulting from the autoregressive decoding
procedure of transformers [9].

Moreover, most studies related to highway future trajectory prediction have mainly
adopted the popular NGSIM dataset [10] to evaluate their performance. The NGSIM
dataset was mainly collected to satisfy the need for data with explicit microscopic traffic
flow and car-following information, for advancing traffic flow theory [11]. However, the
NGSIM dataset was discovered to be extremely noisy in the literature by [12–14]. Various
efforts have been made to smooth out the noise such as low pass filter, interpolation, etc.
by [15]. Ref. [11] demonstrated that despite these efforts, the problem still persists and
training on the NGSIM dataset thus has the potential possibility of resulting in a model
with overfitted parameters, making it unfeasible to be deployed for practical application.

In this study, we thus propose a transformer-based LSTM sequence-to-sequence model
to tackle the interaction-aware trajectory prediction problem. We exploit the main mecha-
nism of the transformer, the multi-head attention (MHA), and implement it on an MHA-
LSTM fused sequence-to-sequence architecture to tackle the autoregressive accumulative
error problem of the transformer decoder. The encoder in our model is capable of encoding
both the social and temporal interaction of the vehicles by implementing two Multi-Head
Attention layers in the encoding process to put attention on both vehicle-vehicle and
timestep-timestep graphs, followed by a traditional LSTM layer. This is then followed by
another Multi-Head Attention-based decoder with an LSTM layer that is be able to decode
by focusing on the socio-temporal interaction between the vehicles in successive decoding
steps, which helps prevent the model from accumulating autoregressive decoding errors
and also improve future trajectory prediction accuracy. We thus summarize the contribution
and the academic as well as the practical novelty of our original work as follows.

1. In order to model the social dependence of past trajectories, we propose a Social
Multi-Head Attention (SMHA) mechanism, and to model the temporal dependence,
we use a successive Temporal Multi-Head Attention (TMHA) mechanism to focus
attention on both social and temporal interaction and encode the input data.

2. A similar MHA-based LSTM decoding step is proposed to extract the predicted socio-
temporal interaction in successive decoding steps, which improves the successive
prediction accuracy and minimizes the accumulative errors of the transformer decoder.

3. The evaluation of the method has been performed on BLVD, a large-scale vehicle
trajectory dataset that has less noise and is extracted from egocentric onboard-sensor
data, to prevent overfitting. The experimental results demonstrate the superior per-
formance of our model over state-of-the-art methods that have been implemented on
both NGSIM and BLVD datasets.

The remainder of this article is constructed as follows. Section 2 provides an overview
of the literature review on the general vehicle future trajectory prediction problem. Section 3
formulates the main trajectory prediction problem that we focus on and also provides an
in-depth look on the model we propose. Section 4 mentions the implementation details and
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also reports our experimental results from both comparative and ablative studies. Finally,
Section 5 concludes this paper and discusses future directions.

2. Related Work

The very first versions of the trajectory prediction literature focused on multiple phys-
ical model-based techniques. These essentially predict the future motion of a vehicle based
on a form of kinematics, statistics or a fusion of both models. Some popular approaches
include the Constant Velocity (CV) [16] and Constant Acceleration model (CA) [17], Kalman
Filter-based motion model [18], Gaussian Mixture Model (GMM) [19] and Hidden Markov
Model (HMM) [20]. This allowed [21] to utilize CV and CA to develop an intelligent driver
model. Further works by [22] proposed a fusion of GMM with HMM to use parameters
such as vehicle motion estimation, traffic patterns, and spatial interaction to predict the
motion of the surrounding vehicles. The purpose of predicting the trajectories of surround-
ing or sometimes the ego vehicle has mainly been done to carry out risk assessments for
safe automated driving, such as in [23,24], where Rapid Random Trees (RRT) and Linear
Matrix Inequality (LMI) has often been implemented to analyze driving risk of lane change
maneuvers or construct a human-machine shared control system [25]. However, it has been
observed that physical models have a very short prediction horizon, beyond which the
accuracy of the model becomes unfeasible [26]. Therefore, this has pushed the research
toward the direction of data-driven methods.

The early works on data-driven models explored simpler learning-based models
for interaction-aware trajectory prediction, such as support vector machines in [27,28]
and Gaussian process regression [29]. However, these models need a handful of man-
ually designed features to be completely constructed. As the incresing complexity of
Spatio-temporal interdependence modelling was recognized, it became unfeasible to use
handcrafted features and hyperparameters for these models. Thus deeper learning models,
which can design and train their own features, proved to be a breakthrough.

At first, most deep learning models mainly focused on extracting temporal correlation
via RNN architectures such as LSTM [30] and GRU [31], only focusing on the historical
trajectory to make the future prediction [32,33]. Other deep-learning approaches adopted
LSTMs to utilize their time-series modelling ability to make an energy-aware driving
behavior analysis as well as predict the motion [34]. Due to the encoder-decoder sequence-
to-sequence architecture of RNNs, they lacked the ability to model any sort of social or
spatial interaction. More recent literature has thus mostly focused explicitly on coupling
RNNs with some sort of social feature extraction architecture to model vehicle interaction.
An approach adopted by [35] proposed a statistical method GMM fused with LSTMs to
generate the leading-vehicle trajectory. Most popular such approaches, however, have
mostly focused on other neural architectures such as CNNs and GNNs.

One of the widely used architectures to model social interaction has been the convolu-
tion and social pooling approach. One of the first social pooling approaches was proposed
in [2] which used an LSTM along with a social pooling strategy (S-LSTM) to decode the pre-
diction. In [36], a social GAN (SGAN) was used which utilizes both sequence-to-sequence
architecture and a GAN to make the final prediction. A convolutional social pooling ap-
proach was proposed in [3] where the convolutional kernel-striding was applied to social
pooling to improve on the LSTM social pooling approach in [2]. A CNN-LSTM approach
was proposed in [37] which used an LSTM encoder-decoder architecture and performed a
CNN operation on the hidden-layer tensors.

Graph-based architectures have also been frequently used for predicting future trajec-
tories. Modelling the interaction-aware trajectory prediction of surrounding vehicles as
graphs with nodes being the vehicles and the edges being the interaction between them
has often been implemented in the literature. Such an approach was implemented in [6]
which constructed a GNN to make the future trajectory prediction.

Attention-based networks, however, have been a recent breakthrough, because of their
ability to rapidly extract important information from historical tracks. Ref. [38] applies
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a message-passing architecture to focus on pedestrian motion in order to make a future
prediction. Another model which also focuses on pedestrian trajectory prediction is [39],
wherein two attention layers are stacked to extract both spatial and temporal attention.
Graphs have also been utilized in the attention mechanism. The reference [40] utilizes
social graph attention to model both social and temporal interaction based on relative
positions. However, the multi-head attention mechanism of the transformer does not
appear to have been used as extensively in vehicle trajectory prediction. Its utilization
mainly spans pedestrian trajectory prediction.

3. Methodology
3.1. Problem Formulation

In this paper, the future vehicle trajectory prediction problem is formulated as a non-
linear regression task where the inputs to the model are the past trajectories of the observed
neighbouring vehicles, which can be represented by

X = {p1, p2, . . . , pT}, (1)

where
pt =

{
(x0

t , y0
t ), (x1

t , y1
t ), . . . , (xN

t , yN
t )
}

. (2)

pi
t = (xi

t, yi
t) are the coordinates x and y of vehicle i at timestep t, where t ∈ [1, T] and

i ∈ [1, N], T stands for the total length of the observed trajectory and N is the total
number of observed neighbouring vehicles within 30 meters of the target vehicle, i.e.∣∣∣ptarget

t − pi
t

∣∣∣ ≤ 30.
Based on the past trajectories, the objective of the proposed model is to learn a non-

linear regression function that predicts the coordinates of all observed vehicles in the
prediction horizon F, such that the predicted trajectories of the neighbouring vehicles
are represented as Ŷ, as follows, which approximates the ground truth (GT) trajectory,
Y = {qT+1, qT+2, . . . , qT+F}

Ŷ = {q̂T+1, q̂T+2, . . . , q̂T+F}, (3)

where
q̂t =

{
(x̂0

t , ŷ0
t ), (x̂1

t , ŷ1
t ), . . . , (x̂N

t , ŷN
t )
}

. (4)

The frame of reference of the dataset used in this paper is by default ego-centric as
the trajectories were extracted from the onboard sensors. The longitudinal y-axis indicates
the direction forward to the ego vehicle and the lateral x-axis direction indicates the axis
perpendicular to it. The right-hand side is considered positive according to the dataset [41].
As a result, the model is independent of the curvature of the road which conveniently
allows it to be used in the highway as long as an object-detection and a lane estimation
algorithm is built on the target vehicle [3].

3.2. Network Architecture

The high-level architecture of the model we propose is shown in Figure 1. As discussed
previously, it is structured as a sequence-to-sequence architecture capable of extracting
socio-temporal correlation from past observed trajectories and then generating future
trajectories based on that. Raw input X = [p1, p2, . . . , pT ] is first preprocessed into a suitable
tensor. The encoder module then encodes the socio-temporal attention data into the input
via two distinct multi-head-attention layers and then also encodes temporal memory via
the LSTM layer. The decoder then decodes the encoded information into future predictions
Ŷ = [q̂T+1, q̂T+2, . . . , q̂T+F]. The hidden features are passed onto successive decoding steps
via further MHA layers to improve further future predictions which also prevents the
traditional transformer decoding accumulation error by enriching the hidden features.
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Figure 1. Proposed MALS-Net Architecture.

3.3. Input Representation

To input the trajectory data into our proposed model, the coordinates are first scaled
to a range of (-1, 1) to aid the model to reach faster convergence [42]. The normalized
coordinates are then preprocessed into a tensor X ∈ RN×T×D where D is the feature
space, in the case of our input having a value of 2 representing the (x, y) coordinates of
the vehicles.

This tensor is then run through two different embedding layers simultaneously. The
first embedding layer PE (see Figure 1 above), is a multi-layer perceptron (MLP) which, as
shown in Equation (5), maps raw input features to a higher dimension DIE. The second
embedding layer DE, in Equation (6), maps the relative distance among each vehicle pi

t− pj
t,

for i, j ∈ [1, N] and t ∈ [1, T], to a higher dimension DDE. The two feature representations
are then concatenated to produce the final input into the model with a feature space size
Dmodel = DIE + DDE. The final input thus consists of both the embedded position and
relative distance between vehicles as features before being run through the model.

IEi
t = MLP

(
pi

t, WIE

)
(5)

DEi
t = MLP

(
pi

t − pj
t, WDE

)
(6)

3.4. Social Multi-Head Attention

The Social Multi-Head Attention (SMHA) layer, as shown in Figure 2, is proposed to
extract the rich inter-vehicular social interaction information from the input. The features
of the embedded input Xemb ∈ RN×T×Dmodel , through the last IE and DE layers, now
contain rich embedded higher dimensional information about both the trajectories and
relative distance of each vehicle. However, there is a multitude of features and extracting
a viable correlation requires putting greater weight on features that actually contribute
to a unit change in results. This work is done by an attention layer. This first multi-head
attention layer enables the model to understand what features to put the most attention
to. The embedded input is first transposed to (Xemb)

T ∈ RT×N×Dmodel so that we can
extract attention weights from the last two dimensions RN×D. The features of the input are

then split into nheads transformer heads as Rnheads×T×N× Dmodel
nheads and fed into the Multi-Head

Attention (MHA) layer. The MHA first computes the query (Q), key (K), and value (V)
matrices at timestep t, as shown in Equation (7), via three MLPs which conserves the size
of the feature space of the input as Dmodel

nheads
.
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Qt = MLP
({

xi
t

}N

i=1
, wq

)
, Kt = MLP

({
xi

t

}N

i=1
, wk

)
, Vt = MLP

({
xi

t

}N

i=1
, wv

)
(7)

SMHA
SMHA

MHA

+

MLP

Add & Norm

𝑶𝑺𝑴𝑯𝑨 ∈ ℝ
𝑇×𝑁×𝐷𝑚𝑜𝑑𝑒𝑙

൯ሺ𝑿𝒆𝒎𝒃
𝑻
∈ ℝ𝑇×𝑁×𝐷𝑚𝑜𝑑𝑒𝑙

Figure 2. The SMHA block.

The weights wq, wk and wv are initialized as samples from the Xavier Normal Distribu-
tion [43], N (0, σ2) where

σ = k×

√
2

lin + lout
. (8)

The value of k is the gain designed to be 1 and lin and lout are the input and output
feature dimensions which in this case are both Dmodel

nheads
.

The inter-vehicular interaction is then represented by an undirected graph Gt =
{Vt, Et} where the nodes Vt represent the observed vehicles Vt = {v | i = 1, 2, . . . , N} and
the edges represent the interaction as binary values between vehicles i and j, Et[i][j] = 1
if pi

t − pj
t ≤ dnear, otherwise the value is zero. The interaction graph is used to mask

social attention.
The masked attention of head h at timestep t is then computed as

Attentionh(Qt, Kt, Vt) =
Softmax

([(
qi

t
)Tkj

t

]
mask

)
√

dk

[
vi

t

]
mask

, (9)

where mask = {j | Gt[i, j] = 1, j ∈ [1, N]}. The masking based on the interaction graph
Gt allows the attention scores to be calculated only when the vehicles are near the target,
defined by the threshold dnear. In practicality, this is done to resemble a real driving scenario.
A driver’s decision is only based on cars that are observable and nearby. If it cannot observe
a car and/or it is not nearby, it is not practical to calculate an interaction score between
them as they do not share an interaction in that scenario. Therefore, we have to design the
value of threshold dnear to resemble a region around the driver where the driving decision
would be affected. The masked Multi-Head Attention on the social correlation can then be
computed as

MHA(Qt, Kt, Vt) = Concat
(

Attention1, . . . , Attentionnheads

)
. (10)

The output from the Multi-Head Attention layer of size OMHA ∈ RN×T×Dmodel is
then fed through an intra-layer MLP which helps boost training speed. This is then
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followed by an Add & Norm layer. The Add layer is simply a residual connection of the
transposed input (Xemb)

T ∈ RT×N×Dmodel which adds the current output with the input.
This connection greatly helps models such as transformers reach convergence faster by
resolving the vanishing gradient problem so it is also extensively used in our model [44].
The output of the Social Multi-Head Attention Layer is thus computed as follows,

OSMHA = Norm(MLP(OMHA) + (Xemb)
T). (11)

The output OSMHA has the same dimensions as the transposed Input (Xemb)
T ∈

T × N × Dmodel .

3.5. Positional Encoding

To date, the SMHA layer has extracted the social correlation via the weights and
biases of the layer. Thus, we now have to extract the temporal correlation from OSMHA.
However, in order to model temporal dependencies, the order is very important. Even
though the multi-head attention mechanism is powerful enough to process a long sequence
of data very quickly due to its attention graph-based architecture, in doing so, it loses its
sense of the order of each point in a sequence. The order was not particularly useful in
the SMHA step as it is redundant information for social interaction between vehicles, but
it is, however, imperative for the output OSMHA ∈ RT×N×Dmodel to preserve its sense of
order before being pushed through the TMHA step, otherwise it will produce huge errors
in the decoding step. Therefore, we propose a Positional Encoding layer (PE) to inject
the sequential order into the data via sinusoidal positional encoding. First we transpose
OSMHA back to OSMHA ∈ RN×T×Dmodel and then initialize the positional encoding matrix
P ∈ RT×Dmodel . Each scalar Pd

t | t ∈ [0, T], d ∈ [0, Dmodel ] of the Positional Encoding Matrix
is a sinusoidal function as follows

PEi(t, 2d) = sin

(
t

10,000
2d

Dmodel

)
,

PEi(t, 2d) = cos

(
t

10,000
2d

Dmodel

)
.

(12)

The above operation is then applied for t ∈ [1, T] and then the positional encoding
matrix P ∈ RT×Dmodel is added to each vehicle i ∈ [1, N], to obtain OPE ∈ RN×T×Dmodel ,
which is the sequential order infused input to the TMHA layer.

3.6. Temporal Multi-Head Attention

In order to model and extract the temporal correlation of each vehicle from the input
trajectory data, we propose another multi-head attention layer (TMHA), as illustrated in
Figure 3, similar to the SMHA. The feature space of OPE is first split into nheads transformer

heads as Rnheads×T×N× Dmodel
nheads and fed into a Multi-Head Attention Layer (MHA). The MHA

first feeds the input into three MLPs respectively in order to compute the query (Q), key
(k), and value (V) matrices for vehicle i, as shown in Equation (13), which preserves the
feature space of the input as Dmodel

nheads
.

Qi = MLP
({

oi
t

}T

t=1
, wq

)
, Kt = MLP

({
oi

t

}T

t=1
, wk

)
, Vt = MLP

({
oi

t

}T

t=1
, wv

)
(13)

The weights wq, wk and wv are again initialized as samples from the Xavier Normal
Distribution [43] again, N (0, σ2), as discussed in Equation (8) above.

The masked attention of head h for the i-th vehicle is then computed as:

Attentionh(Qi, Ki, Vi) =

Softmax
([(

qi
t
)Tki

u

]T−1

u=1

)
√

dk

[
vi

t

]T−1

u=1
, (14)



Sensors 2023, 23, 530 8 of 17

where ([(qi
t)

Tki
u]

T−1
u=1 ) demonstrates the time-masking of the timesteps. Essentially, the

time mask prevents the current steps from accessing features from the relative future. For
example, if the current timestep is s then the features from timestep s to T will be masked
as zero. This prevents the model from overfitting and making exclusive correlations on the
training data.

SMHA
SMHA

MHA

+

MLP

Add & Norm

𝑶𝑷𝑬 ∈ ℝ
𝑁×𝑇×𝐷𝑚𝑜𝑑𝑒𝑙

FFN

Figure 3. The TMHA block.

The Multi-Head Attention to the temporal dependency can then be calculated as

MHA(Qi, Ki, Vi) = Concat
(

Attention1, . . . , Attentionnheads

)
. (15)

The output from the Multi-Head Attention layer of size OMHA ∈ RN×T×Dmodel is then
fed through an intra-layer MLP, followed by an Add & Norm layer, which provides the
residual connection of the output from the last layer OPE ∈ RN×T×Dmodel . After the residual
connection and normalization, the output is fed through another multi-layer perceptron
network (FFN). FFN is made up of two feed-forward networks that successively map the
feature vectors to a higher dimension and then back to the original dimension such that
output from MLP1 is RN×T×DFFN and MLP2 maps it back to RN×T×Dmodel . This is done
to add more model parameters so that the temporal attention vectors can be fed through
further layers such as an RNN. The output of the Temporal Multi-Head Attention Layer is
thus computed as follows,

OTMHA = FFN(Norm(MLP(OMHA) + OPE), WFFN), (16)

where
FFN = MLP2(MLP1(FFNin, wMLP1), wMLP2). (17)

Thus the output from the TMHA layer now has both social and temporal correlation
encoded into it. We refer to the SMHA, PE and TMHA layers compounded together as
STMHA. We then stack M number of STMHA layers successively to extract more complex
socio-temporal dependence from the past trajectory information.

3.7. LSTM Encoder

We propose a traditional LSTM encoder after the STMHA layer stack to extract the
hidden memory information from the output tensor OSTMHA ∈ RN×T×Dmodel . This is
done to facilitate the hidden tensor passing to the LSTM decoder module. We propose
this sequence-to-sequence architecture as a replacement for the traditional transformer
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architecture with an MHA-based transformer decoder. As mentioned before, due to the
autoregressive nature of the transformer decoder, it carries the problem of accumulated
errors. We thus use a sequence-to-sequence LSTM decoder to solve this problem. At first,
the LSTM encoder layer recurrently computes the hidden-state tensor Ht ∈ RL×N×Dhid at
time t for t ∈ [1, T] with L encoder layers and Dhid hidden dimensions as

oi
t, hi

t = LSTM(hi
t−1, oi

t−1, wi
t−1). (18)

After recurrently updating the hidden state for T timesteps, the HT ∈ RL×N×Dhid at
the final timestep T is then passed on to the decoder module.

3.8. STMHA-LSTM Decoder

To decode the hidden-state tensor HT ∈ RL×N×Dhid and at the same time extract the
rich socio-temporal dependence information encoded into the hidden tensor from the
decoded information, we propose an STMHA-LSTM decoder, as demonstrated in Figure 4.
This module is made up of an LSTM decoder architecture with a built-in multi-head
attention mechanism to focus on the predicted behavior to improve further predictions at
successive timesteps. The first layer of this architecture is another ordinary LSTM decoder
which takes an input and a hidden tensor and decodes the output and updates the hidden
tensor. The hidden input that is initialized for the decoder is the hidden tensor from the
encoder, HT , that was recurrently updated for timesteps [1, T]. As input, the decoder takes
in the raw input data at timestep T, XT ∈ RN×1×2 with the last dimension denoting the
coordinates of the position of the observed vehicles. It then decodes HT+1 ∈ RL×N×Dhid for
the next timestep T + 1, as follows,

q̂i
T+1, Hi

T+1 = LSTM(Hi
T , oi

T , wi
T). (19)

LSTM
LSTM

Encoder Decoder

𝒒
ˆ

𝑇+1

𝑶𝑺𝑻𝑴𝑯𝑨 ∈ ℝ
𝑁×𝑇×𝐷𝑚𝑜𝑑𝑒𝑙

𝑿𝑻 ∈ ℝ
𝑁×1×2

𝑯𝑻+𝟏 ∈ ℝ
𝐿×𝑁×𝐷ℎ𝑖𝑑

𝑯𝑻 ∈ ℝ
𝐿×𝑁×𝐷ℎ𝑖𝑑

STMHA

Figure 4. The RNN encoder-decoder block.

The hidden tensor at timestep T + 1 is then fed into an STMHA layer to extract and
update the socio-temporal dependence at the next decoding step. This was repeated for
every following decoding step. This is done to further improve the accuracy of successive
decoding steps, as well as decode the future trajectories from the hidden information of
the transformer encoder with lower auto-regressive accumulated errors. Teacher-forcing is
also applied to improve convergence. Each decoding step either takes the predicted output
as inputs such as q̂T+1 or XT+1 depending on the teacher forcing ratio. This enables the
model to decode the highly accurate future coordinates of each vehicle at every timestep.

4. Experiments

In this section, we will report our chosen parameters, hardware, and results from
the experiments performed on the publicly available dataset BLVD in order to evaluate



Sensors 2023, 23, 530 10 of 17

the performance of the predictions by our proposed MALS-Net architecture. We will also
conduct comparative experiments with other state-of-the-art models as well as ablative
comparisons with our chosen architecture.

4.1. Dataset

The proposed model was trained, validated, and tested on the BLVD dataset. It consists
of a total of 654 high-resolution videos resulting in 120,000 points of data. It was extracted
from Changshu city, Jiangsu province. Each frame consists of the ID, 3D coordinates, vehicle
direction, and interactive behavior information of all observed vehicles by the ego. Due to
the data being collected by onboard sensors, there is less filter noise in the data compared
to NGSIM, with more realistic sensor noise, therefore making it more practical. To divide
the dataset into training, validation, and testing sets, we follow [41]. The dataset contains
various scenario categories of the ego vehicle. We only choose the scenario involving
highways with both a high and low density of participants. Other than that, the dataset is
also split between day and night. We concatenate and shuffle all these sub-datasets before
feeding them into our model.

4.2. Implementation Details

We extensively used a desktop running Windows 11 with 3.8 GHz AMD Ryzen 7
CPU, 32 GB RAM, and an NVIDIA 3070Ti Graphics Card to build our model. To train our
model, we utilized the parallel High-Performance Computing Service which is a Hong
Kong Polytechnic University resource. The high-performance computing nodes are made
up of several industry-grade GPUs, the exact model of which is unknown to the authors.

4.3. Hyperparameter Settings

For the observable region, we set it to be a 30 m radial region, based on the assumption
that a human driver would not be able to see beyond a 30 m region around them. For the
interaction graph Gt, we set the threshold dnear to be 15 m. We set the number of STMHA
layers M = 2 and nheads of all the MHA modules to be 4 and the value of Dmodel in our
model to be 128. The LSTM blocks all have a Dhid of 60. and a number of layers, L = 2. For
the trajectory, we used the past timesteps T to be 3 s and future timestamps F to be 5 s. For
model training, we used the Adam [45] optimizer with η = 0.001, β = 0.999. The learning
rate used is 0.0001 and the batch size of 32. The teacher-forcing ratio used is 0.5.

4.4. Evaluation Metrics

In line with the existing literature [1–6,36,37,39,40] we adopted the root mean squared
error (RMSE) between the prediction and the ground truth for ease of comparison of
the model’s performance with other state-of-the-art methods on the NGSIM dataset as
well as for analyzing its performance with ground truth. RMSE at prediction time t′, t ∈
[T + 1, . . . , T + F] can be calculated as follows,

RMSEt =

√√√√ 1
L

L

∑
l=1

(
Ŷl

t −Yl
t
)2, (20)

where Ŷ is the predicted positions and Y is the Ground Truth Position of the l-th testing
sample at timestep t′ and L is the total length of the test set.

4.5. Ablative Analysis

To defend the effectiveness of our architecture, we perform a variety of different
ablative experiments in this section. At first to verify the performance of our encoder
module in the first encoding social correlation, then the temporal correlation and then
memory information into the input, we carry out three distinct experiments. These three
experiments are described as follows.
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1. MALSwoTA: This variant of the model excludes the TMHA layer which extracts the
temporal correlation. It thus also excludes the PE module and the output from the
SMHA is directly fed into the LSTM encoder.

2. MALSwoSA: This variant of the model excludes the SMHA layer which extracts
the social correlation. The DE module is also excluded from this variant as that
contributed to the social correlation information included in the encoded tensor. The
output from the IE layer is directly fed into the PE and then the TMHA layer with the
dimension Dmodel after the input embedding (IE).

3. MALSwoLE: This variant of the model excludes the LSTM encoder. The hidden
tensors for the LSTM decoder are prepared via some specific operations including an
additional MLP that maps the Dmodel out of the TMHA layer to a size of Dhid.

The results in Table 1 compare the above three models with our proposed architecture
MALS. The improvement score is based on the mean of the difference in RMSE over the 5 s
of the prediction horizon. First, it can be observed that adding the SMHA layer improved
the model performance by 39.6%. This shows that the significance of the SMHA layer in
extracting the social context of the traffic scenario via the graph is crucial to the prediction
and is thus a vital addition to our model. Additionally, the TMHA layer stands as even
more important, with an improvement of almost 50% by adding the layer. This confirms
that, in addition to the social context, more importantly, the prediction is mainly based on
the historical trajectories and self-attention to the historical trajectories which our proposed
model is proficient in extracting via the TMHA layer. Encoding the memory information
also serves as important according to our ablative results. The LSTM encoder, encoding the
hidden memory information improves the model performance by 23.5%. We can also infer
that part of this improvement also comes from improving the accumulative errors caused
by the transformer-based STMHA encoder if no LSTM encoder is used to subsequently
extract the hidden memory information. Figure 5 illustrates the RMSE values of the three
experiments and their corresponding improvement.

Table 1. Ablative Analysis of the Encoder Module.

Model RMSE-1s RMSE-2s RMSE-3s RMSE-4s RMSE-5s Average
Improvement

MALSwoTA 0.89 1.78 3.05 4.66 6.48 47.7%
MALSwoSA 0.69 1.53 2.76 4.26 5.87 39.6%
MALSwoLE 0.58 1.26 2.11 3.17 4.48 23.5%
MALS-Net 0.48 1.01 1.60 2.31 3.36

1 2 3 4 5
Prediction Horizon (s)

1

2

3

4

5

6

R
M

SE

MALSwoTA
MALSwoSA
MALSwoLE
MALS

Figure 5. Comparison of RMSE values from the Ablative Analysis on the Encoder

Secondly, to assess the effectiveness of our proposed decoder architecture, we conduct
two distinct experiments as follows.
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1. MALSwoLED: This variant of the model is a version of the original transformer
architecture. It excludes both the LSTM encoder and decoder. The encoded input
from the STMHA is directly fed into another STMHA-based decoder similar to the
transformer decoder and the right-shifted outputs are then fed into the decoder to
make successive predictions.

2. MALSwoLDA: This variant excludes the STMHA block between successive decoding
steps. The hidden information from the LSTM is passed onto the next decoding
step without extracting further socio-temporal context from it in making successive
timestep predictions.

At first, we can observe the effects of the LSTM encoder-decoder architecture. Com-
pared to an ordinary transformer-based encoder-decoder architecture without any RNN,
we can see the errors grow almost exponentially in successive decoding steps. This is the
seeming effect of the accumulative errors that originates from the autoregressive nature of
the transformer decoding. In Table 2, it is clear that adding the LSTM encoding-decoding
to allow hidden information passing to make predictions is superior to the transformer-
based encoding-decoding, especially in future timesteps. Adding an LSTM-based encoder-
decoder thus improves both the model RMSE as well as autoregressive accumulating errors.
Secondly, it is also evident how the STMHA layer for the LSTM decoder is also crucial in
mitigating successive decoding errors. Adding this layer also showcases the increasing
improvement of RMSE in successive decoding steps. This establishes that extracting the
socio-temporal interdependence of the traffic in successive decoding steps is very important
in further predicting trajectories further into the future. Figure 6 illustrates the RMSE values
of these two experiments and their corresponding improvement.

Table 2. Ablative Analysis of the Decoder Module.

Model RMSE-1s RMSE-2s RMSE-3s RMSE-4s RMSE-5s Average
Improvement

MALSwoLED 0.64 1.66 2.58 4.71 5.53 39.1%
MALSwoLDA 0.57 1.21 2.58 3.15 4.70 25.9%

MALS-Net 0.48 1.01 1.60 2.31 3.36

1 2 3 4 5
Prediction Horizon (s)

1

2

3

4

5

6

R
M

SE

MALSwoLED
MALSwoLDA
MALS

Figure 6. Comparison of RMSE values from the Ablative Analysis on the Decoder.

Our model also proposed a threshold to distinguish nearby vehicles from observed
vehicles, which we call dnear. This threshold also limits the social influence range between
vehicles, so properly designing this parameter is crucial to our proposed model. We thus
also conducted further experiments to design the value of this threshold. We chose the
value from a pool of four values 10, 20, 30, 40. As shown in Table 3, excessively small values
of dnear result in poor performance seemingly due to the fact that it ignores the realistic
interaction between vehicles beyond the threshold. It is also observed that values larger
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than 30 do not produce a notable improvement, so we chose the value of 30 to represent
dnear.

Table 3. Ablative Analysis of the Nearby Distance Threshold.

dnear (m) Mean RMSE-1s RMSE-2s RMSE-3s RMSE-4s RMSE-5s

10 0.51 1.42 2.38 3.67 4.70
20 0.46 1.25 1.98 2.86 3.91
30 0.43 1.21 1.96 2.86 3.88
40 0.44 1.20 1.95 2.86 3.86

4.6. Comparative Analysis

We use the following models in the literature to compare our model.

• CV [16]: This method assumes a constant velocity and applies a Kalman Filter to
predict future trajectories.

• V-LSTM [3]: This method uses a simple LSTM-based encoder-decoder model to make
predictions.

• S-LSTM [3]: This method uses a social pooling technique to sum the neighboring
vehicle features via an LSTM to predict trajectories.

• CS-LSTM [3]: This method models the traffic in grids and utilizes the convolution
operation to extract social interaction and predict future trajectories.

• DSCAN [46]: This method uses a constraint network and models attention between
vehicles to extract the weights to make future predictions.

• SGAN [36]: This method uses an adversarial network architecture that utilizes an
encoder-decoder structure as well as a discriminator to make trajectory predictions.

• HMNet [47]: This model utilizes a hierarchical context-free LSTM encoder-decoder to
forecast the trajectories.

We demonstrate the performance of our model compared to the above models in
Table 4. The capability of our model to use the strength of the transformer network and
model socio-temporal interaction without dealing with autoregressive errors is demon-
strated in the table. Our model seemingly outperforms all other baselines, with specifically
significant performance in the fourth and fifth-second prediction horizons, establishing the
strength of our model in long-term predictions.

Table 4. Comparative Analysis.

Model
Average Im-
provement

RMSE-1s RMSE-2s RMSE-3s RMSE-4s RMSE-5s

CV 0.73 1.78 3.13 4.78 6.68
V-LSTM 0.68 1.65 2.91 4.46 6.27
S-LSTM 0.65 1.31 2.16 3.25 4.55

CS-LSTM 0.61 1.27 2.09 3.10 4.37
DSCAN 0.58 1.26 2.03 2.98 4.13
SGAN 0.57 1.32 2.22 3.26 4.40

HMNet 0.50 1.13 1.89 2.85 4.04
MALS-Net 0.48 1.01 1.60 2.31 3.36

4.7. Prediction Visualization

RMSE is generally an effective indicator of performance but visualization is often
needed to analyze the strengths and weaknesses of a model. Thus, in this section, we
provide a visualization of some test cases to better understand our model’s performance in
depth, by comparing predicted trajectories with ground truth. Figure 7 demonstrates three
distinct scenes each with different levels of our model performance, with the trajectories
marked in different colors. The first scene demonstrates a typical congested highway
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driving scenario. The ego here is surrounded by five other vehicles, all contributing to the
interaction-modeling of the ego. With enough social interaction context, our model seems
to perform very well with minimal difference in the ground truth and predicted trajectories.

Past Observed Trajectory

Future Ground Truth Trajectory

Future Predicted Trajectory

Target Vehicle

Congested Scene Relatively Uncongested Scene Lane Change Scene

*Vehicle sizes have been exaggerated and trajectories have been free-hand drawn from coordinates 

Figure 7. Prediction Visualization of three different scenes.

The second scene represents a fairly uncongested scene compared to the first. Our
proposed model also seems to perform relatively well in this case with a negligible deviation
of the predicted trajectory from the ground truth. However, the performance, in contrast
to the first scene, is relatively lower. We suppose it is due to the relatively much lower
interaction context. Because there are not enough cars, our proposed socio-temporal
interaction modeling does not produce perfectly predicted trajectories with a negligible yet
noticeable deviation between the predicted and the ground truth.

The third case illustrates a scenario where there are multiple lane change cases. The
performance of the model, in this case, is relatively poor due to the fact that the exact
trajectory is ambiguous even though the model predicts a possible lane change. It also
failed to capture the deviation of the path of the yellow vehicle due to the blue one taking
its lane in front. We also believe there are not enough lane change cases in the highway
dataset of BLVD which possibly also contributes to the poorer performance. We think
creating a behavior prediction branch in the model to predict behaviors and then feeding
the behaviors back into the model to improve the interaction prediction can improve the
model’s performance on lane change scenarios, due to the fact that predicting the exact
time when an intention-change will occur can improve the lane change path prediction.
We also think that pre-training the model on some datasets such as HighD [48] with more
lane change scenarios may mitigate some issues of extreme cases.

5. Conclusions

In this article, we proposed a transformer-based LSTM encoder-decoder network to
model the socio-temporal interaction and predict the future trajectories of surrounding
vehicles. We used the multi-head mechanism of transformers to efficiently extract the
social and temporal interaction individually and have encoded it into the input as hidden
information via the LSTM encoder in the encoder module. We have then used the decoder
module to decode the hidden information, using another multi-head attention layer on
the decoder to improve the successive decoding accuracy. We trained and evaluated our
model on a practical, ego-centered, large-scale dataset that is derived from onboard sensor
data. We conducted extensive studies, including both ablative and comparative studies.
Our experiments verified that our model outperforms all other previous models. Ablative
studies confirmed that our model solves the accumulative error caused by the transformer’s
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autoregressive decoding behavior. The visualization results showed our model’s strength in
difficult congested scenarios, as well as its limitation in lane-change path predictions. The
proposed model can be implemented in a practical driving scenario to predict the future
trajectories of surrounding vehicles based on their historical tracks, provided that there is
an object detection system such as YOLO is in place. In the future, we plan to enhance the
model’s performance on exact lane-change tracks by better modeling the driver-intention
and feeding it into the interaction procedure. As another potential future path, this model
can also be extended to involve more traffic participants such as cyclists and pedestrians
and predict their behavior as well. Currently, this model can only be utilized in a freeway
driving scenario. Adopting this model for urban driving, incorporating more complex
information such as lane types, spatial HD maps, and traffic lights may be another future
direction worth pursuing.
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